Cubillos, Pablo; López-Gómez, Julián; Tellini, Andrea Global structure of the set of 1-node solutions in a class of degenerate diffusive logistic equations. (English) Zbl 07733058 Commun. Nonlinear Sci. Numer. Simul. 125, Article ID 107389, 24 p. (2023). MSC: 65P30 65N06 35J25 35J60 PDF BibTeX XML Cite \textit{P. Cubillos} et al., Commun. Nonlinear Sci. Numer. Simul. 125, Article ID 107389, 24 p. (2023; Zbl 07733058) Full Text: DOI
Hahn, Jooyoung; Mikula, Karol; Frolkovič, Peter; Priesching, Peter; Balažovjech, Martin; Basara, Branislav Second-order accurate finite volume method for \(G\)-equation on polyhedral meshes. (English) Zbl 07703461 Japan J. Ind. Appl. Math. 40, No. 2, 1053-1082 (2023). Reviewer: Abdallah Bradji (Annaba) MSC: 65M08 65M06 65N08 65Y05 80A25 35B65 PDF BibTeX XML Cite \textit{J. Hahn} et al., Japan J. Ind. Appl. Math. 40, No. 2, 1053--1082 (2023; Zbl 07703461) Full Text: DOI
Park, Jea-Hyun; Salgado, Abner J.; Wise, Steven M. Benchmark computations of the phase field crystal and functionalized Cahn-Hilliard equations via fully implicit, Nesterov accelerated schemes. (English) Zbl 1512.74099 Commun. Comput. Phys. 33, No. 2, 367-398 (2023). MSC: 74S25 74S20 74N99 74E15 PDF BibTeX XML Cite \textit{J.-H. Park} et al., Commun. Comput. Phys. 33, No. 2, 367--398 (2023; Zbl 1512.74099) Full Text: DOI arXiv
Chen, Hao; Qiu, Wenlin; Zaky, Mahmoud A.; Hendy, Ahmed S. A two-grid temporal second-order scheme for the two-dimensional nonlinear Volterra integro-differential equation with weakly singular kernel. (English) Zbl 1508.65100 Calcolo 60, No. 1, Paper No. 13, 30 p. (2023). MSC: 65M06 65N06 65M55 65M12 65M15 65M22 45K05 35R09 26A33 35R11 PDF BibTeX XML Cite \textit{H. Chen} et al., Calcolo 60, No. 1, Paper No. 13, 30 p. (2023; Zbl 1508.65100) Full Text: DOI arXiv
Qiu, Wenlin; Xiao, Xu; Li, Kexin Second-order accurate numerical scheme with graded meshes for the nonlinear partial integrodifferential equation arising from viscoelasticity. (English) Zbl 07609335 Commun. Nonlinear Sci. Numer. Simul. 116, Article ID 106804, 19 p. (2023). MSC: 65-XX 26A33 45K05 65M12 65M22 65M60 PDF BibTeX XML Cite \textit{W. Qiu} et al., Commun. Nonlinear Sci. Numer. Simul. 116, Article ID 106804, 19 p. (2023; Zbl 07609335) Full Text: DOI arXiv
Epshteyn, Yekaterina; Liu, Chang; Liu, Chun; Mizuno, Masashi Nonlinear inhomogeneous Fokker-Planck models: energetic-variational structures and long-time behavior. (English) Zbl 1501.35399 Anal. Appl., Singap. 20, No. 6, 1295-1356 (2022). MSC: 35Q84 35A15 35B10 35B40 35K15 35K55 60J60 65M22 65M08 65M06 65N08 PDF BibTeX XML Cite \textit{Y. Epshteyn} et al., Anal. Appl., Singap. 20, No. 6, 1295--1356 (2022; Zbl 1501.35399) Full Text: DOI arXiv
Sapagovas, Mifodijus; Novickij, Jurij Alternating direction method for the wave equation with integral boundary conditions. (English) Zbl 1500.65046 Appl. Numer. Math. 182, 1-13 (2022). MSC: 65M06 65N06 65H17 65F15 65M12 35L10 PDF BibTeX XML Cite \textit{M. Sapagovas} and \textit{J. Novickij}, Appl. Numer. Math. 182, 1--13 (2022; Zbl 1500.65046) Full Text: DOI
Achille, Adou Koffi; Fatou N., Diop; Koffi, N’Guessan; Augustin, Touré Kidjégbo Numerical blow-up time for nonlinear parabolic problems. (English) Zbl 1513.65332 Adv. Differ. Equ. Control Process. 28, 135-152 (2022). MSC: 65M20 35B44 35K20 35K91 PDF BibTeX XML Cite \textit{A. K. Achille} et al., Adv. Differ. Equ. Control Process. 28, 135--152 (2022; Zbl 1513.65332) Full Text: DOI
Long, Xiaonian; Ding, Qianqian A second order unconditionally convergent finite element method for the thermal equation with Joule heating problem. (English) Zbl 1499.65508 J. Comput. Math. 40, No. 3, 356-374 (2022). MSC: 65M60 65M12 65M15 35K61 65M06 65N30 35Q75 PDF BibTeX XML Cite \textit{X. Long} and \textit{Q. Ding}, J. Comput. Math. 40, No. 3, 356--374 (2022; Zbl 1499.65508) Full Text: DOI
Alcântara, Adriano A.; Carmo, Bruno A.; Clark, Haroldo R.; Guardia, Ronald R.; Rincon, Mauro A. Nonlinear wave equation with Dirichlet and acoustic boundary conditions: theoretical analysis and numerical simulation. (English) Zbl 1499.35378 Comput. Appl. Math. 41, No. 4, Paper No. 141, 21 p. (2022). MSC: 35L20 65M60 65M06 PDF BibTeX XML Cite \textit{A. A. Alcântara} et al., Comput. Appl. Math. 41, No. 4, Paper No. 141, 21 p. (2022; Zbl 1499.35378) Full Text: DOI
Chen, Wenbin; Jing, Jianyu; Wang, Cheng; Wang, Xiaoming; Wise, Steven M. A modified Crank-Nicolson numerical scheme for the Flory-Huggins Cahn-Hilliard model. (English) Zbl 07493157 Commun. Comput. Phys. 31, No. 1, 60-93 (2022). MSC: 65-XX 35K35 35K55 49J40 65K10 65M06 65M12 PDF BibTeX XML Cite \textit{W. Chen} et al., Commun. Comput. Phys. 31, No. 1, 60--93 (2022; Zbl 07493157) Full Text: DOI
Guo, Feng; Dai, Weizhong A new absorbing layer for simulation of wave propagation based on a KdV model on unbounded domain. (English) Zbl 1486.65104 Appl. Numer. Math. 174, 46-70 (2022). MSC: 65M06 65N06 35J25 35Q53 35R05 PDF BibTeX XML Cite \textit{F. Guo} and \textit{W. Dai}, Appl. Numer. Math. 174, 46--70 (2022; Zbl 1486.65104) Full Text: DOI
