×

A nonmonotone truncated Newton-Krylov method exploiting negative curvature directions, for large scale unconstrained optimization. (English) Zbl 1180.90192

Summary: We propose a new truncated Newton method for large scale unconstrained optimization, where a Conjugate Gradient (CG)-based technique is adopted to solve Newton’s equation. In the current iteration, the Krylov method computes a pair of search directions: the first approximates the Newton step of the quadratic convex model, while the second is a suitable negative curvature direction. A test based on the quadratic model of the objective function is used to select the most promising between the two search directions. Both the latter selection rule and the CG stopping criterion for approximately solving Newton’s equation, strongly rely on conjugacy conditions. An appropriate linesearch technique is adopted for each search direction: a nonmonotone stabilization is used with the approximate Newton step, while an Armijo type linesearch is used for the negative curvature direction. The proposed algorithm is both globally and superlinearly convergent to stationary points satisfying second order necessary conditions. We carry out a significant numerical experience in order to test our proposal.

MSC:

90C06 Large-scale problems in mathematical programming

Software:

SifDec; GALAHAD; CUTEr
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Dembo R.S., Steihaug T.: Truncated-Newton algorithms for large-scale unconstrained optimization. Math. Program. 26, 190–212 (1983) · Zbl 0523.90078 · doi:10.1007/BF02592055
[2] Dolan, E.D., More, J.J.: Benchmarking Optimization Software with Performance Profiles. Mathematics and Computer Science Division. Preprint ANL/MCS-P861-1200
[3] Fasano, G., Lucidi, S.: A nonmonotone truncated Newton–Krylov method exploiting negative curvature directions, for large scale unconstrained optimization: complete results. Technical Report INSEAN 2008-035/rt, 2008 · Zbl 1180.90192
[4] Fasano G., Roma M.: Iterative computation of negative curvature directions in large scale optimization. Comput. Optim. Appl. 38(1), 81–104 (2007) · Zbl 1171.90549 · doi:10.1007/s10589-007-9034-z
[5] Ferris M.C., Lucidi S., Roma M.: Nonmonotone curvilinear linesearch methods for unconstrained optimization. Comput. Optim. Appl. 6, 117–136 (1996) · Zbl 0860.90111
[6] Forsgren A.: On the Behavior of the Conjugate-Gradient Method on Ill-conditioned Problems. Technical Report TRITA-MAT-2006-OS1, Department of Mathematics, Royal Institute of Technology
[7] Goldfarb D.: Curvilinear path steplength algorithms for minimization which use directions of negative curvature. Math. Program. 18, 31–40 (1980) · Zbl 0428.90068 · doi:10.1007/BF01588294
[8] Gould N.I.M., Lucidi S., Roma M., Toint Ph.L.: Exploiting negative curvature directions in linesearch methods for unconstrained optimization. Optim. Methods Softw. 14, 75–98 (2000) · Zbl 0988.90039 · doi:10.1080/10556780008805794
[9] Gould N.I.M., Orban D., Toint Ph.L.: CUTEr: Constrained and unconstrained testing environment, revised. Trans. ACM Math. Softw. 29(4), 373–394 (2003) · Zbl 1068.90526 · doi:10.1145/962437.962439
[10] Gould N.I.M., Orban D., Toint Ph.L.: GALAHAD, a library of thread-safe Fortran 90 packages for large-scale nonlinear optimization. ACM Trans. Math. Softw. 29(4), 353–372 (2003) · Zbl 1068.90525 · doi:10.1145/962437.962438
[11] Gould N.I.M., Sainvitu C., Toint Ph.L.: A Filter-Trust-Region method for unconstrained optimization. SIAM J. Optim. 16(2), 341–357 (2006) · Zbl 1122.90074 · doi:10.1137/040603851
[12] Grippo L., Lampariello F., Lucidi S.: A truncated Newton method with nonmonotone linesearch for unconstrained optimization. J. Optim. Theory Appl. 60, 401–419 (1989) · Zbl 0632.90059 · doi:10.1007/BF00940345
[13] Grippo L., Lampariello F., Lucidi S.: A class of nonmonotone stabilization methods in unconstrained optimization. Numer. Math. 59, 779–805 (1991) · Zbl 0739.90062 · doi:10.1007/BF01385810
[14] Lucidi S., Rochetich F., Roma M.: Curvilinear stabilization techniques for truncated Newton methods in large scale unconstrained optimization. SIAM J. Optim. 8, 916–939 (1998) · Zbl 0912.90259 · doi:10.1137/S1052623495295250
[15] Lucidi S., Roma M.: Numerical experiences with new truncated Newton methods in large scale unconstrained optimization. Comput. Optim. Appl. 7, 71–87 (1997) · Zbl 0893.90154 · doi:10.1023/A:1008619812615
[16] McCormick G.P.: A modification of Armijo’s stepsize rule for negative curvature. Math. Program. 13, 111–115 (1977) · Zbl 0367.90100 · doi:10.1007/BF01584328
[17] More’ J.J., Sorensen D.C.: On the use of directions of negative curvature in a modified Newton method. Math. Program. 16, 1–20 (1979) · Zbl 0394.90093 · doi:10.1007/BF01582091
[18] Mukai H., Polak E.: A second-order method for unconstrained optimization. J. Optim. Theory Appl. 26, 501–513 (1978) · Zbl 0373.90068 · doi:10.1007/BF00933149
[19] Nash S.G., Sofer A.: Assessing a search direction within a truncated Newton method. Oper. Res. Lett. 9, 219–221 (1990) · Zbl 0706.90073 · doi:10.1016/0167-6377(90)90065-D
[20] Olivares A., Moguerza J.M., Prieto F.J.: Nonconvex optimization using negative curvature within a modified linesearch. Euro. J. Oper. Res. 189, 706–722 (2008) · Zbl 1146.90054 · doi:10.1016/j.ejor.2006.09.097
[21] Shultz G.A., Schnabel R.B., Byrd R.H.: A family of trust-region-based algorithms for unconstrained minimization. SIAM J. Numer. Anal. 22, 47–67 (1985) · Zbl 0574.65061 · doi:10.1137/0722003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.