Oinarov, Ryskul; Kalybay, Aigerim Second-order Hardy-type inequality and its applications. (English) Zbl 07741260 Trans. A. Razmadze Math. Inst. 177, No. 2, 237-245 (2023). MSC: 26D10 34C10 PDF BibTeX XML Cite \textit{R. Oinarov} and \textit{A. Kalybay}, Trans. A. Razmadze Math. Inst. 177, No. 2, 237--245 (2023; Zbl 07741260) Full Text: Link
Derbissaly, Bauyrzhan; Sadybekov, Makhmud Tricomi problem for mixed parabolic-hyperbolic equation with higher order boundary condition. (English) Zbl 07740217 Bull. Iran. Math. Soc. 49, No. 4, Paper No. 52, 13 p. (2023). MSC: 35A09 35L20 35M13 PDF BibTeX XML Cite \textit{B. Derbissaly} and \textit{M. Sadybekov}, Bull. Iran. Math. Soc. 49, No. 4, Paper No. 52, 13 p. (2023; Zbl 07740217) Full Text: DOI
Kaddoura, I. H.; Al-Issa, Sh. M.; Rifai, N. J. Existence and Hyers-Ulam stability of the solutions to the implicit second-order differential equation. (English) Zbl 07731236 Poincare J. Anal. Appl. 10, No. 1, 175-192 (2023). MSC: 26A33 34K45 47G10 PDF BibTeX XML Cite \textit{I. H. Kaddoura} et al., Poincare J. Anal. Appl. 10, No. 1, 175--192 (2023; Zbl 07731236) Full Text: Link
Ganguly, Pritam; Manna, Ramesh; Thangavelu, Sundaram An extension problem, trace Hardy and Hardy’s inequalities for the Ornstein-Uhlenbeck operator. (English) Zbl 07730957 Anal. PDE 16, No. 5, 1205-1244 (2023). MSC: 26D10 35J15 26A33 33C45 35A23 43A80 PDF BibTeX XML Cite \textit{P. Ganguly} et al., Anal. PDE 16, No. 5, 1205--1244 (2023; Zbl 07730957) Full Text: DOI arXiv
Torebek, Berikbol T. Sub-diffusion equations with Mittag-Leffler nonlinearity. (English) Zbl 07716475 Discrete Contin. Dyn. Syst., Ser. S 16, No. 6, 1669-1685 (2023). MSC: 35R11 35K20 35K58 26A33 PDF BibTeX XML Cite \textit{B. T. Torebek}, Discrete Contin. Dyn. Syst., Ser. S 16, No. 6, 1669--1685 (2023; Zbl 07716475) Full Text: DOI
Chen, Wenhui; Fino, Ahmad Z. A competition on blow-up for semilinear wave equations with scale-invariant damping and nonlinear memory term. (English) Zbl 07716456 Discrete Contin. Dyn. Syst., Ser. S 16, No. 6, 1264-1285 (2023). MSC: 35B44 35L15 35L71 26A33 35B33 PDF BibTeX XML Cite \textit{W. Chen} and \textit{A. Z. Fino}, Discrete Contin. Dyn. Syst., Ser. S 16, No. 6, 1264--1285 (2023; Zbl 07716456) Full Text: DOI arXiv
Qiu, Wenlin Optimal error estimate of an accurate second-order scheme for Volterra integrodifferential equations with tempered multi-term kernels. (English) Zbl 07713020 Adv. Comput. Math. 49, No. 3, Paper No. 43, 25 p. (2023). MSC: 65-XX 26A33 45J05 65M12 65M15 65M60 PDF BibTeX XML Cite \textit{W. Qiu}, Adv. Comput. Math. 49, No. 3, Paper No. 43, 25 p. (2023; Zbl 07713020) Full Text: DOI arXiv
Ji, Yong-Gwan; Kang, Hyeonbae Spectrum of the Neumann-Poincaré operator and optimal estimates for transmission problems in the presence of two circular inclusions. (English) Zbl 07711419 Int. Math. Res. Not. 2023, No. 9, 7638-7685 (2023). MSC: 35J15 35B65 PDF BibTeX XML Cite \textit{Y.-G. Ji} and \textit{H. Kang}, Int. Math. Res. Not. 2023, No. 9, 7638--7685 (2023; Zbl 07711419) Full Text: DOI arXiv
Polovinkina, Marina V.; Polovinkin, Igor P. Recovery of the solution of the singular heat equation from measurement data. (English) Zbl 07709634 Bol. Soc. Mat. Mex., III. Ser. 29, No. 2, Paper No. 41, 19 p. (2023). MSC: 35K67 26A33 35B40 35K15 43A32 PDF BibTeX XML Cite \textit{M. V. Polovinkina} and \textit{I. P. Polovinkin}, Bol. Soc. Mat. Mex., III. Ser. 29, No. 2, Paper No. 41, 19 p. (2023; Zbl 07709634) Full Text: DOI
Aouaoui, Sami; Jlel, Rahma Corrigendum and addendum to: “Singular weighted sharp Trudinger-Moser inequalities defined on \(\mathbb{R}^N\) and applications to elliptic nonlinear equations”. (English) Zbl 07706453 Discrete Contin. Dyn. Syst. 43, No. 8, 3170-3173 (2023). MSC: 35A23 26D15 35A21 35B33 35D30 35J20 35J62 35J75 PDF BibTeX XML Cite \textit{S. Aouaoui} and \textit{R. Jlel}, Discrete Contin. Dyn. Syst. 43, No. 8, 3170--3173 (2023; Zbl 07706453) Full Text: DOI
An, Duong Thi Viet; Xu, Hong-Kun; Yen, Nguyen Dong Fréchet second-order subdifferentials of Lagrangian functions and optimality conditions. (English) Zbl 07700283 SIAM J. Optim. 33, No. 2, 766-784 (2023). MSC: 90C30 90C46 49K27 49J53 90C56 26A27 PDF BibTeX XML Cite \textit{D. T. V. An} et al., SIAM J. Optim. 33, No. 2, 766--784 (2023; Zbl 07700283) Full Text: DOI
Ghisi, Marina; Gobbino, Massimo Three examples of residual pathologies. (English) Zbl 07697433 Jpn. J. Math. (3) 18, No. 1, 67-113 (2023). MSC: 26A24 35L15 35Q35 76F25 PDF BibTeX XML Cite \textit{M. Ghisi} and \textit{M. Gobbino}, Jpn. J. Math. (3) 18, No. 1, 67--113 (2023; Zbl 07697433) Full Text: DOI arXiv
El-Sayed, A. A.; Agarwal, P. Spectral treatment for the fractional-order wave equation using shifted Chebyshev orthogonal polynomials. (English) Zbl 07697396 J. Comput. Appl. Math. 424, Article ID 114933, 11 p. (2023). MSC: 26A33 65D25 65M06 65Z05 PDF BibTeX XML Cite \textit{A. A. El-Sayed} and \textit{P. Agarwal}, J. Comput. Appl. Math. 424, Article ID 114933, 11 p. (2023; Zbl 07697396) Full Text: DOI
