Kanno, Yoshihiro Primal-dual algorithm for quasi-static contact problem with Coulomb’s friction. (English) Zbl 07539883 J. Oper. Res. Soc. Japan 65, No. 1, 1-22 (2022). MSC: 90Cxx PDF BibTeX XML Cite \textit{Y. Kanno}, J. Oper. Res. Soc. Japan 65, No. 1, 1--22 (2022; Zbl 07539883) OpenURL
Liu, Yulan; Pan, Shaohua Second-order optimality conditions for mathematical program with semidefinite cone complementarity constraints and applications. (English) Zbl 07536247 Set-Valued Var. Anal. 30, No. 2, 373-395 (2022). MSC: 90C46 90C33 PDF BibTeX XML Cite \textit{Y. Liu} and \textit{S. Pan}, Set-Valued Var. Anal. 30, No. 2, 373--395 (2022; Zbl 07536247) Full Text: DOI OpenURL
Zhou, Peng; Wang, Teng The parameter-Newton iteration for the second-order cone linear complementarity problem. (English) Zbl 07510643 Electron Res. Arch. 30, No. 4, 1454-1462 (2022). MSC: 90C33 90C53 PDF BibTeX XML Cite \textit{P. Zhou} and \textit{T. Wang}, Electron Res. Arch. 30, No. 4, 1454--1462 (2022; Zbl 07510643) Full Text: DOI OpenURL
Zeng, Rong; Chi, Xiaoni A nonmonotone descent algorithm for the uniform Cartesian-\(P\) weighted second-order cone complementarity problem. (Chinese. English summary) Zbl 07448739 Math. Pract. Theory 51, No. 10, 192-203 (2021). MSC: 90C33 65K05 90C25 PDF BibTeX XML Cite \textit{R. Zeng} and \textit{X. Chi}, Math. Pract. Theory 51, No. 10, 192--203 (2021; Zbl 07448739) OpenURL
Wang, Guoxin; Lin, Gui-Hua Regularized parallel matrix-splitting method for symmetric linear second-order cone complementarity problems. (English) Zbl 1476.90332 Pac. J. Optim. 17, No. 4, 565-575 (2021). MSC: 90C33 65F10 PDF BibTeX XML Cite \textit{G. Wang} and \textit{G.-H. Lin}, Pac. J. Optim. 17, No. 4, 565--575 (2021; Zbl 1476.90332) Full Text: Link OpenURL
Chi, Xiaoni; Liu, Wenli; Liu, Sanyang; Zhao, Min Inexact nonmonotone smoothing Newton method for linear weighted second-order cone complementarity problem. (Chinese. English summary) Zbl 07403995 J. Jilin Univ., Sci. 59, No. 2, 263-270 (2021). MSC: 90C33 90C53 PDF BibTeX XML Cite \textit{X. Chi} et al., J. Jilin Univ., Sci. 59, No. 2, 263--270 (2021; Zbl 07403995) Full Text: DOI OpenURL
Tang, Jingyong; Zhou, Jinchuan A smoothing quasi-Newton method for solving general second-order cone complementarity problems. (English) Zbl 1473.90172 J. Glob. Optim. 80, No. 2, 415-438 (2021). MSC: 90C33 90C53 PDF BibTeX XML Cite \textit{J. Tang} and \textit{J. Zhou}, J. Glob. Optim. 80, No. 2, 415--438 (2021; Zbl 1473.90172) Full Text: DOI OpenURL
Ke, Yifen The matrix splitting iteration method for nonlinear complementarity problems associated with second-order cone. (English) Zbl 1461.65197 Bull. Iran. Math. Soc. 47, No. 1, 31-53 (2021). MSC: 65K15 90C33 PDF BibTeX XML Cite \textit{Y. Ke}, Bull. Iran. Math. Soc. 47, No. 1, 31--53 (2021; Zbl 1461.65197) Full Text: DOI OpenURL
Miao, Xin-He; Chen, Jein-Shan On matrix characterizations for \(P\)-property of the linear transformation in second-order cone linear complementarity problems. (English) Zbl 07312101 Linear Algebra Appl. 613, 271-294 (2021). MSC: 90C33 26B05 26B35 PDF BibTeX XML Cite \textit{X.-H. Miao} and \textit{J.-S. Chen}, Linear Algebra Appl. 613, 271--294 (2021; Zbl 07312101) Full Text: DOI OpenURL
Acary, Vincent; Bourrier, Franck Coulomb friction with rolling resistance as a cone complementarity problem. (English) Zbl 1477.74078 Eur. J. Mech., A, Solids 85, Article ID 104046, 12 p. (2021). MSC: 74M10 74M15 70F40 PDF BibTeX XML Cite \textit{V. Acary} and \textit{F. Bourrier}, Eur. J. Mech., A, Solids 85, Article ID 104046, 12 p. (2021; Zbl 1477.74078) Full Text: DOI OpenURL