Umeda, Akihiro; Wakasugi, Yuta; Yoshikawa, Shuji Energy-conserving finite difference schemes for nonlinear wave equations with dynamic boundary conditions. (English) Zbl 07418823 Appl. Numer. Math. 171, 1-22 (2022). MSC: 65M06 35J15 74H15 74K05 74J30 35Q74 PDF BibTeX XML Cite \textit{A. Umeda} et al., Appl. Numer. Math. 171, 1--22 (2022; Zbl 07418823) Full Text: DOI arXiv
Tekin, Ibrahim Determination of a time-dependent coefficient in a non-linear hyperbolic equation with non-classical boundary condition. (English) Zbl 1513.65340 Trans. Natl. Acad. Sci. Azerb., Ser. Phys.-Tech. Math. Sci. 41, No. 1, Math., 154-171 (2021). MSC: 65M32 35R30 35L70 PDF BibTeX XML Cite \textit{I. Tekin}, Trans. Natl. Acad. Sci. Azerb., Ser. Phys.-Tech. Math. Sci. 41, No. 1, Math., 154--171 (2021; Zbl 1513.65340) Full Text: Link
Nachid, Halima; Jean Jacques, N’takpe; Gozo, Yoro The decay estimate and asymptotic behaviour of the blow up time for evolution equation with a non linear source. (English) Zbl 1497.35065 J. Ramanujan Soc. Math. Math. Sci. 8, No. 2, 109-132 (2021). MSC: 35B44 35B40 35L20 35L71 PDF BibTeX XML Cite \textit{H. Nachid} et al., J. Ramanujan Soc. Math. Math. Sci. 8, No. 2, 109--132 (2021; Zbl 1497.35065) Full Text: Link
Kumar, Santosh; Alam, Khursheed PDE-based hyperbolic-parabolic model for image denoising with forward-backward diffusivity. (English) Zbl 1499.35416 Comput. Methods Differ. Equ. 9, No. 4, 1100-1108 (2021). MSC: 35L70 65M06 76R50 68U10 PDF BibTeX XML Cite \textit{S. Kumar} and \textit{K. Alam}, Comput. Methods Differ. Equ. 9, No. 4, 1100--1108 (2021; Zbl 1499.35416) Full Text: DOI
Macías-Díaz, J. E. Nonlinear wave transmission in harmonically driven Hamiltonian sine-Gordon regimes with memory effects. (English) Zbl 1496.65122 Chaos Solitons Fractals 142, Article ID 110362, 12 p. (2021). MSC: 65M06 35L10 PDF BibTeX XML Cite \textit{J. E. Macías-Díaz}, Chaos Solitons Fractals 142, Article ID 110362, 12 p. (2021; Zbl 1496.65122) Full Text: DOI
Inc, Mustafa; Partohaghighi, Mohammad; Akinlar, Mehmet Ali; Weber, Gerhard-Wilhelm New solutions of hyperbolic telegraph equation. (English) Zbl 1497.35022 J. Dyn. Games 8, No. 2, 129-138 (2021). MSC: 35A35 35L10 33E30 65M22 65J15 PDF BibTeX XML Cite \textit{M. Inc} et al., J. Dyn. Games 8, No. 2, 129--138 (2021; Zbl 1497.35022) Full Text: DOI
Yaslan, H. Çerdik Numerical solution of the nonlinear conformable space-time fractional partial differential equations. (English) Zbl 07423837 Indian J. Pure Appl. Math. 52, No. 2, 407-419 (2021). MSC: 65-XX 35G31 35R11 65M70 PDF BibTeX XML Cite \textit{H. Ç. Yaslan}, Indian J. Pure Appl. Math. 52, No. 2, 407--419 (2021; Zbl 07423837) Full Text: DOI
del Teso, Félix; Endal, Jørgen; Vázquez, Juan Luis The one-phase fractional Stefan problem. (English) Zbl 1473.80010 Math. Models Methods Appl. Sci. 31, No. 1, 83-131 (2021). MSC: 80A22 35D30 35K15 35K65 35R09 35R11 65M06 65M12 PDF BibTeX XML Cite \textit{F. del Teso} et al., Math. Models Methods Appl. Sci. 31, No. 1, 83--131 (2021; Zbl 1473.80010) Full Text: DOI arXiv
Wang, Keyan; Wang, Qisheng Error estimates for expanded mixed finite element methods for nonlinear hyperbolic equation. (Chinese. English summary) Zbl 1488.65467 Acta Math. Sci., Ser. A, Chin. Ed. 41, No. 2, 468-478 (2021). MSC: 65M60 65M15 65M06 65N30 35L70 PDF BibTeX XML Cite \textit{K. Wang} and \textit{Q. Wang}, Acta Math. Sci., Ser. A, Chin. Ed. 41, No. 2, 468--478 (2021; Zbl 1488.65467)
Stević, Stevo; Ahmed, Ahmed El-Sayed; Kosmala, Witold; Šmarda, Zdeněk Note on a difference equation and some of its relatives. (English) Zbl 1473.39005 Math. Methods Appl. Sci. 44, No. 13, 10053-10061 (2021). MSC: 39A10 39A23 PDF BibTeX XML Cite \textit{S. Stević} et al., Math. Methods Appl. Sci. 44, No. 13, 10053--10061 (2021; Zbl 1473.39005) Full Text: DOI
Wang, Min; Huang, Qiumei; Wang, Cheng A second order accurate scalar auxiliary variable (SAV) numerical method for the square phase field crystal equation. (English) Zbl 1497.65196 J. Sci. Comput. 88, No. 2, Paper No. 33, 36 p. (2021). MSC: 65M70 65M06 65N35 65T50 65M12 35K30 35K55 65K10 74N05 35Q74 PDF BibTeX XML Cite \textit{M. Wang} et al., J. Sci. Comput. 88, No. 2, Paper No. 33, 36 p. (2021; Zbl 1497.65196) Full Text: DOI arXiv
Habibullin, I. T.; Khakimova, A. R. Invariant manifolds of hyperbolic integrable equations and their applications. (English. Russian original) Zbl 1471.35201 J. Math. Sci., New York 257, No. 3, 410-423 (2021); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 162, 136-150 (2019). MSC: 35L70 37K10 39A14 PDF BibTeX XML Cite \textit{I. T. Habibullin} and \textit{A. R. Khakimova}, J. Math. Sci., New York 257, No. 3, 410--423 (2021; Zbl 1471.35201); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 162, 136--150 (2019) Full Text: DOI arXiv