D’abbicco, Marcello; Girardi, Giovanni Decay estimates for a perturbed two-terms space-time fractional diffusive problem. (English) Zbl 1517.35238 Evol. Equ. Control Theory 12, No. 4, 1056-1082 (2023). MSC: 35R11 26A33 35A01 35B33 35K15 35K58 PDF BibTeX XML Cite \textit{M. D'abbicco} and \textit{G. Girardi}, Evol. Equ. Control Theory 12, No. 4, 1056--1082 (2023; Zbl 1517.35238) Full Text: DOI
Wences, Giovanni; Delgado, Joaquín Second order derivative of a functional associated to an optimal transport map. (English) Zbl 07694429 Monatsh. Math. 201, No. 3, 943-959 (2023). MSC: 46N10 46G05 49J50 PDF BibTeX XML Cite \textit{G. Wences} and \textit{J. Delgado}, Monatsh. Math. 201, No. 3, 943--959 (2023; Zbl 07694429) Full Text: DOI
Torres Ledesma, César E.; Vanterler da C. Sousa, J.; Cruz, Amado M. Weighted Hardy-Littlewood-Sobolev-type inequality for \(\psi\)-Riemann-Liouville fractional integrals. (English) Zbl 07690184 Ill. J. Math. 67, No. 1, 13-32 (2023). Reviewer: Antonio Linero Bas (Murcia) MSC: 26D10 26A33 34B15 35J20 46B99 58E05 PDF BibTeX XML Cite \textit{C. E. Torres Ledesma} et al., Ill. J. Math. 67, No. 1, 13--32 (2023; Zbl 07690184) Full Text: DOI Link
Aouaoui, Sami; Jlel, Rahma Correction to: “New weighted sharp Trudinger-Moser inequalities defined on the whole Euclidean space \(\mathbb{R}^N\) and applications”. (English) Zbl 1516.35017 Calc. Var. Partial Differ. Equ. 62, No. 5, Paper No. 154, 3 p. (2023). MSC: 35A23 26D15 35A15 35B33 35D30 35J20 35J62 46E35 PDF BibTeX XML Cite \textit{S. Aouaoui} and \textit{R. Jlel}, Calc. Var. Partial Differ. Equ. 62, No. 5, Paper No. 154, 3 p. (2023; Zbl 1516.35017) Full Text: DOI
Tran Van Su; Dinh Dieu Hang Second-order optimality conditions in locally Lipschitz multiobjective fractional programming problem with inequality constraints. (English) Zbl 07686550 Optimization 72, No. 5, 1171-1198 (2023). MSC: 90C46 90C29 90C32 49J52 PDF BibTeX XML Cite \textit{Tran Van Su} and \textit{Dinh Dieu Hang}, Optimization 72, No. 5, 1171--1198 (2023; Zbl 07686550) Full Text: DOI
Ghisi, Marina; Gobbino, Massimo Optimal derivative loss for abstract wave equations. (English) Zbl 07686087 Math. Ann. 386, No. 1-2, 455-494 (2023). Reviewer: Michael Reissig (Freiberg) MSC: 35L90 35B30 35B65 35L15 35L20 PDF BibTeX XML Cite \textit{M. Ghisi} and \textit{M. Gobbino}, Math. Ann. 386, No. 1--2, 455--494 (2023; Zbl 07686087) Full Text: DOI arXiv
Murai, Sojiro Strichartz estimates for magnetic Schrödinger, wave and Klein-Gordon equations in exterior domain and application to scattering theory. (English) Zbl 07684554 Osaka J. Math. 60, No. 2, 351-376 (2023). Reviewer: Alessandro Selvitella (Fort Wayne) MSC: 35B45 35A23 35B40 35L20 35Q41 PDF BibTeX XML Cite \textit{S. Murai}, Osaka J. Math. 60, No. 2, 351--376 (2023; Zbl 07684554) Full Text: Link
Choudhuri, Debajyoti; Saoudi, Kamel A critical elliptic problem involving exponential and singular nonlinearities. (English) Zbl 1509.35341 Fract. Calc. Appl. Anal. 26, No. 1, 399-413 (2023). MSC: 35R11 26A33 35R35 35Q35 35J20 46E35 PDF BibTeX XML Cite \textit{D. Choudhuri} and \textit{K. Saoudi}, Fract. Calc. Appl. Anal. 26, No. 1, 399--413 (2023; Zbl 1509.35341) Full Text: DOI
Abdellaoui, Boumediene; Fernández, Antonio J.; Leonori, Tommaso; Younes, Abdelbadie Deterministic KPZ-type equations with nonlocal “gradient terms”. (English) Zbl 1512.35606 Ann. Mat. Pura Appl. (4) 202, No. 3, 1451-1468 (2023). MSC: 35R11 35J25 35J61 26A33 PDF BibTeX XML Cite \textit{B. Abdellaoui} et al., Ann. Mat. Pura Appl. (4) 202, No. 3, 1451--1468 (2023; Zbl 1512.35606) Full Text: DOI arXiv
Yang, Tao A global compactness result with applications to a nonlinear elliptic equation arising in astrophysics. (English) Zbl 07677453 J. Differ. Equations 360, 201-231 (2023). MSC: 35A23 35B33 35J20 35J61 PDF BibTeX XML Cite \textit{T. Yang}, J. Differ. Equations 360, 201--231 (2023; Zbl 07677453) Full Text: DOI
Kar, Manas; Railo, Jesse; Zimmermann, Philipp The fractional \(p\)-biharmonic systems: optimal Poincaré constants, unique continuation and inverse problems. (English) Zbl 1516.35518 Calc. Var. Partial Differ. Equ. 62, No. 4, Paper No. 130, 36 p. (2023). Reviewer: Tommi Brander (Horten) MSC: 35R30 26A33 35B60 35J92 42B37 46F12 35J25 35J91 PDF BibTeX XML Cite \textit{M. Kar} et al., Calc. Var. Partial Differ. Equ. 62, No. 4, Paper No. 130, 36 p. (2023; Zbl 1516.35518) Full Text: DOI arXiv
Chen, Robin Ming; Huang, Feimin; Wang, Dehua; Yuan, Difan Stabilization effect of elasticity on three-dimensional compressible vortex sheets. (English. French summary) Zbl 1510.35328 J. Math. Pures Appl. (9) 172, 105-138 (2023). MSC: 35Q74 35Q35 76A10 76E17 76N10 74F10 74M15 35L71 35R35 PDF BibTeX XML Cite \textit{R. M. Chen} et al., J. Math. Pures Appl. (9) 172, 105--138 (2023; Zbl 1510.35328) Full Text: DOI
