Nghia, Bui Dai; Nguyen, Van Tien; Long, Le Dinh On Cauchy problem for pseudo-parabolic equation with Caputo-Fabrizio operator. (English) Zbl 07646180 Demonstr. Math. 56, Article ID 20220180, 20 p. (2023). MSC: 35R11 26A33 35B65 35K20 35K70 PDF BibTeX XML Cite \textit{B. D. Nghia} et al., Demonstr. Math. 56, Article ID 20220180, 20 p. (2023; Zbl 07646180) Full Text: DOI OpenURL
Thinh, V. D.; Chuong, T. D.; Anh, N. L. H. Second order analysis for robust inclusion systems and applications. (English) Zbl 07643840 J. Glob. Optim. 85, No. 1, 81-110 (2023). MSC: 90Cxx 65K10 90C29 PDF BibTeX XML Cite \textit{V. D. Thinh} et al., J. Glob. Optim. 85, No. 1, 81--110 (2023; Zbl 07643840) Full Text: DOI OpenURL
Litsgård, Malte; Nyström, Kaj On local regularity estimates for fractional powers of parabolic operators with time-dependent measurable coefficients. (English) Zbl 07634021 J. Evol. Equ. 23, No. 1, Paper No. 3, 33 p. (2023). MSC: 35B45 35B65 35K15 35K20 35R11 26A33 42B25 47D06 PDF BibTeX XML Cite \textit{M. Litsgård} and \textit{K. Nyström}, J. Evol. Equ. 23, No. 1, Paper No. 3, 33 p. (2023; Zbl 07634021) Full Text: DOI arXiv OpenURL
Laurençot, Philippe; Walker, Christoph Stationary states to a free boundary transmission problem for an electrostatically actuated plate. (English) Zbl 1500.35316 NoDEA, Nonlinear Differ. Equ. Appl. 30, No. 1, Paper No. 2, 17 p. (2023). MSC: 35R35 49Q10 49J40 35J50 35J57 35Q74 PDF BibTeX XML Cite \textit{P. Laurençot} and \textit{C. Walker}, NoDEA, Nonlinear Differ. Equ. Appl. 30, No. 1, Paper No. 2, 17 p. (2023; Zbl 1500.35316) Full Text: DOI arXiv OpenURL
Yusubov, Shakir Sh.; Mahmudov, Elimhan N. Optimality conditions of singular controls for systems with Caputo fractional derivatives. (English) Zbl 07599072 J. Ind. Manag. Optim. 19, No. 1, 246-264 (2023). MSC: 34K35 26A33 34A08 49J15 49K40 93C15 PDF BibTeX XML Cite \textit{S. Sh. Yusubov} and \textit{E. N. Mahmudov}, J. Ind. Manag. Optim. 19, No. 1, 246--264 (2023; Zbl 07599072) Full Text: DOI OpenURL
Nguyen, Anh Tuan; Tuan, Nguyen Huy; Yang, Chao On Cauchy problem for fractional parabolic-elliptic Keller-Segel model. (English) Zbl 1497.35500 Adv. Nonlinear Anal. 12, 97-116 (2023). MSC: 35R11 35K20 35K58 92C17 PDF BibTeX XML Cite \textit{A. T. Nguyen} et al., Adv. Nonlinear Anal. 12, 97--116 (2023; Zbl 1497.35500) Full Text: DOI OpenURL
Fontecha-Medina, Miguel A.; Villamizar-Roa, Élder J. Global existence and asymptotic behavior of solutions for a fractional chemotaxis-Navier-Stokes system. (English) Zbl 07637757 Dyn. Partial Differ. Equ. 19, No. 4, 285-309 (2022). MSC: 35R11 35B40 35K51 35K59 35Q30 92C17 PDF BibTeX XML Cite \textit{M. A. Fontecha-Medina} and \textit{É. J. Villamizar-Roa}, Dyn. Partial Differ. Equ. 19, No. 4, 285--309 (2022; Zbl 07637757) Full Text: DOI OpenURL
Kunštek, Petar; Vrdoljak, Marko A quasi-Newton method in shape optimization for a transmission problem. (English) Zbl 07634918 Optim. Methods Softw. 37, No. 6, 2273-2299 (2022). MSC: 49Q10 49M15 49K20 65N30 80M50 PDF BibTeX XML Cite \textit{P. Kunštek} and \textit{M. Vrdoljak}, Optim. Methods Softw. 37, No. 6, 2273--2299 (2022; Zbl 07634918) Full Text: DOI OpenURL