Feng, Yue; Yi, Wenfan Uniform error bounds of an exponential wave integrator for the long-time dynamics of the nonlinear Klein-Gordon equation. (English) Zbl 1496.65178 Multiscale Model. Simul. 19, No. 3, 1212-1235 (2021). MSC: 65M70 65M06 65N35 65M12 65M15 35L70 81V10 81-08 PDF BibTeX XML Cite \textit{Y. Feng} and \textit{W. Yi}, Multiscale Model. Simul. 19, No. 3, 1212--1235 (2021; Zbl 1496.65178) Full Text: DOI arXiv
Wang, Xiuhua; Kou, Jisheng; Gao, Huicai Linear energy stable and maximum principle preserving semi-implicit scheme for Allen-Cahn equation with double well potential. (English) Zbl 1471.65110 Commun. Nonlinear Sci. Numer. Simul. 98, Article ID 105766, 14 p. (2021). MSC: 65M06 65M12 35K20 35K35 35K55 35B50 65Z05 PDF BibTeX XML Cite \textit{X. Wang} et al., Commun. Nonlinear Sci. Numer. Simul. 98, Article ID 105766, 14 p. (2021; Zbl 1471.65110) Full Text: DOI
Zhang, Chenhui; Ouyang, Jie Unconditionally energy stable second-order numerical schemes for the functionalized Cahn-Hilliard gradient flow equation based on the SAV approach. (English) Zbl 07308026 Comput. Math. Appl. 84, 16-38 (2021). MSC: 65M12 65M06 35Q35 65M70 35K55 PDF BibTeX XML Cite \textit{C. Zhang} and \textit{J. Ouyang}, Comput. Math. Appl. 84, 16--38 (2021; Zbl 07308026) Full Text: DOI
Achouri, Talha; Kadri, Tlili; Omrani, Khaled Analysis of finite difference schemes for a fourth-order strongly damped nonlinear wave equations. (English) Zbl 07308004 Comput. Math. Appl. 82, 74-96 (2021). MSC: 65M06 35L70 65M12 35B40 35L76 PDF BibTeX XML Cite \textit{T. Achouri} et al., Comput. Math. Appl. 82, 74--96 (2021; Zbl 07308004) Full Text: DOI
Jagtap, Ameya D. On spatio-temporal dynamics of sine-Gordon soliton in nonlinear non-homogeneous media using fully implicit spectral element scheme. (English) Zbl 1455.65133 Appl. Anal. 100, No. 1, 37-60 (2021). Reviewer: Marius Ghergu (Dublin) MSC: 65M06 65M70 35C08 65M12 58J45 35L70 35L20 35Q51 PDF BibTeX XML Cite \textit{A. D. Jagtap}, Appl. Anal. 100, No. 1, 37--60 (2021; Zbl 1455.65133) Full Text: DOI
Driouch, Aicha; Al Moatassime, Hassan Multigrid method for a fully nonlinear Black-Scholes equation. (English) Zbl 1488.91159 An. Univ. Craiova, Ser. Mat. Inf. 47, No. 1, 25-34 (2020). MSC: 91G60 35K10 65M06 PDF BibTeX XML Cite \textit{A. Driouch} and \textit{H. Al Moatassime}, An. Univ. Craiova, Ser. Mat. Inf. 47, No. 1, 25--34 (2020; Zbl 1488.91159)
Aderogba, A. A.; Fabelurin, O. O.; Akindeinde, S. O.; Adewumi, A. O.; Ogundare, B. S. Nonstandard finite difference approximation for a generalized fins problem. (English) Zbl 1515.65198 Math. Comput. Simul. 178, 183-191 (2020). MSC: 65L10 65L12 PDF BibTeX XML Cite \textit{A. A. Aderogba} et al., Math. Comput. Simul. 178, 183--191 (2020; Zbl 1515.65198) Full Text: DOI
Dohnal, Tomáš; Rudolf, Daniel NLS approximation for wavepackets in periodic cubically nonlinear wave problems in \(\mathbb{R}^d\). (English) Zbl 1459.35342 Appl. Anal. 99, No. 10, 1685-1723 (2020). Reviewer: Anthony D. Osborne (Keele) MSC: 35Q55 35Q60 35L71 41A60 35C08 65N25 65N06 65L06 65T50 PDF BibTeX XML Cite \textit{T. Dohnal} and \textit{D. Rudolf}, Appl. Anal. 99, No. 10, 1685--1723 (2020; Zbl 1459.35342) Full Text: DOI arXiv
Stegliński, Robert; Nockowska-Rosiak, Magdalena Sequences of positive homoclinic solutions to difference equations with variable exponent. (English) Zbl 1478.39004 Math. Slovaca 70, No. 2, 417-430 (2020). MSC: 39A12 49J27 47J30 PDF BibTeX XML Cite \textit{R. Stegliński} and \textit{M. Nockowska-Rosiak}, Math. Slovaca 70, No. 2, 417--430 (2020; Zbl 1478.39004) Full Text: DOI arXiv
Martínez, Romeo; Macías-Díaz, J. E.; Hendy, A. S. Corrigendum to: “A numerically efficient and conservative model for a Riesz space-fractional Klein-Gordon-Zakharov system”. (English) Zbl 1470.65152 Commun. Nonlinear Sci. Numer. Simul. 83, Article ID 105109, 4 p. (2020). MSC: 65M06 35R11 35L53 35L70 PDF BibTeX XML Cite \textit{R. Martínez} et al., Commun. Nonlinear Sci. Numer. Simul. 83, Article ID 105109, 4 p. (2020; Zbl 1470.65152) Full Text: DOI
Kumar, P. Murali Mohan; Ravi Kanth, A. S. V. Computational study for a class of time-dependent singularly perturbed parabolic partial differential equation through tension spline. (English) Zbl 1463.65227 Comput. Appl. Math. 39, No. 3, Paper No. 233, 19 p. (2020). MSC: 65M06 65M12 35K20 35B25 65D07 35B45 35B50 35R07 PDF BibTeX XML Cite \textit{P. M. M. Kumar} and \textit{A. S. V. Ravi Kanth}, Comput. Appl. Math. 39, No. 3, Paper No. 233, 19 p. (2020; Zbl 1463.65227) Full Text: DOI
Liu, Zhengguang; Li, Xiaoli Efficient modified stabilized invariant energy quadratization approaches for phase-field crystal equation. (English) Zbl 1446.65071 Numer. Algorithms 85, No. 1, 107-132 (2020). MSC: 65M06 65M12 65M15 35K20 35K35 35K55 65Z05 74N05 PDF BibTeX XML Cite \textit{Z. Liu} and \textit{X. Li}, Numer. Algorithms 85, No. 1, 107--132 (2020; Zbl 1446.65071) Full Text: DOI