Wang, Qilin; Liu, Min A note on “Some properties of second-order weak subdifferentials”. (English) Zbl 1506.49007 Turk. J. Math. 47, No. 1, 256-260 (2023). MSC: 49J45 26E25 46G05 49J53 54C60 54H25 PDF BibTeX XML Cite \textit{Q. Wang} and \textit{M. Liu}, Turk. J. Math. 47, No. 1, 256--260 (2023; Zbl 1506.49007) Full Text: DOI
Berger, Arno A beautiful inequality by Saint-Venant and Pólya revisited. (English) Zbl 1510.35013 Am. Math. Mon. 130, No. 3, 239-250 (2023). MSC: 35A23 26D10 97M50 35J25 74B05 76D03 PDF BibTeX XML Cite \textit{A. Berger}, Am. Math. Mon. 130, No. 3, 239--250 (2023; Zbl 1510.35013) Full Text: DOI
Versano, Idan Optimal Hardy-weights for the \((p, A)\)-Laplacian with a potential term. (English) Zbl 1510.35016 Proc. R. Soc. Edinb., Sect. A, Math. 153, No. 1, 289-306 (2023). MSC: 35A23 35B09 35J08 35J25 PDF BibTeX XML Cite \textit{I. Versano}, Proc. R. Soc. Edinb., Sect. A, Math. 153, No. 1, 289--306 (2023; Zbl 1510.35016) Full Text: DOI arXiv
Aouaoui, Sami; Dhifet, Mariem Bounded variation solution to 1-Laplacian Kirchhoff type problem in \(\mathbb{R}^N\). (English) Zbl 07659133 Complex Var. Elliptic Equ. 68, No. 2, 200-211 (2023). MSC: 26A27 26A45 26B25 35D30 35J20 35J62 PDF BibTeX XML Cite \textit{S. Aouaoui} and \textit{M. Dhifet}, Complex Var. Elliptic Equ. 68, No. 2, 200--211 (2023; Zbl 07659133) Full Text: DOI
Chen, Hao; Qiu, Wenlin; Zaky, Mahmoud A.; Hendy, Ahmed S. A two-grid temporal second-order scheme for the two-dimensional nonlinear Volterra integro-differential equation with weakly singular kernel. (English) Zbl 1508.65100 Calcolo 60, No. 1, Paper No. 13, 30 p. (2023). MSC: 65M06 65N06 65M55 65M12 65M15 65M22 45K05 35R09 26A33 35R11 PDF BibTeX XML Cite \textit{H. Chen} et al., Calcolo 60, No. 1, Paper No. 13, 30 p. (2023; Zbl 1508.65100) Full Text: DOI arXiv
Hernández, S. I.; del Castillo, L. F.; del Castillo, Roxana M.; García-Bernabé, Abel; Compañ, V. Memory kernel formalism with fractional exponents and its application to dielectric relaxation. (English) Zbl 1508.82036 Physica A 612, Article ID 128486, 13 p. (2023). MSC: 82C31 82C44 82D30 35Q84 26A33 35R11 PDF BibTeX XML Cite \textit{S. I. Hernández} et al., Physica A 612, Article ID 128486, 13 p. (2023; Zbl 1508.82036) Full Text: DOI
Nghia, Bui Dai; Nguyen, Van Tien; Long, Le Dinh On Cauchy problem for pseudo-parabolic equation with Caputo-Fabrizio operator. (English) Zbl 1507.35328 Demonstr. Math. 56, Article ID 20220180, 20 p. (2023). MSC: 35R11 26A33 35B65 35K20 35K70 PDF BibTeX XML Cite \textit{B. D. Nghia} et al., Demonstr. Math. 56, Article ID 20220180, 20 p. (2023; Zbl 1507.35328) Full Text: DOI
Ge, Hui; Zhang, Zhifei Stability of wave equations on Riemannian manifolds with locally boundary fractional feedback laws under geometric conditions. (English) Zbl 1504.35053 J. Geom. Anal. 33, No. 2, Paper No. 45, 22 p. (2023). MSC: 35B35 35L05 35L20 35R01 93D15 34K37 PDF BibTeX XML Cite \textit{H. Ge} and \textit{Z. Zhang}, J. Geom. Anal. 33, No. 2, Paper No. 45, 22 p. (2023; Zbl 1504.35053) Full Text: DOI
Litsgård, Malte; Nyström, Kaj On local regularity estimates for fractional powers of parabolic operators with time-dependent measurable coefficients. (English) Zbl 1504.35094 J. Evol. Equ. 23, No. 1, Paper No. 3, 33 p. (2023). MSC: 35B45 35B65 35K15 35K20 35R11 26A33 42B25 47D06 PDF BibTeX XML Cite \textit{M. Litsgård} and \textit{K. Nyström}, J. Evol. Equ. 23, No. 1, Paper No. 3, 33 p. (2023; Zbl 1504.35094) Full Text: DOI arXiv
Qiu, Wenlin; Xiao, Xu; Li, Kexin Second-order accurate numerical scheme with graded meshes for the nonlinear partial integrodifferential equation arising from viscoelasticity. (English) Zbl 07609335 Commun. Nonlinear Sci. Numer. Simul. 116, Article ID 106804, 19 p. (2023). MSC: 65-XX 26A33 45K05 65M12 65M22 65M60 PDF BibTeX XML Cite \textit{W. Qiu} et al., Commun. Nonlinear Sci. Numer. Simul. 116, Article ID 106804, 19 p. (2023; Zbl 07609335) Full Text: DOI arXiv
Yusubov, Shakir Sh.; Mahmudov, Elimhan N. Optimality conditions of singular controls for systems with Caputo fractional derivatives. (English) Zbl 07599072 J. Ind. Manag. Optim. 19, No. 1, 246-264 (2023). MSC: 49K10 26A33 34A08 49J15 49K40 PDF BibTeX XML Cite \textit{S. Sh. Yusubov} and \textit{E. N. Mahmudov}, J. Ind. Manag. Optim. 19, No. 1, 246--264 (2023; Zbl 07599072) Full Text: DOI
El-Sayed, Ahmed Mohamed Ahmed; Hashem, Hind Hassan Gaber; Al-Issa, Shorouk Mahmoud Study on the stability for implicit second-order differential equation via integral boundary conditions. (English) Zbl 07694610 J. Math. Model. 10, No. 2, 331-348 (2022). MSC: 26A33 34K45 47G10 PDF BibTeX XML Cite \textit{A. M. A. El-Sayed} et al., J. Math. Model. 10, No. 2, 331--348 (2022; Zbl 07694610) Full Text: DOI