Bulavatsky, V. M. Some two-dimensional boundary-value problems of filtration dynamics for models with proportional Caputo derivative. (English. Ukrainian original) Zbl 07630521 Cybern. Syst. Anal. 58, No. 4, 552-563 (2022); translation from Kibern. Sist. Anal. 58, No. 4, 70-81 (2022). MSC: 35R11 35C05 35K40 35R30 PDF BibTeX XML Cite \textit{V. M. Bulavatsky}, Cybern. Syst. Anal. 58, No. 4, 552--563 (2022; Zbl 07630521); translation from Kibern. Sist. Anal. 58, No. 4, 70--81 (2022) Full Text: DOI OpenURL
Sasaki, Takiko Regularity of the blow-up curve at characteristic points for nonlinear wave equations. (English) Zbl 07625963 Japan J. Ind. Appl. Math. 39, No. 3, 1055-1073 (2022). MSC: 35B44 35L15 35L71 PDF BibTeX XML Cite \textit{T. Sasaki}, Japan J. Ind. Appl. Math. 39, No. 3, 1055--1073 (2022; Zbl 07625963) Full Text: DOI OpenURL
Léonard, Christian Feynman-Kac formula under a finite entropy condition. (English) Zbl 07620669 Probab. Theory Relat. Fields 184, No. 3-4, 1029-1091 (2022). MSC: 35K20 60H30 60J60 PDF BibTeX XML Cite \textit{C. Léonard}, Probab. Theory Relat. Fields 184, No. 3--4, 1029--1091 (2022; Zbl 07620669) Full Text: DOI arXiv OpenURL
Hu, Xindi; Zhu, Shengfeng On geometric inverse problems in time-fractional subdiffusion. (English) Zbl 1501.35437 SIAM J. Sci. Comput. 44, No. 6, A3560-A3591 (2022). MSC: 35R11 35R30 35K20 49Q10 65M60 PDF BibTeX XML Cite \textit{X. Hu} and \textit{S. Zhu}, SIAM J. Sci. Comput. 44, No. 6, A3560--A3591 (2022; Zbl 1501.35437) Full Text: DOI OpenURL
Tuan, Nguyen Hoang; Ho, Duy Binh; Nguyen, Anh Tuan Final and nonlocal problems for fractional elliptic type equations. (English) Zbl 07613092 J. Nonlinear Convex Anal. 23, No. 6, 1167-1178 (2022). MSC: 35R11 35K20 35A08 PDF BibTeX XML Cite \textit{N. H. Tuan} et al., J. Nonlinear Convex Anal. 23, No. 6, 1167--1178 (2022; Zbl 07613092) Full Text: Link OpenURL
Slodička, Marian Some direct and inverse source problems in nonlinear evolutionary PDEs with Volterra operators. (English) Zbl 1501.35428 Inverse Probl. 38, No. 12, Article ID 124001, 19 p. (2022). MSC: 35R09 35K20 35K58 35R30 PDF BibTeX XML Cite \textit{M. Slodička}, Inverse Probl. 38, No. 12, Article ID 124001, 19 p. (2022; Zbl 1501.35428) Full Text: DOI OpenURL
Hrizi, Mourad; Novotny, Antonio Andre; Hassine, Maatoug Imaging of mass distributions from partial domain measurement. (English) Zbl 1498.35617 J. Inverse Ill-Posed Probl. 30, No. 5, 713-727 (2022). MSC: 35R30 35C20 35J25 49Q12 31A25 49M15 PDF BibTeX XML Cite \textit{M. Hrizi} et al., J. Inverse Ill-Posed Probl. 30, No. 5, 713--727 (2022; Zbl 1498.35617) Full Text: DOI OpenURL
Fiori, Simone; Cervigni, Italo; Ippoliti, Mattia; Menotta, Claudio Synchronization of dynamical systems on Riemannian manifolds by an extended PID-type control theory: numerical evaluation. (English) Zbl 07595646 Discrete Contin. Dyn. Syst., Ser. B 27, No. 12, 7373-7408 (2022). MSC: 37N35 37M05 93C25 93B52 PDF BibTeX XML Cite \textit{S. Fiori} et al., Discrete Contin. Dyn. Syst., Ser. B 27, No. 12, 7373--7408 (2022; Zbl 07595646) Full Text: DOI OpenURL
Au, Vo Van; Baleanu, Dumitru; Zhou, Yong; Huu Can, Nguyen On a problem for the nonlinear diffusion equation with conformable time derivative. (English) Zbl 1500.35291 Appl. Anal. 101, No. 17, 6255-6279 (2022). MSC: 35R11 26A33 34B16 35K20 35K58 35R25 47A52 PDF BibTeX XML Cite \textit{V. Van Au} et al., Appl. Anal. 101, No. 17, 6255--6279 (2022; Zbl 1500.35291) Full Text: DOI OpenURL