Hao, Zijun; Wan, Zhongping; Chi, Xiaoni; Jin, Zheng-Fen Generalized lower-order penalty algorithm for solving second-order cone mixed complementarity problems. (English) Zbl 1458.90512 J. Comput. Appl. Math. 385, Article ID 113168, 13 p. (2021). MSC: 90C25 90C30 90C33 PDF BibTeX XML Cite \textit{Z. Hao} et al., J. Comput. Appl. Math. 385, Article ID 113168, 13 p. (2021; Zbl 1458.90512) Full Text: DOI OpenURL
Li, Zhizhi; Ke, Yifen; Zhang, Huai; Chu, Risheng SOR-like iteration methods for second-order cone linear complementarity problems. (English) Zbl 1458.90595 East Asian J. Appl. Math. 10, No. 2, 295-315 (2020). MSC: 90C33 65H10 PDF BibTeX XML Cite \textit{Z. Li} et al., East Asian J. Appl. Math. 10, No. 2, 295--315 (2020; Zbl 1458.90595) Full Text: DOI OpenURL
Fan, Xiaona; Zeng, Min; Jiang, Li Smoothing homotopy method for solving second-order cone complementarity problem. (English) Zbl 1459.90209 Asia-Pac. J. Oper. Res. 37, No. 5, Article ID 2050023, 14 p. (2020). MSC: 90C33 90C31 PDF BibTeX XML Cite \textit{X. Fan} et al., Asia-Pac. J. Oper. Res. 37, No. 5, Article ID 2050023, 14 p. (2020; Zbl 1459.90209) Full Text: DOI OpenURL
Hao, Zijun; Zhang, Yudong; Yu, Guolin Lower-order penalty approach for second-order cone nonlinear complementarity problems. (English) Zbl 1449.90287 Math. Appl. 33, No. 1, 100-110 (2020). MSC: 90C25 90C33 PDF BibTeX XML Cite \textit{Z. Hao} et al., Math. Appl. 33, No. 1, 100--110 (2020; Zbl 1449.90287) OpenURL
Cheng, Lulu; Zhang, Xinzhen A semidefinite relaxation method for second-order cone polynomial complementarity problems. (English) Zbl 1441.15015 Comput. Optim. Appl. 75, No. 3, 629-647 (2020). MSC: 15A69 15A18 90C22 90C33 PDF BibTeX XML Cite \textit{L. Cheng} and \textit{X. Zhang}, Comput. Optim. Appl. 75, No. 3, 629--647 (2020; Zbl 1441.15015) Full Text: DOI OpenURL
Li, Zhizhi; Ke, Yifen; Chu, Risheng; Zhang, Huai Generalized modulus-based matrix splitting iteration methods for second-order cone linear complementarity problems. (Chinese. English summary) Zbl 1449.65122 Math. Numer. Sin. 41, No. 4, 395-405 (2019). MSC: 65K05 65F10 90C33 PDF BibTeX XML Cite \textit{Z. Li} et al., Math. Numer. Sin. 41, No. 4, 395--405 (2019; Zbl 1449.65122) OpenURL
Chi, Xiaoni; Zeng, Rong; Ning, Xiaoling; Li, Shaogang A smoothing Newton algorithm for the weighted second-order cone complementarity problem. (Chinese. English summary) Zbl 1449.90337 J. Nanchang Univ., Nat. Sci. 43, No. 1, 23-29, 33 (2019). MSC: 90C33 90C53 PDF BibTeX XML Cite \textit{X. Chi} et al., J. Nanchang Univ., Nat. Sci. 43, No. 1, 23--29, 33 (2019; Zbl 1449.90337) OpenURL
Zhang, Ping Improved convergence results for an inexact smoothing method for the second-order cone complementarity problem. (English) Zbl 1425.90083 J. Appl. Math. Comput. 61, No. 1-2, 417-429 (2019). MSC: 90C25 90C33 PDF BibTeX XML Cite \textit{P. Zhang}, J. Appl. Math. Comput. 61, No. 1--2, 417--429 (2019; Zbl 1425.90083) Full Text: DOI OpenURL
Wang, Xiang; Li, Xing; Zhang, Lei-Hong; Li, Ren-Cang An efficient numerical method for the symmetric positive definite second-order cone linear complementarity problem. (English) Zbl 1418.90265 J. Sci. Comput. 79, No. 3, 1608-1629 (2019). MSC: 90C33 65K05 65F99 65F15 65F30 65P99 PDF BibTeX XML Cite \textit{X. Wang} et al., J. Sci. Comput. 79, No. 3, 1608--1629 (2019; Zbl 1418.90265) Full Text: DOI OpenURL
Sun, Guo; Zhang, Jin; Yu, Li-Ying; Lin, Gui-Hua A new complementarity function and applications in stochastic second-order cone complementarity problems. (English) Zbl 1438.90361 J. Oper. Res. Soc. China 7, No. 2, 251-283 (2019). MSC: 90C33 90C15 65C05 PDF BibTeX XML Cite \textit{G. Sun} et al., J. Oper. Res. Soc. China 7, No. 2, 251--283 (2019; Zbl 1438.90361) Full Text: DOI OpenURL