Ono, Kosuke Decay properties for mildly degenerate Kirchhoff type dissipative wave equations in bounded domains. (English) Zbl 1511.35040 J. Math., Tokushima Univ. 56, 77-85 (2022). MSC: 35B40 35L20 35L80 PDF BibTeX XML Cite \textit{K. Ono}, J. Math., Tokushima Univ. 56, 77--85 (2022; Zbl 1511.35040)
Fu, Yongqiang; Zhang, Xiaoju Global existence, local existence and blow-up of mild solutions for abstract time-space fractional diffusion equations. (English) Zbl 07658836 Topol. Methods Nonlinear Anal. 60, No. 2, 415-440 (2022). MSC: 26A33 35K15 35B44 PDF BibTeX XML Cite \textit{Y. Fu} and \textit{X. Zhang}, Topol. Methods Nonlinear Anal. 60, No. 2, 415--440 (2022; Zbl 07658836) Full Text: DOI Link
Deng, Yinbin; Peng, Shuangjie; Zhang, Xinyue; Zhou, Yang A class of supercritical Sobolev type inequalities with logarithm and related elliptic equations. (English) Zbl 1511.35011 J. Differ. Equations 341, 150-188 (2022). Reviewer: Emanuel Indrei (West Lafayette) MSC: 35A23 35J20 35J25 35J91 PDF BibTeX XML Cite \textit{Y. Deng} et al., J. Differ. Equations 341, 150--188 (2022; Zbl 1511.35011) Full Text: DOI
Faustmann, Markus; Marcati, Carlo; Melenk, Jens Markus; Schwab, Christoph Weighted analytic regularity for the integral fractional Laplacian in polygons. (English) Zbl 1505.35070 SIAM J. Math. Anal. 54, No. 6, 6323-6357 (2022). MSC: 35B65 26A33 35A20 35B45 35J25 35J70 35R11 PDF BibTeX XML Cite \textit{M. Faustmann} et al., SIAM J. Math. Anal. 54, No. 6, 6323--6357 (2022; Zbl 1505.35070) Full Text: DOI arXiv
Bulavatsky, V. M.; Bohaienko, V. O. Boundary-value problems for space-time fractional differential filtration dynamics in fractured-porous media. (English. Ukrainian original) Zbl 1507.35317 Cybern. Syst. Anal. 58, No. 3, 358-371 (2022); translation from Kibern. Sist. Anal. 58, No. 3, 47-60 (2022). MSC: 35R11 35C05 35K40 PDF BibTeX XML Cite \textit{V. M. Bulavatsky} and \textit{V. O. Bohaienko}, Cybern. Syst. Anal. 58, No. 3, 358--371 (2022; Zbl 1507.35317); translation from Kibern. Sist. Anal. 58, No. 3, 47--60 (2022) Full Text: DOI
He, Jia Wei; Zhou, Yong On a backward problem for nonlinear time fractional wave equations. (English) Zbl 1503.35262 Proc. R. Soc. Edinb., Sect. A, Math. 152, No. 6, 1589-1612 (2022). MSC: 35R11 26A33 35L71 PDF BibTeX XML Cite \textit{J. W. He} and \textit{Y. Zhou}, Proc. R. Soc. Edinb., Sect. A, Math. 152, No. 6, 1589--1612 (2022; Zbl 1503.35262) Full Text: DOI
Vanterler da C. Sousa, José; Nyamoradi, Nemat; Lamine, M. Nehari manifold and fractional Dirichlet boundary value problem. (English) Zbl 1512.35640 Anal. Math. Phys. 12, No. 6, Paper No. 143, 12 p. (2022). MSC: 35R11 26A33 35B50 35J25 35J92 PDF BibTeX XML Cite \textit{J. Vanterler da C. Sousa} et al., Anal. Math. Phys. 12, No. 6, Paper No. 143, 12 p. (2022; Zbl 1512.35640) Full Text: DOI
Labropoulos, Nikos Vector analysis on symmetric manifolds and Sobolev inequalities. (English) Zbl 07606148 Rend. Circ. Mat. Palermo (2) 71, No. 3, 1173-1215 (2022). MSC: 41A44 35A23 35J25 58D19 PDF BibTeX XML Cite \textit{N. Labropoulos}, Rend. Circ. Mat. Palermo (2) 71, No. 3, 1173--1215 (2022; Zbl 07606148) Full Text: DOI
Ilyas, Asim; Malik, Salman A. An inverse source problem for anomalous diffusion equation with generalized fractional derivative in time. (English) Zbl 1509.35379 Acta Appl. Math. 181, Paper No. 15, 15 p. (2022). MSC: 35R30 26A33 35K20 35R11 80A23 65N21 42A16 33E12 PDF BibTeX XML Cite \textit{A. Ilyas} and \textit{S. A. Malik}, Acta Appl. Math. 181, Paper No. 15, 15 p. (2022; Zbl 1509.35379) Full Text: DOI
Flynn, Joshua; Lam, Nguyen; Lu, Guozhen Hardy-Poincaré-Sobolev type inequalities on hyperbolic spaces and related Riemannian manifolds. (English) Zbl 1509.46024 J. Funct. Anal. 283, No. 12, Article ID 109714, 37 p. (2022). MSC: 46E36 26D10 35J20 53C21 PDF BibTeX XML Cite \textit{J. Flynn} et al., J. Funct. Anal. 283, No. 12, Article ID 109714, 37 p. (2022; Zbl 1509.46024) Full Text: DOI
Goldstein, Gisèle Ruiz; Goldstein, Jerome A.; Kömbe, Ismail; Tellioğlu, Reyhan Nonexistence of positive solutions for nonlinear parabolic Robin problems and Hardy-Leray inequalities. (English) Zbl 1500.35013 Ann. Mat. Pura Appl. (4) 201, No. 6, 2927-2942 (2022). MSC: 35B09 35K20 35K92 26D10 46E35 PDF BibTeX XML Cite \textit{G. R. Goldstein} et al., Ann. Mat. Pura Appl. (4) 201, No. 6, 2927--2942 (2022; Zbl 1500.35013) Full Text: DOI
Belluzi, Maykel; Bezerra, Flank D. M.; Nascimento, Marcelo J. D. On spectral and fractional powers of damped wave equations. (English) Zbl 1500.35293 Commun. Pure Appl. Anal. 21, No. 8, 2739-2773 (2022). MSC: 35R11 35L20 35J25 35P05 26A33 34A08 PDF BibTeX XML Cite \textit{M. Belluzi} et al., Commun. Pure Appl. Anal. 21, No. 8, 2739--2773 (2022; Zbl 1500.35293) Full Text: DOI