Zhang, Yanmei; Cui, Xia; Yuan, Guangwei Nonlinear iteration acceleration solution for equilibrium radiation diffusion equation. (English) Zbl 1443.65152 ESAIM, Math. Model. Numer. Anal. 54, No. 5, 1465-1490 (2020). MSC: 65M06 35K20 35K55 65M12 65M22 PDF BibTeX XML Cite \textit{Y. Zhang} et al., ESAIM, Math. Model. Numer. Anal. 54, No. 5, 1465--1490 (2020; Zbl 1443.65152) Full Text: DOI
Majee, Sudeb; Ray, Rajendra K.; Majee, Ananta K. A gray level indicator-based regularized telegraph diffusion model: application to image despeckling. (English) Zbl 1444.35111 SIAM J. Imaging Sci. 13, No. 2, 844-870 (2020). MSC: 35L20 35L71 65M06 68U10 PDF BibTeX XML Cite \textit{S. Majee} et al., SIAM J. Imaging Sci. 13, No. 2, 844--870 (2020; Zbl 1444.35111) Full Text: DOI arXiv
del Teso, Félix; Endal, Jørgen; Vázquez, Juan Luis On the two-phase fractional Stefan problem. (English) Zbl 1434.80006 Adv. Nonlinear Stud. 20, No. 2, 437-458 (2020). MSC: 80A22 35D30 35K15 35K65 35R09 35R11 65M06 65M12 PDF BibTeX XML Cite \textit{F. del Teso} et al., Adv. Nonlinear Stud. 20, No. 2, 437--458 (2020; Zbl 1434.80006) Full Text: DOI arXiv
Cabrales, Roberto Carlos; Gutiérrez-Santacreu, Juan Vicente; Rodríguez-Galván, José Rafael Numerical solution for an aggregation equation with degenerate diffusion. (English) Zbl 1474.65343 Appl. Math. Comput. 377, Article ID 125145, 24 p. (2020). MSC: 65M60 35K55 45K05 35K20 65M06 65N30 35D30 65M12 PDF BibTeX XML Cite \textit{R. C. Cabrales} et al., Appl. Math. Comput. 377, Article ID 125145, 24 p. (2020; Zbl 1474.65343) Full Text: DOI arXiv
Zhao, Fei; Cui, Xia; Yuan, Guangwei Iterative acceleration methods with second-order time accuracy for nonlinear diffusion equations. (English) Zbl 1436.65117 Adv. Comput. Math. 46, No. 1, Paper No. 7, 34 p. (2020). MSC: 65M06 65B05 65M12 65H10 PDF BibTeX XML Cite \textit{F. Zhao} et al., Adv. Comput. Math. 46, No. 1, Paper No. 7, 34 p. (2020; Zbl 1436.65117) Full Text: DOI
Lyu, Pin; Liang, Yuxiang; Wang, Zhibo A fast linearized finite difference method for the nonlinear multi-term time-fractional wave equation. (English) Zbl 1435.65128 Appl. Numer. Math. 151, 448-471 (2020). MSC: 65M06 65M12 65M15 26A33 35R11 PDF BibTeX XML Cite \textit{P. Lyu} et al., Appl. Numer. Math. 151, 448--471 (2020; Zbl 1435.65128) Full Text: DOI arXiv
Deng, Dingwen; Liang, Dong The energy-preserving finite difference methods and their analyses for system of nonlinear wave equations in two dimensions. (English) Zbl 1434.65111 Appl. Numer. Math. 151, 172-198 (2020). MSC: 65M06 35L70 35Q53 65M12 PDF BibTeX XML Cite \textit{D. Deng} and \textit{D. Liang}, Appl. Numer. Math. 151, 172--198 (2020; Zbl 1434.65111) Full Text: DOI
Jha, Navnit; Singh, Bhagat Exponential basis and exponential expanding grids third (fourth)-order compact schemes for nonlinear three-dimensional convection-diffusion-reaction equation. (English) Zbl 1485.65114 Adv. Difference Equ. 2019, Paper No. 339, 27 p. (2019). MSC: 65N06 65N12 65F10 35J25 35J65 PDF BibTeX XML Cite \textit{N. Jha} and \textit{B. Singh}, Adv. Difference Equ. 2019, Paper No. 339, 27 p. (2019; Zbl 1485.65114) Full Text: DOI
Mesloub, Said; Aboelrish, M. R.; Obaidat, S. Well posedness and numerical solution for a non-local pseudohyperbolic initial boundary value problem. (English) Zbl 1499.35427 Int. J. Comput. Math. 96, No. 12, 2533-2547 (2019). MSC: 35L82 35L20 65N06 35L70 PDF BibTeX XML Cite \textit{S. Mesloub} et al., Int. J. Comput. Math. 96, No. 12, 2533--2547 (2019; Zbl 1499.35427) Full Text: DOI
Cheng, Kelong; Wang, Cheng; Wise, Steven M. An energy stable BDF2 Fourier pseudo-spectral numerical scheme for the square phase field crystal equation. (English) Zbl 07418059 Commun. Comput. Phys. 26, No. 5, 1335-1364 (2019). MSC: 65M70 65M06 65N35 65K10 65F08 65B05 65M12 41A25 35K30 35K55 74N05 82D25 35Q74 35Q82 PDF BibTeX XML Cite \textit{K. Cheng} et al., Commun. Comput. Phys. 26, No. 5, 1335--1364 (2019; Zbl 07418059) Full Text: DOI arXiv
Bao, Weizhu; Feng, Yue; Yi, Wenfan Long time error analysis of finite difference time domain methods for the nonlinear Klein-Gordon equation with weak nonlinearity. (English) Zbl 07418058 Commun. Comput. Phys. 26, No. 5, 1307-1334 (2019). MSC: 65M06 65M12 65M15 65M50 65N50 35B05 35L70 81V10 81-08 35Q53 35Q40 PDF BibTeX XML Cite \textit{W. Bao} et al., Commun. Comput. Phys. 26, No. 5, 1307--1334 (2019; Zbl 07418058) Full Text: DOI arXiv
Adewole, Matthew O. Approximate solution of nonlinear hyperbolic equations with homogeneous jump conditions. (English) Zbl 1463.65283 J. Numer. Anal. Approx. Theory 48, No. 2, 122-136 (2019). MSC: 65M60 65M12 65M06 65M15 35L70 65N30 PDF BibTeX XML Cite \textit{M. O. Adewole}, J. Numer. Anal. Approx. Theory 48, No. 2, 122--136 (2019; Zbl 1463.65283)
Rouhani, Behzad Djafari; Piranfar, Mohsen Rahimi Nonhomogeneous nonlinear oscillator with damping: asymptotic analysis in continuous and discrete time. (English) Zbl 1427.35159 Demonstr. Math. 52, 274-282 (2019). MSC: 35L90 35B40 47H05 34C12 34G20 34G25 PDF BibTeX XML Cite \textit{B. D. Rouhani} and \textit{M. R. Piranfar}, Demonstr. Math. 52, 274--282 (2019; Zbl 1427.35159) Full Text: DOI