Luo, Meiju; Zhang, Caihua A new model for solving stochastic second-order cone complementarity problem and its convergence analysis. (English) Zbl 07445939 J. Inequal. Appl. 2018, Paper No. 223, 14 p. (2018). MSC: 90C33 90C15 65K10 PDF BibTeX XML Cite \textit{M. Luo} and \textit{C. Zhang}, J. Inequal. Appl. 2018, Paper No. 223, 14 p. (2018; Zbl 07445939) Full Text: DOI OpenURL
Chi, Xiaoni; Zeng, Rong; Zhang, Suobin; Zhang, Ruijie A nonmonotone inexact smoothing Newton algorithm for the weighted second-order cone complementarity problem. (Chinese. English summary) Zbl 1438.90351 J. Chongqing Norm. Univ., Nat. Sci. 35, No. 6, 1-8 (2018). MSC: 90C33 65K05 PDF BibTeX XML Cite \textit{X. Chi} et al., J. Chongqing Norm. Univ., Nat. Sci. 35, No. 6, 1--8 (2018; Zbl 1438.90351) Full Text: DOI OpenURL
Ke, Yi-Fen; Ma, Chang-Feng; Zhang, Huai The modulus-based matrix splitting iteration methods for second-order cone linear complementarity problems. (English) Zbl 1409.90203 Numer. Algorithms 79, No. 4, 1283-1303 (2018). MSC: 90C33 65H10 PDF BibTeX XML Cite \textit{Y.-F. Ke} et al., Numer. Algorithms 79, No. 4, 1283--1303 (2018; Zbl 1409.90203) Full Text: DOI OpenURL
Ye, Jane J.; Zhou, Jinchuan Verifiable sufficient conditions for the error bound property of second-order cone complementarity problems. (English) Zbl 1400.49019 Math. Program. 171, No. 1-2 (A), 361-395 (2018). Reviewer: Sorin-Mihai Grad (Vienna) MSC: 49J53 90C33 PDF BibTeX XML Cite \textit{J. J. Ye} and \textit{J. Zhou}, Math. Program. 171, No. 1--2 (A), 361--395 (2018; Zbl 1400.49019) Full Text: DOI arXiv OpenURL
Chi, Xiaoni; Wang, Yang; Zhu, Zhibin; Wan, Zhongping Jacobian consistency of a one-parametric class of smoothing Fischer-Burmeister functions for SOCCP. (English) Zbl 1395.90224 Comput. Appl. Math. 37, No. 1, 439-455 (2018). MSC: 90C30 90C33 65K10 PDF BibTeX XML Cite \textit{X. Chi} et al., Comput. Appl. Math. 37, No. 1, 439--455 (2018; Zbl 1395.90224) Full Text: DOI OpenURL
Németh, Sándor Zoltán; Xiao, Lianghai Linear complementarity problems on extended second order cones. (English) Zbl 1390.90540 J. Optim. Theory Appl. 176, No. 2, 269-288 (2018). MSC: 90C33 90C25 PDF BibTeX XML Cite \textit{S. Z. Németh} and \textit{L. Xiao}, J. Optim. Theory Appl. 176, No. 2, 269--288 (2018; Zbl 1390.90540) Full Text: DOI arXiv OpenURL
Zhang, Lei-Hong; Shen, Chungen; Yang, Wei Hong; Júdice, Joaquim J. A Lanczos method for large-scale extreme Lorentz eigenvalue problems. (English) Zbl 1390.90543 SIAM J. Matrix Anal. Appl. 39, No. 2, 611-631 (2018). MSC: 90C33 47J20 15A18 90C06 65F15 PDF BibTeX XML Cite \textit{L.-H. Zhang} et al., SIAM J. Matrix Anal. Appl. 39, No. 2, 611--631 (2018; Zbl 1390.90543) Full Text: DOI OpenURL
Li, Yuan A penalized equation based generalized Newton method for solving second order cone linear complementarity problems. (Chinese. English summary) Zbl 1399.90272 Numer. Math., Nanjing 39, No. 3, 232-249 (2017). MSC: 90C33 65K05 PDF BibTeX XML Cite \textit{Y. Li}, Numer. Math., Nanjing 39, No. 3, 232--249 (2017; Zbl 1399.90272) OpenURL
Zhao, Wenyu; Hao, Zijun; Yu, Guolin A lower order penalty method for second-order cone linear complementarity problems. (Chinese. English summary) Zbl 1389.90263 J. Math., Wuhan Univ. 37, No. 2, 427-438 (2017). MSC: 90C25 90C33 PDF BibTeX XML Cite \textit{W. Zhao} et al., J. Math., Wuhan Univ. 37, No. 2, 427--438 (2017; Zbl 1389.90263) OpenURL