Ekincioglu, I.; Khaligova, S. Z.; Serbetci, A. Commutators of parabolic fractional integrals with variable kernels in vanishing generalized variable Morrey spaces. (English) Zbl 1500.42005 Positivity 26, No. 5, Paper No. 82, 19 p. (2022). MSC: 42B20 42B25 42B35 26A33 46E30 35J15 PDF BibTeX XML Cite \textit{I. Ekincioglu} et al., Positivity 26, No. 5, Paper No. 82, 19 p. (2022; Zbl 1500.42005) Full Text: DOI
Mamedov, F.; Mamedova, V. On Sobolev-Poincaré-Friedrichs type weight inequalities. (English) Zbl 1500.35007 Azerb. J. Math. 12, No. 2, 92-108 (2022). MSC: 35A23 26D10 35J15 35J70 PDF BibTeX XML Cite \textit{F. Mamedov} and \textit{V. Mamedova}, Azerb. J. Math. 12, No. 2, 92--108 (2022; Zbl 1500.35007) Full Text: Link
Canale, Anna Local and non-local improved Hardy inequalities with weights. (English) Zbl 1500.35006 Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl. 33, No. 2, 385-398 (2022). MSC: 35A23 35K15 35K65 34G10 47D03 PDF BibTeX XML Cite \textit{A. Canale}, Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl. 33, No. 2, 385--398 (2022; Zbl 1500.35006) Full Text: DOI
Zhang, Weiqiang; Zuo, Jiabin; Zhao, Peihao Three solutions for a fractional \(p\)-Laplacian problem. (English) Zbl 1498.35603 J. Pseudo-Differ. Oper. Appl. 13, No. 4, Paper No. 57, 17 p. (2022). MSC: 35R11 35A15 35A23 35J25 35J92 PDF BibTeX XML Cite \textit{W. Zhang} et al., J. Pseudo-Differ. Oper. Appl. 13, No. 4, Paper No. 57, 17 p. (2022; Zbl 1498.35603) Full Text: DOI
Jiang, Daijun; Li, Zhiyuan Coefficient inverse problem for variable order time-fractional diffusion equations from distributed data. (English) Zbl 1498.35618 Calcolo 59, No. 4, Paper No. 34, 28 p. (2022). MSC: 35R30 35K20 35R11 26A33 PDF BibTeX XML Cite \textit{D. Jiang} and \textit{Z. Li}, Calcolo 59, No. 4, Paper No. 34, 28 p. (2022; Zbl 1498.35618) Full Text: DOI
Au, Vo Van; Baleanu, Dumitru; Zhou, Yong; Huu Can, Nguyen On a problem for the nonlinear diffusion equation with conformable time derivative. (English) Zbl 1500.35291 Appl. Anal. 101, No. 17, 6255-6279 (2022). MSC: 35R11 26A33 34B16 35K20 35K58 35R25 47A52 PDF BibTeX XML Cite \textit{V. Van Au} et al., Appl. Anal. 101, No. 17, 6255--6279 (2022; Zbl 1500.35291) Full Text: DOI
Tuan, Nguyen Huy; Tri, Vo Viet; O’Regan, Donal On a nonlinear parabolic equation with fractional Laplacian and integral conditions. (English) Zbl 1498.35594 Appl. Anal. 101, No. 17, 5974-5988 (2022). MSC: 35R11 35B65 26A33 35K20 35K58 35R25 PDF BibTeX XML Cite \textit{N. H. Tuan} et al., Appl. Anal. 101, No. 17, 5974--5988 (2022; Zbl 1498.35594) Full Text: DOI
BenSalah, Mohamed Topological sensitivity analysis method in identifying of point sources via time-fractional diffusion equation. (English) Zbl 1510.35367 Acta Appl. Math. 181, Paper No. 4, 24 p. (2022). MSC: 35R11 35K20 35R30 26A33 49M41 49N45 65R32 PDF BibTeX XML Cite \textit{M. BenSalah}, Acta Appl. Math. 181, Paper No. 4, 24 p. (2022; Zbl 1510.35367) Full Text: DOI
Li, Changpin; Li, Zhiqiang The finite-time blow-up for semilinear fractional diffusion equations with time \(\psi\)-Caputo derivative. (English) Zbl 1498.35109 J. Nonlinear Sci. 32, No. 6, Paper No. 82, 42 p. (2022). MSC: 35B44 35R11 35D30 35K45 35K58 26A33 PDF BibTeX XML Cite \textit{C. Li} and \textit{Z. Li}, J. Nonlinear Sci. 32, No. 6, Paper No. 82, 42 p. (2022; Zbl 1498.35109) Full Text: DOI
Dong, Hongjie; Liu, Yanze Weighted mixed norm estimates for fractional wave equations with VMO coefficients. (English) Zbl 1505.35063 J. Differ. Equations 337, 168-254 (2022). Reviewer: Luis Vazquez (Madrid) MSC: 35B45 35R11 35L15 35L20 26A33 PDF BibTeX XML Cite \textit{H. Dong} and \textit{Y. Liu}, J. Differ. Equations 337, 168--254 (2022; Zbl 1505.35063) Full Text: DOI arXiv
Cazacu, Cristian; Flynn, Joshua; Nguyen Lam Sharp second order uncertainty principles. (English) Zbl 1513.81089 J. Funct. Anal. 283, No. 10, Article ID 109659, 37 p. (2022). MSC: 81S07 26D10 46E35 26D15 58A10 PDF BibTeX XML Cite \textit{C. Cazacu} et al., J. Funct. Anal. 283, No. 10, Article ID 109659, 37 p. (2022; Zbl 1513.81089) Full Text: DOI arXiv
Krasnoschok, Mykola; Vasylyeva, Nataliya Linear subdiffusion in weighted fractional Hölder spaces. (English) Zbl 1496.35432 Evol. Equ. Control Theory 11, No. 4, 1455-1487 (2022). MSC: 35R11 35C15 35B45 35K20 26A33 PDF BibTeX XML Cite \textit{M. Krasnoschok} and \textit{N. Vasylyeva}, Evol. Equ. Control Theory 11, No. 4, 1455--1487 (2022; Zbl 1496.35432) Full Text: DOI
Olofsson, Marcus; Önskog, Thomas; Lundström, Niklas L. P. Management strategies for run-of-river hydropower plants: an optimal switching approach. (English) Zbl 1504.35596 Optim. Eng. 23, No. 3, 1707-1731 (2022). MSC: 35Q93 93E20 35K45 35A23 49N90 49L20 90B50 60H30 35R60 PDF BibTeX XML Cite \textit{M. Olofsson} et al., Optim. Eng. 23, No. 3, 1707--1731 (2022; Zbl 1504.35596) Full Text: DOI arXiv