Li, Changpin; Li, Zhiqiang The finite-time blow-up for semilinear fractional diffusion equations with time \(\psi\)-Caputo derivative. (English) Zbl 1498.35109 J. Nonlinear Sci. 32, No. 6, Paper No. 82, 42 p. (2022). MSC: 35B44 35R11 35D30 35K45 35K58 26A33 PDF BibTeX XML Cite \textit{C. Li} and \textit{Z. Li}, J. Nonlinear Sci. 32, No. 6, Paper No. 82, 42 p. (2022; Zbl 1498.35109) Full Text: DOI OpenURL
Durdiev, Durdimurod; Rahmonov, Askar A multidimensional diffusion coefficient determination problem for the time-fractional equation. (English) Zbl 1496.35448 Turk. J. Math. 46, No. 6, 2250-2263 (2022). MSC: 35R30 35N25 35K15 35R11 35S15 PDF BibTeX XML Cite \textit{D. Durdiev} and \textit{A. Rahmonov}, Turk. J. Math. 46, No. 6, 2250--2263 (2022; Zbl 1496.35448) Full Text: DOI OpenURL
Bouchard, Bruno; Tan, Xiaolu Understanding the dual formulation for the hedging of path-dependent options with price impact. (English) Zbl 1498.91430 Ann. Appl. Probab. 32, No. 3, 1705-1733 (2022). MSC: 91G20 60H15 PDF BibTeX XML Cite \textit{B. Bouchard} and \textit{X. Tan}, Ann. Appl. Probab. 32, No. 3, 1705--1733 (2022; Zbl 1498.91430) Full Text: DOI arXiv OpenURL
Krasnoschok, Mykola; Vasylyeva, Nataliya Linear subdiffusion in weighted fractional Hölder spaces. (English) Zbl 1496.35432 Evol. Equ. Control Theory 11, No. 4, 1455-1487 (2022). MSC: 35R11 35C15 35B45 35K20 26A33 PDF BibTeX XML Cite \textit{M. Krasnoschok} and \textit{N. Vasylyeva}, Evol. Equ. Control Theory 11, No. 4, 1455--1487 (2022; Zbl 1496.35432) Full Text: DOI OpenURL
Binh, Tran Thanh; Binh, Nguyen Phuc; Thang, Bui Dinh; Long, Le Dinh Regularization of Cauchy problem for 2D time-fractional diffusion evolution equations. (English) Zbl 1496.35419 Fractals 30, No. 5, Article ID 2240181, 25 p. (2022). MSC: 35R11 35K20 35K58 35R25 PDF BibTeX XML Cite \textit{T. T. Binh} et al., Fractals 30, No. 5, Article ID 2240181, 25 p. (2022; Zbl 1496.35419) Full Text: DOI OpenURL
Cortázar, Carmen; Quirós, Fernando; Wolanski, Noemí Decay/growth rates for inhomogeneous heat equations with memory. The case of large dimensions. (English) Zbl 1496.35072 Math. Eng. (Springfield) 4, No. 3, Paper No. 22, 17 p. (2022). MSC: 35B40 35K15 35R11 PDF BibTeX XML Cite \textit{C. Cortázar} et al., Math. Eng. (Springfield) 4, No. 3, Paper No. 22, 17 p. (2022; Zbl 1496.35072) Full Text: DOI arXiv OpenURL
Guo, T.; Nikan, O.; Avazzadeh, Z.; Qiu, W. Efficient alternating direction implicit numerical approaches for multi-dimensional distributed-order fractional integro differential problems. (English) Zbl 07575594 Comput. Appl. Math. 41, No. 6, Paper No. 236, 27 p. (2022). MSC: 35M13 65M06 65M12 PDF BibTeX XML Cite \textit{T. Guo} et al., Comput. Appl. Math. 41, No. 6, Paper No. 236, 27 p. (2022; Zbl 07575594) Full Text: DOI OpenURL
Park, Won-Kwang Investigation of a non-iterative technique based on topological derivatives for fast localization of small conductivity inclusions. (English) Zbl 07566268 Comput. Math. Appl. 120, 45-59 (2022). MSC: 35R30 78A46 35J05 35J25 65N21 PDF BibTeX XML Cite \textit{W.-K. Park}, Comput. Math. Appl. 120, 45--59 (2022; Zbl 07566268) Full Text: DOI OpenURL
Tuan, Nguyen Huy; Hai, Nguyen Minh; Thach, Tran Ngoc On fractional reaction-diffusion equations involving unbounded delay. (English) Zbl 07563697 J. Nonlinear Convex Anal. 23, No. 8, 1709-1724 (2022). MSC: 35R11 26A33 33E12 35B40 35K20 35K57 35R09 44A20 PDF BibTeX XML Cite \textit{N. H. Tuan} et al., J. Nonlinear Convex Anal. 23, No. 8, 1709--1724 (2022; Zbl 07563697) Full Text: Link OpenURL