Hou, Jiao-Jiao; Ling, Chen; He, Hong-Jin A class of second-order cone eigenvalue complementarity problems for higher-order tensors. (English) Zbl 1372.65174 J. Oper. Res. Soc. China 5, No. 1, 45-64 (2017). Reviewer: Cho Sun Young (Jinju) MSC: 65K05 65K15 90C30 90C33 90C25 15A69 49J40 PDF BibTeX XML Cite \textit{J.-J. Hou} et al., J. Oper. Res. Soc. China 5, No. 1, 45--64 (2017; Zbl 1372.65174) Full Text: DOI arXiv OpenURL
Tang, Jingyong; Zhou, Jinchuan; Fang, Liang A non-monotone regularization Newton method for the second-order cone complementarity problem. (English) Zbl 1410.90220 Appl. Math. Comput. 271, 743-756 (2015). MSC: 90C33 65K15 90C30 PDF BibTeX XML Cite \textit{J. Tang} et al., Appl. Math. Comput. 271, 743--756 (2015; Zbl 1410.90220) Full Text: DOI OpenURL
Hao, Zijun; Wan, Zhongping; Chi, Xiaoni A power penalty method for second-order cone linear complementarity problems. (English) Zbl 1408.90288 Oper. Res. Lett. 43, No. 2, 137-142 (2015). MSC: 90C33 65K05 PDF BibTeX XML Cite \textit{Z. Hao} et al., Oper. Res. Lett. 43, No. 2, 137--142 (2015; Zbl 1408.90288) Full Text: DOI OpenURL
Dong, Li; Pan, Hong; Wang, Hongqin A nonmonotone smoothing algorithm for solving the second-order cone complementarity problem. (Chinese. English summary) Zbl 1349.90797 Math. Pract. Theory 45, No. 13, 133-139 (2015). MSC: 90C33 90C25 PDF BibTeX XML Cite \textit{L. Dong} et al., Math. Pract. Theory 45, No. 13, 133--139 (2015; Zbl 1349.90797) OpenURL
Tang, Jingyong; Dong, Li; Zhou, Jinchuan; Sun, Li A smoothing-type algorithm for the second-order cone complementarity problem with a new nonmonotone line search. (English) Zbl 1337.90071 Optimization 64, No. 9, 1935-1955 (2015). MSC: 90C33 65K15 PDF BibTeX XML Cite \textit{J. Tang} et al., Optimization 64, No. 9, 1935--1955 (2015; Zbl 1337.90071) Full Text: DOI OpenURL
Liu, Xian; Luo, Honglin A new class of merit functions for SOCP and the global error bound. (Chinese. English summary) Zbl 1340.90245 J. Chongqing Norm. Univ., Nat. Sci. 32, No. 5, 1-6 (2015). MSC: 90C33 90C25 PDF BibTeX XML Cite \textit{X. Liu} and \textit{H. Luo}, J. Chongqing Norm. Univ., Nat. Sci. 32, No. 5, 1--6 (2015; Zbl 1340.90245) Full Text: DOI OpenURL
Zhang, Hongwei; Jia, Hong; Chen, Shuang; Pang, Liping ERM method for stochastic linear complementarity problem solution of the second-order cone. (Chinese. English summary) Zbl 1340.90252 J. Dalian Univ. Technol. 55, No. 4, 431-435 (2015). MSC: 90C33 90C15 PDF BibTeX XML Cite \textit{H. Zhang} et al., J. Dalian Univ. Technol. 55, No. 4, 431--435 (2015; Zbl 1340.90252) Full Text: DOI OpenURL
Hao, Zijun; Wan, Zhongping; Chi, Xiaoni; Chen, Jiawei A power penalty method for second-order cone nonlinear complementarity problems. (English) Zbl 1327.90207 J. Comput. Appl. Math. 290, 136-149 (2015). MSC: 90C25 90C30 90C33 PDF BibTeX XML Cite \textit{Z. Hao} et al., J. Comput. Appl. Math. 290, 136--149 (2015; Zbl 1327.90207) Full Text: DOI OpenURL
Zhang, Lei-Hong; Yang, Wei Hong; Shen, Chungen; Li, Ren-Cang A Krylov subspace method for large-scale second-order cone linear complementarity problem. (English) Zbl 1326.90090 SIAM J. Sci. Comput. 37, No. 4, A2046-A2075 (2015). MSC: 90C33 65K05 65F99 65F15 65F30 65P99 PDF BibTeX XML Cite \textit{L.-H. Zhang} et al., SIAM J. Sci. Comput. 37, No. 4, A2046--A2075 (2015; Zbl 1326.90090) Full Text: DOI Link OpenURL
Adly, Samir; Rammal, Hadia A new method for solving second-order cone eigenvalue complementarity problems. (English) Zbl 1321.90137 J. Optim. Theory Appl. 165, No. 2, 563-585 (2015). MSC: 90C33 46N10 47N10 47J20 49J40 PDF BibTeX XML Cite \textit{S. Adly} and \textit{H. Rammal}, J. Optim. Theory Appl. 165, No. 2, 563--585 (2015; Zbl 1321.90137) Full Text: DOI HAL OpenURL