del Teso, Felix; Endal, Jørgen; Jakobsen, Espen R. Robust numerical methods for nonlocal (and local) equations of porous medium type. I: Theory. (English) Zbl 1428.65005 SIAM J. Numer. Anal. 57, No. 5, 2266-2299 (2019). MSC: 65M06 65M12 35B30 35K15 35K65 35D30 35R09 35R11 76S05 35B45 PDF BibTeX XML Cite \textit{F. del Teso} et al., SIAM J. Numer. Anal. 57, No. 5, 2266--2299 (2019; Zbl 1428.65005) Full Text: DOI arXiv
Fan, Wenping; Zhang, Hui The inverse problem and the second order \(\theta\) scheme with finite element method used for 2D nonlinear space fractional Schrödinger equation. (English) Zbl 1464.65101 Appl. Math. Lett. 98, 240-247 (2019). MSC: 65M32 65M60 65M06 65N30 65N50 62F15 35Q55 35R11 PDF BibTeX XML Cite \textit{W. Fan} and \textit{H. Zhang}, Appl. Math. Lett. 98, 240--247 (2019; Zbl 1464.65101) Full Text: DOI
Wang, Lin; Yu, Haijun Energy-stable second-order linear schemes for the Allen-Cahn phase-field equation. (English) Zbl 1426.65140 Commun. Math. Sci. 17, No. 3, 609-635 (2019). MSC: 65M12 65M15 65P40 65M60 65M06 65L12 35P15 PDF BibTeX XML Cite \textit{L. Wang} and \textit{H. Yu}, Commun. Math. Sci. 17, No. 3, 609--635 (2019; Zbl 1426.65140) Full Text: DOI arXiv
Cheng, Kelong; Feng, Wenqiang; Wang, Cheng; Wise, Steven M. An energy stable fourth order finite difference scheme for the Cahn-Hilliard equation. (English) Zbl 1416.65256 J. Comput. Appl. Math. 362, 574-595 (2019). MSC: 65M06 35K35 35K55 65K10 65M12 PDF BibTeX XML Cite \textit{K. Cheng} et al., J. Comput. Appl. Math. 362, 574--595 (2019; Zbl 1416.65256) Full Text: DOI arXiv
Tekin, Ibrahim; Mehraliyev, Yashar T.; Ismailov, Mansur I. Existence and uniqueness of an inverse problem for nonlinear Klein-Gordon equation. (English) Zbl 1418.35384 Math. Methods Appl. Sci. 42, No. 10, 3739-3753 (2019). MSC: 35R30 35L70 65M06 PDF BibTeX XML Cite \textit{I. Tekin} et al., Math. Methods Appl. Sci. 42, No. 10, 3739--3753 (2019; Zbl 1418.35384) Full Text: DOI
Wu, Dan; Yue, Jingyan; Yuan, Guangwei; Lv, Junliang Finite volume element approximation for nonlinear diffusion problems with degenerate diffusion coefficients. (English) Zbl 1435.65139 Appl. Numer. Math. 140, 23-47 (2019). MSC: 65M08 35K20 35K65 65M06 PDF BibTeX XML Cite \textit{D. Wu} et al., Appl. Numer. Math. 140, 23--47 (2019; Zbl 1435.65139) Full Text: DOI
Liu, Yang; Du, Yanwei; Li, Hong; Liu, Fawang; Wang, Yajun Some second-order \(\theta\) schemes combined with finite element method for nonlinear fractional cable equation. (English) Zbl 1433.65218 Numer. Algorithms 80, No. 2, 533-555 (2019). Reviewer: Yakov Berchenko-Kogan (St. Louis) MSC: 65M60 65N15 65N30 35R11 65N12 65M06 92C37 92C20 PDF BibTeX XML Cite \textit{Y. Liu} et al., Numer. Algorithms 80, No. 2, 533--555 (2019; Zbl 1433.65218) Full Text: DOI Link
Han, Huan; Li, Xing; Zhou, Huan-Song 3D mathematical model and numerical simulation for laying marine cable along prescribed trajectory on seabed. (English) Zbl 1480.35325 Appl. Math. Modelling 60, 94-111 (2018). MSC: 35Q35 35L53 35L70 35R35 65M06 PDF BibTeX XML Cite \textit{H. Han} et al., Appl. Math. Modelling 60, 94--111 (2018; Zbl 1480.35325) Full Text: DOI
Barbu, Tudor A nonlinear second-order partial differential equation-based algorithm for additive noise reduction. (English) Zbl 1438.35467 Bull. Transilv. Univ. Brașov, Ser. III, Math. Inform. Phys. 11(60), No. 2, 49-56 (2018). MSC: 35R60 35L20 35L70 35Q94 65M06 94A08 PDF BibTeX XML Cite \textit{T. Barbu}, Bull. Transilv. Univ. Brașov, Ser. III, Math. Inform. Phys. 11(60), No. 2, 49--56 (2018; Zbl 1438.35467)
Liu, Changying; Wu, Xinyuan; Shi, Wei New energy-preserving algorithms for nonlinear Hamiltonian wave equation equipped with Neumann boundary conditions. (English) Zbl 1429.65189 Appl. Math. Comput. 339, 588-606 (2018). MSC: 65M06 35C15 35L20 35L71 PDF BibTeX XML Cite \textit{C. Liu} et al., Appl. Math. Comput. 339, 588--606 (2018; Zbl 1429.65189) Full Text: DOI
Stevic, Stevo; Iricanin, Bratislav; Kosmala, Witold; Smarda, Zdenek Representation of solutions of a solvable nonlinear difference equation of second order. (English) Zbl 1424.39022 Electron. J. Qual. Theory Differ. Equ. 2018, Paper No. 95, 18 p. (2018). MSC: 39A20 39A06 PDF BibTeX XML Cite \textit{S. Stevic} et al., Electron. J. Qual. Theory Differ. Equ. 2018, Paper No. 95, 18 p. (2018; Zbl 1424.39022) Full Text: DOI
Cho, Chien-Hong On the computation for blow-up solutions of the nonlinear wave equation. (English) Zbl 1397.65135 Numer. Math. 138, No. 3, 537-556 (2018). Reviewer: Song Jiang (Beijing) MSC: 65M06 65-02 65M12 35L05 35L71 35B44 PDF BibTeX XML Cite \textit{C.-H. Cho}, Numer. Math. 138, No. 3, 537--556 (2018; Zbl 1397.65135) Full Text: DOI
Jha, Navnit; Gopal, Venu; Singh, Bhagat A family of compact finite difference formulations for three-space dimensional nonlinear Poisson’s equations in Cartesian coordinates. (English) Zbl 1387.35165 Differ. Equ. Dyn. Syst. 26, No. 1-3, 105-123 (2018). MSC: 35J25 35J60 35J65 65N06 PDF BibTeX XML Cite \textit{N. Jha} et al., Differ. Equ. Dyn. Syst. 26, No. 1--3, 105--123 (2018; Zbl 1387.35165) Full Text: DOI