Brasco, Lorenzo Convex duality for principal frequencies. (English) Zbl 1496.35015 Math. Eng. (Springfield) 4, No. 4, Paper No. 32, 28 p. (2022). MSC: 35A23 35J25 35P15 PDF BibTeX XML Cite \textit{L. Brasco}, Math. Eng. (Springfield) 4, No. 4, Paper No. 32, 28 p. (2022; Zbl 1496.35015) Full Text: DOI arXiv
Alberini, C.; Capitanelli, R.; D’Ovidio, M.; Finzi Vita, S. On the time fractional heat equation with obstacle. (English) Zbl 1495.35179 J. Comput. Appl. Math. 415, Article ID 114470, 11 p. (2022). MSC: 35R11 35K20 35K86 65M06 35R35 26A33 PDF BibTeX XML Cite \textit{C. Alberini} et al., J. Comput. Appl. Math. 415, Article ID 114470, 11 p. (2022; Zbl 1495.35179) Full Text: DOI arXiv
Lin, Yi-Hsuan Monotonicity-based inversion of fractional semilinear elliptic equations with power type nonlinearities. (English) Zbl 1495.35213 Calc. Var. Partial Differ. Equ. 61, No. 5, Paper No. 188, 30 p. (2022). MSC: 35R30 26A33 35J25 35J61 35R11 PDF BibTeX XML Cite \textit{Y.-H. Lin}, Calc. Var. Partial Differ. Equ. 61, No. 5, Paper No. 188, 30 p. (2022; Zbl 1495.35213) Full Text: DOI arXiv
Tuan, Nguyen Huy; Hai, Nguyen Minh; Thach, Tran Ngoc On fractional reaction-diffusion equations involving unbounded delay. (English) Zbl 1504.35626 J. Nonlinear Convex Anal. 23, No. 8, 1709-1724 (2022). MSC: 35R11 26A33 33E12 35B40 35K20 35K57 35R09 44A20 PDF BibTeX XML Cite \textit{N. H. Tuan} et al., J. Nonlinear Convex Anal. 23, No. 8, 1709--1724 (2022; Zbl 1504.35626) Full Text: Link
Phuong, Nguyen Duc; Hoan, Luu Vu Cam; Tuan, Nguyen Huy On Burger equation with Caputo-Fabrizio operator. (English) Zbl 1495.35198 J. Nonlinear Convex Anal. 23, No. 8, 1693-1708 (2022). MSC: 35R11 35B65 26A33 35K20 PDF BibTeX XML Cite \textit{N. D. Phuong} et al., J. Nonlinear Convex Anal. 23, No. 8, 1693--1708 (2022; Zbl 1495.35198) Full Text: Link
Long, Le Dinh; Trang, Nguyen Pham Quynh; Tuan, Nguyen Huy Local existence for nonlocal fractional heat equation associated with memory term. (English) Zbl 1495.35195 J. Nonlinear Convex Anal. 23, No. 8, 1641-1662 (2022). MSC: 35R11 35B65 26A33 35K20 35R09 PDF BibTeX XML Cite \textit{L. D. Long} et al., J. Nonlinear Convex Anal. 23, No. 8, 1641--1662 (2022; Zbl 1495.35195) Full Text: Link
Chatzarakis, G.; Panetsos, S.; Raja, T. Oscillation of a system of impulsive conformable partial fractional differential equations with damping term. (English) Zbl 1497.35024 Funct. Differ. Equ. 29, No. 1-2, 39-59 (2022). MSC: 35B05 26A33 35L70 35R11 35R12 PDF BibTeX XML Cite \textit{G. Chatzarakis} et al., Funct. Differ. Equ. 29, No. 1--2, 39--59 (2022; Zbl 1497.35024) Full Text: DOI
El-Sayed, A. M. A.; Hashem, H. H. G. Stochastic Itô-differential and integral of fractional-orders. (English) Zbl 1513.34223 J. Fract. Calc. Appl. 13, No. 2, 251-258 (2022). MSC: 34F05 34A12 60H10 34A08 26A33 PDF BibTeX XML Cite \textit{A. M. A. El-Sayed} and \textit{H. H. G. Hashem}, J. Fract. Calc. Appl. 13, No. 2, 251--258 (2022; Zbl 1513.34223) Full Text: Link
Peng, Li; Zhou, Yong The analysis of approximate controllability for distributed order fractional diffusion problems. (English) Zbl 1503.35272 Appl. Math. Optim. 86, No. 2, Paper No. 22, 28 p. (2022). MSC: 35R11 26A33 34A12 35K20 93B05 PDF BibTeX XML Cite \textit{L. Peng} and \textit{Y. Zhou}, Appl. Math. Optim. 86, No. 2, Paper No. 22, 28 p. (2022; Zbl 1503.35272) Full Text: DOI
Ma, Jie; Gao, Fuzheng; Du, Ning Stabilizer-free weak Galerkin finite element method with second-order accuracy in time for the time fractional diffusion equation. (English) Zbl 1492.65270 J. Comput. Appl. Math. 414, Article ID 114407, 13 p. (2022). MSC: 65M60 65M06 65N30 65M12 26A33 35R11 PDF BibTeX XML Cite \textit{J. Ma} et al., J. Comput. Appl. Math. 414, Article ID 114407, 13 p. (2022; Zbl 1492.65270) Full Text: DOI
Anh, Cung The; Toi, Vu Manh; Tuan, Tran Quoc Lipschitz stability in inverse source problems for a singular parabolic equation. (English) Zbl 1494.35103 Appl. Anal. 101, No. 8, 2805-2824 (2022). MSC: 35K67 35A23 35K20 35R30 PDF BibTeX XML Cite \textit{C. T. Anh} et al., Appl. Anal. 101, No. 8, 2805--2824 (2022; Zbl 1494.35103) Full Text: DOI
Ferrera, Juan; Gomez Gil, Javier; Llorente, Jesús Second order differentiability and related topics in the Takagi class. (English) Zbl 1501.26004 Real Anal. Exch. 47, No. 1, 207-236 (2022). MSC: 26A24 26A30 26A45 26A51 PDF BibTeX XML Cite \textit{J. Ferrera} et al., Real Anal. Exch. 47, No. 1, 207--236 (2022; Zbl 1501.26004) Full Text: DOI
Kresin, Gershon; Maz’ya, Vladimir On sharp Agmon-Miranda maximum principles. (English) Zbl 1492.35014 Pure Appl. Funct. Anal. 7, No. 2, 703-719 (2022). MSC: 35A23 35B50 35J30 35J47 35Q35 35Q74 44A05 PDF BibTeX XML Cite \textit{G. Kresin} and \textit{V. Maz'ya}, Pure Appl. Funct. Anal. 7, No. 2, 703--719 (2022; Zbl 1492.35014) Full Text: arXiv Link