Huang, Na; Ma, Changfeng A regularized smoothing Newton method for solving SOCCPs based on a new smoothing C-function. (English) Zbl 1410.90215 Appl. Math. Comput. 230, 315-329 (2014). MSC: 90C33 65K05 90C22 PDF BibTeX XML Cite \textit{N. Huang} and \textit{C. Ma}, Appl. Math. Comput. 230, 315--329 (2014; Zbl 1410.90215) Full Text: DOI OpenURL
Tang, Jingyong; Dong, Li; Zhou, Jinchuan; Fang, Liang A new non-interior continuation method for solving the second-order cone complementarity problem. (English) Zbl 1334.65116 Appl. Math. Comput. 236, 287-299 (2014). MSC: 65K15 PDF BibTeX XML Cite \textit{J. Tang} et al., Appl. Math. Comput. 236, 287--299 (2014; Zbl 1334.65116) Full Text: DOI OpenURL
Zhang, Lei-Hong; Yang, Wei Hong An efficient matrix splitting method for the second-order cone complementarity problem. (English) Zbl 1309.90113 SIAM J. Optim. 24, No. 3, 1178-1205 (2014). MSC: 90C33 65K05 65F99 PDF BibTeX XML Cite \textit{L.-H. Zhang} and \textit{W. H. Yang}, SIAM J. Optim. 24, No. 3, 1178--1205 (2014; Zbl 1309.90113) Full Text: DOI OpenURL
Zhang, Lei-Hong; Yang, Wei Hong An efficient algorithm for second-order cone linear complementarity problems. (English) Zbl 1291.90269 Math. Comput. 83, No. 288, 1701-1726 (2014). MSC: 90C33 65K05 65F99 PDF BibTeX XML Cite \textit{L.-H. Zhang} and \textit{W. H. Yang}, Math. Comput. 83, No. 288, 1701--1726 (2014; Zbl 1291.90269) Full Text: DOI OpenURL
Yang, Wei Hong; Yuan, Xiaoming The GUS-property of second-order cone linear complementarity problems. (English) Zbl 1291.90268 Math. Program. 141, No. 1-2 (A), 295-317 (2013). Reviewer: Igor V. Konnov (Kazan) MSC: 90C33 90C22 PDF BibTeX XML Cite \textit{W. H. Yang} and \textit{X. Yuan}, Math. Program. 141, No. 1--2 (A), 295--317 (2013; Zbl 1291.90268) Full Text: DOI OpenURL
Tang, Jingyong; He, Guoping; Dong, Li; Fang, Liang; Zhou, Jinchuan A smoothing Newton method for the second-order cone complementarity problem. (English) Zbl 1274.90268 Appl. Math., Praha 58, No. 2, 223-247 (2013). Reviewer: Michal Červinka (Praha) MSC: 90C25 90C30 90C33 PDF BibTeX XML Cite \textit{J. Tang} et al., Appl. Math., Praha 58, No. 2, 223--247 (2013; Zbl 1274.90268) Full Text: DOI Link OpenURL
Dong, Li; Tang, Jingyong; Zhou, Jinchuan A smoothing Newton algorithm for solving the monotone second-order cone complementarity problems. (English) Zbl 1295.90090 J. Appl. Math. Comput. 40, No. 1-2, 45-61 (2012). MSC: 90C33 65K05 PDF BibTeX XML Cite \textit{L. Dong} et al., J. Appl. Math. Comput. 40, No. 1--2, 45--61 (2012; Zbl 1295.90090) Full Text: DOI OpenURL
Ogasawara, Hideho; Narushima, Yasushi The Jacobian consistency of a smoothed Fischer-Burmeister function associated with second-order cones. (English) Zbl 1278.90406 J. Math. Anal. Appl. 394, No. 1, 231-247 (2012). MSC: 90C33 90C53 PDF BibTeX XML Cite \textit{H. Ogasawara} and \textit{Y. Narushima}, J. Math. Anal. Appl. 394, No. 1, 231--247 (2012; Zbl 1278.90406) Full Text: DOI OpenURL
Wu, Jia; Chen, Jein-Shan A proximal point algorithm for the monotone second-order cone complementarity problem. (English) Zbl 1268.90108 Comput. Optim. Appl. 51, No. 3, 1037-1063 (2012). MSC: 90C33 PDF BibTeX XML Cite \textit{J. Wu} and \textit{J.-S. Chen}, Comput. Optim. Appl. 51, No. 3, 1037--1063 (2012; Zbl 1268.90108) Full Text: DOI OpenURL
Wang, G. Q.; Yue, Y. J.; He, B. J. A new polynomial interior-point algorithm for the Cartesian \(P_\ast(\kappa)\) second-order cone linear complementarity problem. (English) Zbl 1332.90317 Adv. Model. Optim. 13, No. 2, Spec. Iss., 163-183 (2011). MSC: 90C33 90C51 PDF BibTeX XML Cite \textit{G. Q. Wang} et al., Adv. Model. Optim. 13, No. 2, 163--183 (2011; Zbl 1332.90317) Full Text: Link OpenURL