Chen, Fengxin; Zhou, Zhaojie An \(H^1\)-Galerkin mixed finite element approximation of a nonlocal hyperbolic equation. (English) Zbl 1488.65407 Math. Model. Anal. 22, No. 5, 643-653 (2017). MSC: 65M60 65M06 65N30 65M15 35L70 74H45 35Q74 PDF BibTeX XML Cite \textit{F. Chen} and \textit{Z. Zhou}, Math. Model. Anal. 22, No. 5, 643--653 (2017; Zbl 1488.65407) Full Text: DOI
Aggez, Necmettin; Yucel, Gulay On the NBVP for semilinear hyperbolic equations. (English) Zbl 1488.35367 Filomat 31, No. 4, 999-1007 (2017). MSC: 35L90 34B10 34G20 35L71 65M06 65M12 PDF BibTeX XML Cite \textit{N. Aggez} and \textit{G. Yucel}, Filomat 31, No. 4, 999--1007 (2017; Zbl 1488.35367) Full Text: DOI
Wang, Jinfeng; Liu, Tianqi; Li, Hong; Liu, Yang; He, Siriguleng Second-order approximation scheme combined with \(H^1\)-Galerkin MFE method for nonlinear time fractional convection-diffusion equation. (English) Zbl 1412.65157 Comput. Math. Appl. 73, No. 6, 1182-1196 (2017). MSC: 65M60 65M12 35R11 65M15 65M06 PDF BibTeX XML Cite \textit{J. Wang} et al., Comput. Math. Appl. 73, No. 6, 1182--1196 (2017; Zbl 1412.65157) Full Text: DOI
Xia, Hong; Luo, Zhendong An optimized finite difference Crank-Nicolson iterative scheme for the 2D Sobolev equation. (English) Zbl 1422.65191 Adv. Difference Equ. 2017, Paper No. 196, 12 p. (2017). MSC: 65M06 35K20 35K55 65M12 PDF BibTeX XML Cite \textit{H. Xia} and \textit{Z. Luo}, Adv. Difference Equ. 2017, Paper No. 196, 12 p. (2017; Zbl 1422.65191) Full Text: DOI
Long, Yuhua; Zeng, Baoling Multiple and sign-changing solutions for discrete Robin boundary value problem with parameter dependence. (English) Zbl 1382.39004 Open Math. 15, 1549-1557 (2017). MSC: 39A12 35J66 39A10 PDF BibTeX XML Cite \textit{Y. Long} and \textit{B. Zeng}, Open Math. 15, 1549--1557 (2017; Zbl 1382.39004) Full Text: DOI
Neilan, Michael; Salgado, Abner J.; Zhang, Wujun Numerical analysis of strongly nonlinear PDEs. (English) Zbl 1381.65092 Acta Numerica 26, 137-303 (2017). Reviewer: Rolf Dieter Grigorieff (Berlin) MSC: 65N30 65N06 65N12 65N15 65N22 35J57 35J66 60H15 35J96 35F21 PDF BibTeX XML Cite \textit{M. Neilan} et al., Acta Numerica 26, 137--303 (2017; Zbl 1381.65092) Full Text: DOI arXiv
Li, Xiaoli; Rui, Hongxing A two-grid block-centered finite difference method for the nonlinear time-fractional parabolic equation. (English) Zbl 1377.65106 J. Sci. Comput. 72, No. 2, 863-891 (2017). MSC: 65M06 35K20 35R11 65M12 65M15 PDF BibTeX XML Cite \textit{X. Li} and \textit{H. Rui}, J. Sci. Comput. 72, No. 2, 863--891 (2017; Zbl 1377.65106) Full Text: DOI
Gu, Wei; Zhou, Yanli; Ge, Xiangyu A compact difference scheme for solving fractional neutral parabolic differential equation with proportional delay. (English) Zbl 1376.65114 J. Funct. Spaces 2017, Article ID 3679526, 8 p. (2017). MSC: 65M06 35K55 35R11 35K20 35R10 65M12 PDF BibTeX XML Cite \textit{W. Gu} et al., J. Funct. Spaces 2017, Article ID 3679526, 8 p. (2017; Zbl 1376.65114) Full Text: DOI
Mach, Jan; Beneš, Michal; Strachota, Pavel Nonlinear Galerkin finite element method applied to the system of reaction-diffusion equations in one space dimension. (English) Zbl 1373.65071 Comput. Math. Appl. 73, No. 9, 2053-2065 (2017). MSC: 65M60 65M12 35K57 35K51 65M06 65Y20 PDF BibTeX XML Cite \textit{J. Mach} et al., Comput. Math. Appl. 73, No. 9, 2053--2065 (2017; Zbl 1373.65071) Full Text: DOI
Aimi, A.; Diligenti, M.; Guardasoni, C. Comparison between numerical methods applied to the damped wave equation. (English) Zbl 1361.65077 J. Integral Equations Appl. 29, No. 1, 5-40 (2017). MSC: 65M60 35L70 65M06 65M38 65M12 PDF BibTeX XML Cite \textit{A. Aimi} et al., J. Integral Equations Appl. 29, No. 1, 5--40 (2017; Zbl 1361.65077) Full Text: DOI Euclid
Zadvan, Homa; Rashidinia, Jalil Non-polynomial spline method for the solution of two-dimensional linear wave equations with a nonlinear source term. (English) Zbl 1358.65067 Numer. Algorithms 74, No. 2, 289-306 (2017). MSC: 65M70 35L70 65M12 65M06 PDF BibTeX XML Cite \textit{H. Zadvan} and \textit{J. Rashidinia}, Numer. Algorithms 74, No. 2, 289--306 (2017; Zbl 1358.65067) Full Text: DOI
Macías-Díaz, J. E.; Villa-Morales, J. A deterministic model for the distribution of the stopping time in a stochastic equation and its numerical solution. (English) Zbl 1357.65012 J. Comput. Appl. Math. 318, 93-106 (2017). MSC: 65C30 60H15 60H20 60H35 35R60 45R05 35K20 65M06 PDF BibTeX XML Cite \textit{J. E. Macías-Díaz} and \textit{J. Villa-Morales}, J. Comput. Appl. Math. 318, 93--106 (2017; Zbl 1357.65012) Full Text: DOI
Thomann, Andrea; Borzì, Alfio Stability and accuracy of a pseudospectral scheme for the Wigner function equation. (English) Zbl 1365.65231 Numer. Methods Partial Differ. Equations 33, No. 1, 62-87 (2017). Reviewer: Michael Jung (Dresden) MSC: 65M70 65M12 65M06 35G31 PDF BibTeX XML Cite \textit{A. Thomann} and \textit{A. Borzì}, Numer. Methods Partial Differ. Equations 33, No. 1, 62--87 (2017; Zbl 1365.65231) Full Text: DOI