Suzuki, Masamitsu Local existence and nonexistence for fractional in time reaction-diffusion equations and systems with rapidly growing nonlinear terms. (English) Zbl 1491.35438 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 222, Article ID 112909, 17 p. (2022). MSC: 35R11 35A01 35K15 35K58 26A33 46E30 PDF BibTeX XML Cite \textit{M. Suzuki}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 222, Article ID 112909, 17 p. (2022; Zbl 1491.35438) Full Text: DOI
Bezerra, F. D. M. A second-order evolution equation and logarithmic operators. (English) Zbl 1491.35286 Bull. Braz. Math. Soc. (N.S.) 53, No. 2, 571-593 (2022). MSC: 35L20 26A33 34A08 35L05 35R11 47D06 PDF BibTeX XML Cite \textit{F. D. M. Bezerra}, Bull. Braz. Math. Soc. (N.S.) 53, No. 2, 571--593 (2022; Zbl 1491.35286) Full Text: DOI
Afraites, Lekbir; Masnaoui, Chorouk; Nachaoui, Mourad Shape optimization method for an inverse geometric source problem and stability at critical shape. (English) Zbl 1490.49027 Discrete Contin. Dyn. Syst., Ser. S 15, No. 1, 1-21 (2022). MSC: 49Q10 65N20 35J25 35R35 65N30 PDF BibTeX XML Cite \textit{L. Afraites} et al., Discrete Contin. Dyn. Syst., Ser. S 15, No. 1, 1--21 (2022; Zbl 1490.49027) Full Text: DOI
Engelstein, Max; Neumayer, Robin; Spolaor, Luca Quantitative stability for minimizing Yamabe metrics. (English) Zbl 1497.26021 Trans. Am. Math. Soc., Ser. B 9, 395-414 (2022). Reviewer: Euripedes Carvalho da Silva (Maracanaú) MSC: 26D10 35J20 58K05 PDF BibTeX XML Cite \textit{M. Engelstein} et al., Trans. Am. Math. Soc., Ser. B 9, 395--414 (2022; Zbl 1497.26021) Full Text: DOI arXiv
Caraballo, Tomás; Ngoc, Tran Bao; Thach, Tran Ngoc; Tuan, Nguyen Huy On a stochastic nonclassical diffusion equation with standard and fractional Brownian motion. (English) Zbl 1491.35469 Stoch. Dyn. 22, No. 2, Article ID 2140011, 45 p. (2022). MSC: 35R60 35B65 35K20 35R11 26A33 PDF BibTeX XML Cite \textit{T. Caraballo} et al., Stoch. Dyn. 22, No. 2, Article ID 2140011, 45 p. (2022; Zbl 1491.35469) Full Text: DOI
Danczul, Tobias; Schöberl, Joachim A reduced basis method for fractional diffusion operators. I. (English) Zbl 1496.65216 Numer. Math. 151, No. 2, 369-404 (2022). Reviewer: Lijun Yi (Shanghai) MSC: 65N30 65N12 65N15 65N25 65Y05 35J15 46B70 26A33 35R11 PDF BibTeX XML Cite \textit{T. Danczul} and \textit{J. Schöberl}, Numer. Math. 151, No. 2, 369--404 (2022; Zbl 1496.65216) Full Text: DOI arXiv
Tamilarasi, M.; Radhakrishnan, B.; Anukokila, P. Approximate controllability of fractional semi-linear delay differential control system with random impulse. (English) Zbl 1490.35527 Palest. J. Math. 11, Spec. Iss. I, 141-150 (2022). MSC: 35R11 35R12 35R60 26A33 93B05 34K45 35K20 PDF BibTeX XML Cite \textit{M. Tamilarasi} et al., Palest. J. Math. 11, 141--150 (2022; Zbl 1490.35527) Full Text: Link
Cen, Dakang; Wang, Zhibo Time two-grid technique combined with temporal second order difference method for two-dimensional semilinear fractional sub-diffusion equations. (English) Zbl 07534428 Appl. Math. Lett. 129, Article ID 107919, 8 p. (2022). MSC: 35R11 65M06 65M12 26A33 65M60 PDF BibTeX XML Cite \textit{D. Cen} and \textit{Z. Wang}, Appl. Math. Lett. 129, Article ID 107919, 8 p. (2022; Zbl 07534428) Full Text: DOI
Muratori, Matteo; Roncoroni, Alberto Sobolev-type inequalities on Cartan-Hadamard manifolds and applications to some nonlinear diffusion equations. (English) Zbl 1498.46046 Potential Anal. 57, No. 1, 129-154 (2022). MSC: 46E35 26D10 35K10 46E30 58C40 58J35 PDF BibTeX XML Cite \textit{M. Muratori} and \textit{A. Roncoroni}, Potential Anal. 57, No. 1, 129--154 (2022; Zbl 1498.46046) Full Text: DOI arXiv
Peng, Li; Zhou, Yong; He, Jia Wei The well-posedness analysis of distributed order fractional diffusion problems on \(\mathbb{R}^N\). (English) Zbl 1489.35304 Monatsh. Math. 198, No. 2, 445-463 (2022). MSC: 35R11 35K15 35K58 34A12 26A33 PDF BibTeX XML Cite \textit{L. Peng} et al., Monatsh. Math. 198, No. 2, 445--463 (2022; Zbl 1489.35304) Full Text: DOI
Kajikiya, Ryuji Boundedness of critical points in the symmetric mountain pass lemma. (English) Zbl 1492.58010 J. Convex Anal. 29, No. 2, 443-458 (2022). Reviewer: Chun-Lei Tang (Chongqing) MSC: 58E05 46G05 35J20 PDF BibTeX XML Cite \textit{R. Kajikiya}, J. Convex Anal. 29, No. 2, 443--458 (2022; Zbl 1492.58010) Full Text: Link
Ciraolo, Giulio; Li, Xiaoliang An exterior overdetermined problem for Finsler \(N\)-Laplacian in convex cones. (English) Zbl 1487.35256 Calc. Var. Partial Differ. Equ. 61, No. 4, Paper No. 121, 27 p. (2022). MSC: 35N25 35A23 35B06 35J25 31B15 PDF BibTeX XML Cite \textit{G. Ciraolo} and \textit{X. Li}, Calc. Var. Partial Differ. Equ. 61, No. 4, Paper No. 121, 27 p. (2022; Zbl 1487.35256) Full Text: DOI arXiv
Kayar, Zeynep; Kaymakçalan, Billur Novel diamond alpha Bennett-Leindler type dynamic inequalities and their applications. (English) Zbl 1497.26022 Bull. Malays. Math. Sci. Soc. (2) 45, No. 3, 1027-1054 (2022). MSC: 26D10 26E70 34N05 PDF BibTeX XML Cite \textit{Z. Kayar} and \textit{B. Kaymakçalan}, Bull. Malays. Math. Sci. Soc. (2) 45, No. 3, 1027--1054 (2022; Zbl 1497.26022) Full Text: DOI