Kum, Sangho; Lim, Yongdo Penalized generalized Fischer-Burmeister function for SOCCP. (English) Zbl 1268.90103 Taiwanese J. Math. 15, No. 4, 1859-1870 (2011). MSC: 90C33 90C25 65K05 PDF BibTeX XML Cite \textit{S. Kum} and \textit{Y. Lim}, Taiwanese J. Math. 15, No. 4, 1859--1870 (2011; Zbl 1268.90103) Full Text: DOI OpenURL
Luo, Gui-Mei; Li, Dong-Hui; An, Xiao-Min Robust optimization equilibria for bimatrix game. (English) Zbl 1241.91013 Pac. J. Optim. 7, No. 3, 599-610 (2011). MSC: 91A10 90C33 PDF BibTeX XML Cite \textit{G.-M. Luo} et al., Pac. J. Optim. 7, No. 3, 599--610 (2011; Zbl 1241.91013) Full Text: Link OpenURL
Pan, Shaohua; Chen, Jein-Shan A least-square semismooth Newton method for the second-order cone complementarity problem. (English) Zbl 1251.90368 Optim. Methods Softw. 26, No. 1, 1-22 (2011). MSC: 90C33 PDF BibTeX XML Cite \textit{S. Pan} and \textit{J.-S. Chen}, Optim. Methods Softw. 26, No. 1, 1--22 (2011; Zbl 1251.90368) Full Text: DOI OpenURL
Narushima, Yasushi; Sagara, Nobuko; Ogasawara, Hideho A smoothing Newton method with Fischer-Burmeister function for second-order cone complementarity problems. (English) Zbl 1221.90085 J. Optim. Theory Appl. 149, No. 1, 79-101 (2011). MSC: 90C33 90C30 90C56 PDF BibTeX XML Cite \textit{Y. Narushima} et al., J. Optim. Theory Appl. 149, No. 1, 79--101 (2011; Zbl 1221.90085) Full Text: DOI OpenURL
Chen, Linjie; Ma, Changfeng A modified smoothing and regularized Newton method for monotone second-order cone complementarity problems. (English) Zbl 1217.65127 Comput. Math. Appl. 61, No. 5, 1407-1418 (2011). MSC: 65K15 90C33 PDF BibTeX XML Cite \textit{L. Chen} and \textit{C. Ma}, Comput. Math. Appl. 61, No. 5, 1407--1418 (2011; Zbl 1217.65127) Full Text: DOI OpenURL
Pan, Shaohua; Chen, Jein-Shan; Kum, Sangho; Lim, Yongdo The penalized Fischer-Burmeister SOC complementarity function. (English) Zbl 1242.90263 Comput. Optim. Appl. 49, No. 3, 457-491 (2011). MSC: 90C33 PDF BibTeX XML Cite \textit{S. Pan} et al., Comput. Optim. Appl. 49, No. 3, 457--491 (2011; Zbl 1242.90263) Full Text: DOI OpenURL
Liu, Lixia; Liu, Sanyang A smoothing Newton method based on a one-parametric class of smoothing function for SOCCP. (English) Zbl 1220.90135 J. Appl. Math. Comput. 36, No. 1-2, 473-487 (2011). MSC: 90C33 90C25 90C30 90C51 PDF BibTeX XML Cite \textit{L. Liu} and \textit{S. Liu}, J. Appl. Math. Comput. 36, No. 1--2, 473--487 (2011; Zbl 1220.90135) Full Text: DOI OpenURL
Acary, Vincent; Cadoux, Florent; Lemaréchal, Claude; Malick, Jérôme A formulation of the linear discrete Coulomb friction problem via convex optimization. (English) Zbl 1370.74114 ZAMM, Z. Angew. Math. Mech. 91, No. 2, 155-175 (2011). MSC: 74M10 74M15 90C25 90C33 PDF BibTeX XML Cite \textit{V. Acary} et al., ZAMM, Z. Angew. Math. Mech. 91, No. 2, 155--175 (2011; Zbl 1370.74114) Full Text: DOI Link OpenURL
Lu, Nan; Huang, Zheng-Hai Solvability of Newton equations in smoothing-type algorithms for the SOCCP. (English) Zbl 1215.65110 J. Comput. Appl. Math. 235, No. 8, 2270-2276 (2011). Reviewer: Efstratios Rappos (Aubonne) MSC: 65K05 90C26 90C30 90C33 PDF BibTeX XML Cite \textit{N. Lu} and \textit{Z.-H. Huang}, J. Comput. Appl. Math. 235, No. 8, 2270--2276 (2011; Zbl 1215.65110) Full Text: DOI OpenURL