Ekomasov, Evgenii G.; Gumerov, Azamat M.; Kudryavtsev, Roman V. Resonance dynamics of kinks in the sine-Gordon model with impurity, external force and damping. (English) Zbl 1350.35024 J. Comput. Appl. Math. 312, 198-208 (2017). MSC: 35B34 35C08 35Q51 65M06 35L71 PDF BibTeX XML Cite \textit{E. G. Ekomasov} et al., J. Comput. Appl. Math. 312, 198--208 (2017; Zbl 1350.35024) Full Text: DOI
Hussein, M. S.; Lesnic, D. Simultaneous determination of time and space-dependent coefficients in a parabolic equation. (English) Zbl 1510.35398 Commun. Nonlinear Sci. Numer. Simul. 33, 194-217 (2016). MSC: 35R30 35K20 PDF BibTeX XML Cite \textit{M. S. Hussein} and \textit{D. Lesnic}, Commun. Nonlinear Sci. Numer. Simul. 33, 194--217 (2016; Zbl 1510.35398) Full Text: DOI Link
Razi, Mani; Attar, Peter; Vedula, Prakash Numerical solution of multidimensional hyperbolic PDEs using defect correction on adaptive grids. (English) Zbl 1372.65243 J. Sci. Comput. 69, No. 2, 581-609 (2016). MSC: 65M06 35L70 65M15 35Q53 PDF BibTeX XML Cite \textit{M. Razi} et al., J. Sci. Comput. 69, No. 2, 581--609 (2016; Zbl 1372.65243) Full Text: DOI
Raza, Nauman Application of Sobolev gradient method to solve Klein Gordon equation. (English) Zbl 1357.65129 J. Math., Punjab Univ. 48, No. 2, 135-145 (2016). MSC: 65M06 35L70 PDF BibTeX XML Cite \textit{N. Raza}, J. Math., Punjab Univ. 48, No. 2, 135--145 (2016; Zbl 1357.65129) Full Text: Link
Selvarangam, S.; Geetha, S.; Thandapani, E.; Pinelas, S. Classifications of solutions of second order nonlinear neutral difference equations of mixed type. (English) Zbl 1355.39017 Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 23, No. 6, 433-447 (2016). MSC: 39A21 39A10 PDF BibTeX XML Cite \textit{S. Selvarangam} et al., Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 23, No. 6, 433--447 (2016; Zbl 1355.39017) Full Text: Link
Zhang, Lichun; Huang, Qingdao; Yang, Yueting; Cai, Shuyun Local stability of two periodic positive solutions of a second order rational nonlinear difference equation. (Chinese. English summary) Zbl 1363.39019 J. Jilin Univ., Sci. 54, No. 3, 451-456 (2016). MSC: 39A23 39A30 39A20 39A22 PDF BibTeX XML Cite \textit{L. Zhang} et al., J. Jilin Univ., Sci. 54, No. 3, 451--456 (2016; Zbl 1363.39019) Full Text: DOI
Rouhani, Behzad Djafari; Khatibzadeh, Hadi Asymptotics of a general second-order difference equation and approximation of zeroes of monotone operators. (English) Zbl 1372.39012 Numer. Funct. Anal. Optim. 37, No. 9, 1107-1130 (2016). Reviewer: Petr Zemánek (Brno) MSC: 39A12 47H05 37L05 47J35 39A22 47H04 PDF BibTeX XML Cite \textit{B. D. Rouhani} and \textit{H. Khatibzadeh}, Numer. Funct. Anal. Optim. 37, No. 9, 1107--1130 (2016; Zbl 1372.39012) Full Text: DOI
Zhang, Wensheng; Luo, Jia Two-grid full-waveform inversion in the time domain. (Chinese. English summary) Zbl 1363.65153 J. Numer. Methods Comput. Appl. 37, No. 1, 25-40 (2016). MSC: 65M32 65M30 65M55 35L05 35L70 35R30 35R25 65M06 65Y20 65M12 65Y05 PDF BibTeX XML Cite \textit{W. Zhang} and \textit{J. Luo}, J. Numer. Methods Comput. Appl. 37, No. 1, 25--40 (2016; Zbl 1363.65153)
Yang, Lianwu; Zhang, Yuanbiao; Yuan, Shaoliang; Shi, Haiping Existence theorems of periodic solutions for second-order difference equations containing both advance and retardation. (English) Zbl 1351.39010 J. Contemp. Math. Anal., Armen. Acad. Sci. 51, No. 2, 58-67 (2016) and Izv. Nats. Akad. Nauk Armen., Mat. 51, No. 2, x-x (2016). Reviewer: Ioannis P. Stavroulakis (Ioannina) MSC: 39A23 39A10 PDF BibTeX XML Cite \textit{L. Yang} et al., J. Contemp. Math. Anal., Armen. Acad. Sci. 51, No. 2, 58--67 (2016; Zbl 1351.39010) Full Text: DOI
Xie, Dexuan; Ying, Jinyong A new box iterative method for a class of nonlinear interface problems with application in solving Poisson-Boltzmann equation. (English) Zbl 1348.65170 J. Comput. Appl. Math. 307, 319-334 (2016). MSC: 65N30 65N06 35J60 35Q20 65N55 78A30 78M10 78M20 PDF BibTeX XML Cite \textit{D. Xie} and \textit{J. Ying}, J. Comput. Appl. Math. 307, 319--334 (2016; Zbl 1348.65170) Full Text: DOI
Liu, Zeqing; Li, Xin; Kang, Shin Min; Kwun, Young Chel Positive solutions and Mann iterative algorithms for a second-order nonlinear difference equation. (English) Zbl 1339.39005 J. Funct. Spaces 2016, Article ID 8317567, 21 p. (2016). MSC: 39A10 39A22 65Q10 PDF BibTeX XML Cite \textit{Z. Liu} et al., J. Funct. Spaces 2016, Article ID 8317567, 21 p. (2016; Zbl 1339.39005) Full Text: DOI
Stević, Stevo Solvable subclasses of a class of nonlinear second-order difference equations. (English) Zbl 1338.39011 Adv. Nonlinear Anal. 5, No. 2, 147-165 (2016). MSC: 39A10 39A20 PDF BibTeX XML Cite \textit{S. Stević}, Adv. Nonlinear Anal. 5, No. 2, 147--165 (2016; Zbl 1338.39011) Full Text: DOI