Su, Jiabao; Wang, Cong Weighted critical exponents of Sobolev-type embeddings for radial functions. (English) Zbl 1487.35016 Adv. Nonlinear Stud. 22, 143-158 (2022). MSC: 35A23 35B33 35J20 35J62 46E35 PDF BibTeX XML Cite \textit{J. Su} and \textit{C. Wang}, Adv. Nonlinear Stud. 22, 143--158 (2022; Zbl 1487.35016) Full Text: DOI
Mahmudov, Elimhan N. Optimal control of second order sweeping processes with discrete and differential inclusions. (English) Zbl 1485.49007 J. Convex Anal. 29, No. 1, 269-290 (2022). MSC: 49J15 34A60 34A40 26D10 PDF BibTeX XML Cite \textit{E. N. Mahmudov}, J. Convex Anal. 29, No. 1, 269--290 (2022; Zbl 1485.49007) Full Text: Link
McLean, William; Mustapha, Kassem Uniform stability for a spatially discrete, subdiffusive Fokker-Planck equation. (English) Zbl 07496453 Numer. Algorithms 89, No. 4, 1441-1463 (2022). MSC: 65Mxx 26A33 35K20 65M12 65M60 PDF BibTeX XML Cite \textit{W. McLean} and \textit{K. Mustapha}, Numer. Algorithms 89, No. 4, 1441--1463 (2022; Zbl 07496453) Full Text: DOI arXiv
Covi, Giovanni; Mönkkönen, Keijo; Railo, Jesse; Uhlmann, Gunther The higher order fractional Calderón problem for linear local operators: uniqueness. (English) Zbl 1486.35462 Adv. Math. 399, Article ID 108246, 29 p. (2022). MSC: 35R30 35J10 35J25 35R11 46E35 26A33 PDF BibTeX XML Cite \textit{G. Covi} et al., Adv. Math. 399, Article ID 108246, 29 p. (2022; Zbl 1486.35462) Full Text: DOI arXiv
Ao, Weiwei; DelaTorre, Azahara; del Mar González, María Symmetry and symmetry breaking for the fractional Caffarelli-Kohn-Nirenberg inequality. (English) Zbl 1485.35008 J. Funct. Anal. 282, No. 11, Article ID 109438, 58 p. (2022). MSC: 35A23 35B06 35J20 35R11 PDF BibTeX XML Cite \textit{W. Ao} et al., J. Funct. Anal. 282, No. 11, Article ID 109438, 58 p. (2022; Zbl 1485.35008) Full Text: DOI arXiv
Kang, Dongseung; Kim, Hoewoon B. Fourier transforms and \(L^2\)-stability of diffusion equations. (English) Zbl 1485.35039 J. Comput. Appl. Math. 409, Article ID 114181, 8 p. (2022). MSC: 35B35 35A22 35A23 35K15 PDF BibTeX XML Cite \textit{D. Kang} and \textit{H. B. Kim}, J. Comput. Appl. Math. 409, Article ID 114181, 8 p. (2022; Zbl 1485.35039) Full Text: DOI
Surnachev, M. D. Harnack’s inequality of weak type for the parabolic \(p (x)\)-Laplacian. (English. Russian original) Zbl 1486.35009 Math. Notes 111, No. 1, 161-165 (2022); translation from Mat. Zametki 111, No. 1, 149-153 (2022). Reviewer: Vincenzo Vespri (Firenze) MSC: 35A23 35B45 35K20 35K59 35K92 PDF BibTeX XML Cite \textit{M. D. Surnachev}, Math. Notes 111, No. 1, 161--165 (2022; Zbl 1486.35009); translation from Mat. Zametki 111, No. 1, 149--153 (2022) Full Text: DOI
Feulefack, Pierre Aime; Jarohs, Sven; Weth, Tobias Small order asymptotics of the Dirichlet eigenvalue problem for the fractional Laplacian. (English) Zbl 1485.35304 J. Fourier Anal. Appl. 28, No. 2, Paper No. 18, 44 p. (2022). MSC: 35P15 35J25 35R11 45C05 26A33 PDF BibTeX XML Cite \textit{P. A. Feulefack} et al., J. Fourier Anal. Appl. 28, No. 2, Paper No. 18, 44 p. (2022; Zbl 1485.35304) Full Text: DOI arXiv
Giga, Yoshikazu; Mitake, Hiroyoshi; Sato, Shoichi On the equivalence of viscosity solutions and distributional solutions for the time-fractional diffusion equation. (English) Zbl 1484.35378 J. Differ. Equations 316, 364-386 (2022). MSC: 35R11 35D30 35D40 35K20 49L25 PDF BibTeX XML Cite \textit{Y. Giga} et al., J. Differ. Equations 316, 364--386 (2022; Zbl 1484.35378) Full Text: DOI arXiv
Fernández, Francisco J.; Marquéz Albés, Ignacio; Tojo, F. Adrián F. On first and second order linear Stieltjes differential equations. (English) Zbl 1491.34003 J. Math. Anal. Appl. 511, No. 1, Article ID 126010, 49 p. (2022). MSC: 34A06 34B27 26A24 34A30 PDF BibTeX XML Cite \textit{F. J. Fernández} et al., J. Math. Anal. Appl. 511, No. 1, Article ID 126010, 49 p. (2022; Zbl 1491.34003) Full Text: DOI arXiv
Diening, Lars; Lee, Mikyoung; Ok, Jihoon Parabolic weighted Sobolev-Poincaré type inequalities. (English) Zbl 1493.46053 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 218, Article ID 112772, 13 p. (2022). MSC: 46E35 35K10 35A23 PDF BibTeX XML Cite \textit{L. Diening} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 218, Article ID 112772, 13 p. (2022; Zbl 1493.46053) Full Text: DOI arXiv
Kassymov, Aidyn; Kirane, Mokhtar; Torebek, Berikbol T. Lyapunov, Hartman-Wintner and de la Vallée Poussin-type inequalities for fractional elliptic boundary value problems. (English) Zbl 1484.35014 Complex Var. Elliptic Equ. 67, No. 1, 246-258 (2022). MSC: 35A23 35B45 35J25 35R11 26A33 35P15 PDF BibTeX XML Cite \textit{A. Kassymov} et al., Complex Var. Elliptic Equ. 67, No. 1, 246--258 (2022; Zbl 1484.35014) Full Text: DOI