Zhang, Xiangsong; Liu, Sanyang; Liu, Zhenhua A regularization smoothing method for second-order cone complementarity problem. (English) Zbl 1205.65198 Nonlinear Anal., Real World Appl. 12, No. 1, 731-740 (2011). Reviewer: Hang Lau (Montréal) MSC: 65K05 90C33 65H10 PDF BibTeX XML Cite \textit{X. Zhang} et al., Nonlinear Anal., Real World Appl. 12, No. 1, 731--740 (2011; Zbl 1205.65198) Full Text: DOI OpenURL
Hu, Sheng-Long; Huang, Zheng-Hai; Zhang, Qiong A generalized Newton method for absolute value equations associated with second order cones. (English) Zbl 1204.65065 J. Comput. Appl. Math. 235, No. 5, 1490-1501 (2011). Reviewer: Klaus Schittkowski (Bayreuth) MSC: 65K05 90C05 90C30 15A06 90C33 90C53 PDF BibTeX XML Cite \textit{S.-L. Hu} et al., J. Comput. Appl. Math. 235, No. 5, 1490--1501 (2011; Zbl 1204.65065) Full Text: DOI OpenURL
Fujita, Ryo; Kanno, Yoshihiro Enumeration of all wedged equilibrium configurations in contact problem with Coulomb friction. (English) Zbl 1227.74039 Comput. Methods Appl. Mech. Eng. 199, No. 17-20, 1202-1215 (2010). MSC: 74M15 74M10 74S30 PDF BibTeX XML Cite \textit{R. Fujita} and \textit{Y. Kanno}, Comput. Methods Appl. Mech. Eng. 199, No. 17--20, 1202--1215 (2010; Zbl 1227.74039) Full Text: DOI OpenURL
Ogasawara, Hideho; Narushima, Yasushi; Sagara, Nobuko Convergence properties of a new smoothing Newton method for second-order cone complementarity problems. (English) Zbl 1244.90227 Akashi, Shigeo (ed.) et al., Proceedings of the sixth international conference on nonlinear analysis and convex analysis (NACA 2009), Tokyo, Japan, March 27–31, 2009. In celebration of the retirement of Professor Wataru Takahashi. Yokohama: Yokohama Publishers (ISBN 978-4-946552-41-0/hbk). 269-280 (2010). MSC: 90C33 65K05 PDF BibTeX XML Cite \textit{H. Ogasawara} et al., in: Proceedings of the sixth international conference on nonlinear analysis and convex analysis (NACA 2009), Tokyo, Japan, March 27--31, 2009. In celebration of the retirement of Professor Wataru Takahashi. Yokohama: Yokohama Publishers. 269--280 (2010; Zbl 1244.90227) OpenURL
Pan, Shaohua; Chen, Jein-Shan A linearly convergent derivative-free descent method for the second-order cone complementarity problem. (English) Zbl 1229.90239 Optimization 59, No. 7-8, 1173-1197 (2010). MSC: 90C33 90C56 PDF BibTeX XML Cite \textit{S. Pan} and \textit{J.-S. Chen}, Optimization 59, No. 7--8, 1173--1197 (2010; Zbl 1229.90239) Full Text: DOI OpenURL
Wang, G. Q.; Zhu, D. T. A class of polynomial interior-point algorithms for the Cartesian \(P_{*}(\kappa )\) second-order cone linear complementarity problem. (English) Zbl 1203.90162 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 73, No. 12, 3705-3722 (2010). MSC: 90C33 90C51 PDF BibTeX XML Cite \textit{G. Q. Wang} and \textit{D. T. Zhu}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 73, No. 12, 3705--3722 (2010; Zbl 1203.90162) Full Text: DOI OpenURL
Wang, Yong; Huang, Zhenghai Nonemptyness and boundedness of the solution set for second-order cone complementarity problems. (Chinese. English summary) Zbl 1212.90390 Acta Math. Appl. Sin. 32, No. 6, 961-968 (2009). MSC: 90C33 PDF BibTeX XML Cite \textit{Y. Wang} and \textit{Z. Huang}, Acta Math. Appl. Sin. 32, No. 6, 961--968 (2009; Zbl 1212.90390) OpenURL
Luo, Gui-Mei; An, Xiaomin; Xia, Jian-Ye Robust optimization with applications to game theory. (English) Zbl 1175.90375 Appl. Anal. 88, No. 8, 1183-1195 (2009). MSC: 90C30 91A10 91A05 PDF BibTeX XML Cite \textit{G.-M. Luo} et al., Appl. Anal. 88, No. 8, 1183--1195 (2009; Zbl 1175.90375) Full Text: DOI OpenURL