Maroncelli, Daniel; Rodríguez, Jesús Periodic behaviour of nonlinear, second-order discrete dynamical systems. (English) Zbl 1354.39009 J. Difference Equ. Appl. 22, No. 2, 280-294 (2016). Reviewer: Yuming Chen (Waterloo) MSC: 39A23 39A12 37J45 PDF BibTeX XML Cite \textit{D. Maroncelli} and \textit{J. Rodríguez}, J. Difference Equ. Appl. 22, No. 2, 280--294 (2016; Zbl 1354.39009) Full Text: DOI arXiv
Saito, Norikazu; Sasaki, Takiko Blow-up of finite-difference solutions to nonlinear wave equations. (English) Zbl 1353.65091 J. Math. Sci., Tokyo 23, No. 1, 349-380 (2016). Reviewer: Iwan Gawriljuk (Eisenach) MSC: 65M06 35B44 35L70 65M12 PDF BibTeX XML Cite \textit{N. Saito} and \textit{T. Sasaki}, J. Math. Sci., Tokyo 23, No. 1, 349--380 (2016; Zbl 1353.65091) Full Text: Link
Saha Ray, Santanu Numerical analysis with algorithms and programming. (English) Zbl 1359.65002 Boca Raton, FL: CRC Press (ISBN 978-1-4987-4174-3/hbk; 978-1-4987-4182-8/ebook). xix, 685 p. (2016). Reviewer: Hang Lau (Montréal) MSC: 65-01 68N15 65Y15 65H05 65H10 65D05 65D07 65D25 65D32 65B15 65F05 65F10 65L06 65L10 65L12 65L60 65F15 65D10 65M06 35K20 35L20 65N06 35J05 65N30 PDF BibTeX XML Cite \textit{S. Saha Ray}, Numerical analysis with algorithms and programming. Boca Raton, FL: CRC Press (2016; Zbl 1359.65002)
Alexander, Damon; Kim, Inwon A Fokker-Planck type approximation of parabolic PDEs with oblique boundary data. (English) Zbl 1372.35158 Trans. Am. Math. Soc. 368, No. 8, 5753-5781 (2016). Reviewer: André Schlichting (Bonn) MSC: 35K59 35K10 35K20 35K61 35Q84 65M06 PDF BibTeX XML Cite \textit{D. Alexander} and \textit{I. Kim}, Trans. Am. Math. Soc. 368, No. 8, 5753--5781 (2016; Zbl 1372.35158) Full Text: DOI arXiv
Rincon, M. A.; Quintino, N. P. Numerical analysis and simulation for a nonlinear wave equation. (English) Zbl 1331.65142 J. Comput. Appl. Math. 296, 247-264 (2016). MSC: 65M60 65M06 35L70 65M12 65M15 PDF BibTeX XML Cite \textit{M. A. Rincon} and \textit{N. P. Quintino}, J. Comput. Appl. Math. 296, 247--264 (2016; Zbl 1331.65142) Full Text: DOI
Porubov, A. V.; Fradkov, A. L.; Andrievsky, B. R. Feedback control for some solutions of the sine-Gordon equation. (English) Zbl 1410.93055 Appl. Math. Comput. 269, 17-22 (2015). MSC: 93C20 65M20 35L71 65L05 65M06 93B52 PDF BibTeX XML Cite \textit{A. V. Porubov} et al., Appl. Math. Comput. 269, 17--22 (2015; Zbl 1410.93055) Full Text: DOI
Jiang, Guojing; Zhao, Liangshi; Kang, Shin Min Existence and iterative approximations of nonoscillatory solutions for second order nonlinear neutral delay difference equations. (English) Zbl 1422.39013 Adv. Difference Equ. 2015, Paper No. 368, 16 p. (2015). MSC: 39A10 39A20 PDF BibTeX XML Cite \textit{G. Jiang} et al., Adv. Difference Equ. 2015, Paper No. 368, 16 p. (2015; Zbl 1422.39013) Full Text: DOI
Liu, Z.; Wu, Z.; Ume, J. S.; Kang, S. M. Uncountably many bounded positive solutions for a second order nonlinear neutral delay partial difference equation. (English) Zbl 1373.39009 Bull. Iran. Math. Soc. 41, No. 2, 389-405 (2015). MSC: 39A14 39A10 34K40 PDF BibTeX XML Cite \textit{Z. Liu} et al., Bull. Iran. Math. Soc. 41, No. 2, 389--405 (2015; Zbl 1373.39009) Full Text: Link
Mulloth, Akhil; Sawant, Nilesh; Haider, Ijlal; Sharma, Nidhi; Sengupta, Tapan K. High accuracy solution of bi-directional wave propagation in continuum mechanics. (English) Zbl 1349.76513 J. Comput. Phys. 298, 209-236 (2015). MSC: 76M20 65M06 35L10 65M12 76B15 PDF BibTeX XML Cite \textit{A. Mulloth} et al., J. Comput. Phys. 298, 209--236 (2015; Zbl 1349.76513) Full Text: DOI
Fukuizumi, Reika; Selem, Fouad Hadj; Kikuchi, Hiroaki Corrigendum to: “Stationary problem related to the nonlinear Schrödinger equation on the unit ball”. (English) Zbl 1464.35321 Nonlinearity 28, No. 12, C3-C7 (2015). MSC: 35Q55 35J20 35B35 65M06 35J10 PDF BibTeX XML Cite \textit{R. Fukuizumi} et al., Nonlinearity 28, No. 12, C3--C7 (2015; Zbl 1464.35321) Full Text: DOI
Tashirova, E. E. Convergence of the difference method of solving the two-dimensional wave equation with heredity. (Russian. English summary) Zbl 1333.65102 Vestn. Udmurt. Univ., Mat. Mekh. Komp’yut. Nauki 25, No. 1, 78-92 (2015). MSC: 65M12 65M06 35L70 35R10 65M15 PDF BibTeX XML Cite \textit{E. E. Tashirova}, Vestn. Udmurt. Univ., Mat. Mekh. Komp'yut. Nauki 25, No. 1, 78--92 (2015; Zbl 1333.65102) Full Text: DOI MNR
Macías-Díaz, J. E. An integro-differential generalization and dynamically consistent discretizations of some hyperbolic models with nonlinear damping. (English) Zbl 1328.65275 Int. J. Comput. Math. 92, No. 10, 2109-2120 (2015). MSC: 65R20 45K05 45G10 35L70 65M06 PDF BibTeX XML Cite \textit{J. E. Macías-Díaz}, Int. J. Comput. Math. 92, No. 10, 2109--2120 (2015; Zbl 1328.65275) Full Text: DOI
Rebelo, Raphaël; Valiquette, Francis Invariant discretization of partial differential equations admitting infinite-dimensional symmetry groups. (English) Zbl 1314.65139 J. Difference Equ. Appl. 21, No. 4, 285-318 (2015). MSC: 65N06 35G20 PDF BibTeX XML Cite \textit{R. Rebelo} and \textit{F. Valiquette}, J. Difference Equ. Appl. 21, No. 4, 285--318 (2015; Zbl 1314.65139) Full Text: DOI arXiv