Zhang, Xiangsong; Liu, Sanyang; Liu, Zhenhua Analysis of a smoothing Newton method for second-order cone complementarity problem. (English) Zbl 1213.90247 J. Appl. Math. Comput. 31, No. 1-2, 459-473 (2009). Reviewer: Fabián Flores-Bazan (Concepción) MSC: 90C33 65K10 PDF BibTeX XML Cite \textit{X. Zhang} et al., J. Appl. Math. Comput. 31, No. 1--2, 459--473 (2009; Zbl 1213.90247) Full Text: DOI OpenURL
Luo, Guimei; Li, Donghui Robust optimization equilibrium with deviation measures. (English) Zbl 1175.91017 Pac. J. Optim. 5, No. 3, 427-441 (2009). MSC: 91A05 91A10 90C33 PDF BibTeX XML Cite \textit{G. Luo} and \textit{D. Li}, Pac. J. Optim. 5, No. 3, 427--441 (2009; Zbl 1175.91017) Full Text: Link OpenURL
Zhang, Xiangsong; Liu, Sanyang; Liu, Zhenhua A smoothing method for second order cone complementarity problem. (English) Zbl 1169.65062 J. Comput. Appl. Math. 228, No. 1, 83-91 (2009). Reviewer: Karel Zimmermann (Praha) MSC: 65K05 90C33 PDF BibTeX XML Cite \textit{X. Zhang} et al., J. Comput. Appl. Math. 228, No. 1, 83--91 (2009; Zbl 1169.65062) Full Text: DOI OpenURL
Pan, Shaohua; Chen, Jein-Shan A regularization method for the second-order cone complementarity problem with the Cartesian \(P_0\)-property. (English) Zbl 1156.90447 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 70, No. 4, 1475-1491 (2009). MSC: 90C33 PDF BibTeX XML Cite \textit{S. Pan} and \textit{J.-S. Chen}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 70, No. 4, 1475--1491 (2009; Zbl 1156.90447) Full Text: DOI OpenURL
Xu, Hongru; Zeng, Jinping A multisplitting method for symmetrical affine second-order cone complementarity problem. (English) Zbl 1155.90462 Comput. Math. Appl. 55, No. 3, 459-469 (2008). MSC: 90C33 PDF BibTeX XML Cite \textit{H. Xu} and \textit{J. Zeng}, Comput. Math. Appl. 55, No. 3, 459--469 (2008; Zbl 1155.90462) Full Text: DOI OpenURL
Kong, Lingchen; Xiu, Naihua; Han, Jiye The solution set structure of monotone linear complementarity problems over second-order cone. (English) Zbl 1180.90336 Oper. Res. Lett. 36, No. 1, 71-76 (2008). MSC: 90C33 15B48 49J30 PDF BibTeX XML Cite \textit{L. Kong} et al., Oper. Res. Lett. 36, No. 1, 71--76 (2008; Zbl 1180.90336) Full Text: DOI OpenURL
Chen, Jein-Shan; Pan, Shaohua A descent method for a reformulation of the second-order cone complementarity problem. (English) Zbl 1144.65037 J. Comput. Appl. Math. 213, No. 2, 547-558 (2008). Reviewer: Akrur Behera (Rourkela) MSC: 65K05 90C33 PDF BibTeX XML Cite \textit{J.-S. Chen} and \textit{S. Pan}, J. Comput. Appl. Math. 213, No. 2, 547--558 (2008; Zbl 1144.65037) Full Text: DOI OpenURL
Hayashi, Shunsuke; Yamashita, Nobuo; Fukushima, Masao A combined smoothing and regularization method for monotone second-order cone complementarity problems. (English) Zbl 1114.90139 SIAM J. Optim. 15, No. 2, 593-615 (2005). MSC: 90C33 65K05 PDF BibTeX XML Cite \textit{S. Hayashi} et al., SIAM J. Optim. 15, No. 2, 593--615 (2005; Zbl 1114.90139) Full Text: DOI OpenURL
Hayashi, Shunsuke; Yamaguchi, Takahiro; Yamashita, Nobuo; Fukushima, Masao A matrix-splitting method for symmetric affine second-order cone complementarity problems. (English) Zbl 1107.90036 J. Comput. Appl. Math. 175, No. 2, 335-353 (2005). MSC: 90C33 65F10 65K10 PDF BibTeX XML Cite \textit{S. Hayashi} et al., J. Comput. Appl. Math. 175, No. 2, 335--353 (2005; Zbl 1107.90036) Full Text: DOI OpenURL
Fukushima, Masao; Luo, Zhi-Quan; Tseng, Paul Smoothing functions for second-order-cone complementarity problems. (English) Zbl 0995.90094 SIAM J. Optim. 12, No. 2, 436-460 (2002). Reviewer: S.M.Allende-Alonso (Ciudad Habana) MSC: 90C33 90C30 65K05 PDF BibTeX XML Cite \textit{M. Fukushima} et al., SIAM J. Optim. 12, No. 2, 436--460 (2001; Zbl 0995.90094) Full Text: DOI OpenURL