Hettlich, Frank The domain derivative for semilinear elliptic inverse obstacle problems. (English) Zbl 1494.35185 Inverse Probl. Imaging 16, No. 4, 691-702 (2022). MSC: 35R30 35J25 35J61 PDF BibTeX XML Cite \textit{F. Hettlich}, Inverse Probl. Imaging 16, No. 4, 691--702 (2022; Zbl 1494.35185) Full Text: DOI OpenURL
Pham, Thanh-Hung; Nguyen, Thanh-Sang On second-order radial-asymptotic proto-differentiability of the Borwein perturbation maps. (English) Zbl 1492.90194 RAIRO, Oper. Res. 56, No. 3, 1373-1395 (2022). MSC: 90C46 90C26 90C29 90C30 PDF BibTeX XML Cite \textit{T.-H. Pham} and \textit{T.-S. Nguyen}, RAIRO, Oper. Res. 56, No. 3, 1373--1395 (2022; Zbl 1492.90194) Full Text: DOI OpenURL
Peng, Li; Zhou, Yong The analysis of approximate controllability for distributed order fractional diffusion problems. (English) Zbl 07558448 Appl. Math. Optim. 86, No. 2, Paper No. 22, 28 p. (2022). MSC: 35R11 26A33 34A12 35K20 93B05 PDF BibTeX XML Cite \textit{L. Peng} and \textit{Y. Zhou}, Appl. Math. Optim. 86, No. 2, Paper No. 22, 28 p. (2022; Zbl 07558448) Full Text: DOI OpenURL
Sannipoli, Rossano Some properties of the torsion function with Robin boundary conditions. (English) Zbl 1497.35114 Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl. 33, No. 1, 23-37 (2022). MSC: 35J05 35J15 35J20 35J25 PDF BibTeX XML Cite \textit{R. Sannipoli}, Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl. 33, No. 1, 23--37 (2022; Zbl 1497.35114) Full Text: DOI arXiv OpenURL
Wang, Peihe; Zhang, Yuna Mean curvature flow with linear oblique derivative boundary conditions. (English) Zbl 1501.35099 Sci. China, Math. 65, No. 7, 1413-1430 (2022). MSC: 35B45 35B40 35K20 35K93 PDF BibTeX XML Cite \textit{P. Wang} and \textit{Y. Zhang}, Sci. China, Math. 65, No. 7, 1413--1430 (2022; Zbl 1501.35099) Full Text: DOI OpenURL
Khan, Tahir; Ahmad, Saeed; Zaman, Gul; Alzabut, Jehad; Ullah, Rahman On fractional order multiple integral transforms technique to handle three dimensional heat equation. (English) Zbl 1494.35161 Bound. Value Probl. 2022, Paper No. 16, 18 p. (2022). MSC: 35R11 35A22 35K20 PDF BibTeX XML Cite \textit{T. Khan} et al., Bound. Value Probl. 2022, Paper No. 16, 18 p. (2022; Zbl 1494.35161) Full Text: DOI OpenURL
Clark, Daniel E. A Cramér Rao bound for point processes. (English) Zbl 1497.94035 IEEE Trans. Inf. Theory 68, No. 4, 2147-2155 (2022). MSC: 94A17 60G55 PDF BibTeX XML Cite \textit{D. E. Clark}, IEEE Trans. Inf. Theory 68, No. 4, 2147--2155 (2022; Zbl 1497.94035) Full Text: DOI OpenURL
Lai, Ning-An; Schiavone, Nico Michele Blow-up and lifespan estimate for generalized Tricomi equations related to Glassey conjecture. (English) Zbl 1495.35127 Math. Z. 301, No. 4, 3369-3393 (2022). Reviewer: Michael Reissig (Freiberg) MSC: 35L71 35L80 35B30 35B44 35L15 PDF BibTeX XML Cite \textit{N.-A. Lai} and \textit{N. M. Schiavone}, Math. Z. 301, No. 4, 3369--3393 (2022; Zbl 1495.35127) Full Text: DOI arXiv OpenURL
Apushkinskaya, Darya E.; Nazarov, Alexander I. The normal derivative lemma and surrounding issues. (English. Russian original) Zbl 1492.35001 Russ. Math. Surv. 77, No. 2, 189-249 (2022); translation from Usp. Mat. Nauk 77, No. 2, 3-68 (2022). Reviewer: Vincenzo Vespri (Firenze) MSC: 35-02 35B45 35B50 35J15 35R05 35B53 PDF BibTeX XML Cite \textit{D. E. Apushkinskaya} and \textit{A. I. Nazarov}, Russ. Math. Surv. 77, No. 2, 189--249 (2022; Zbl 1492.35001); translation from Usp. Mat. Nauk 77, No. 2, 3--68 (2022) Full Text: DOI OpenURL
Ben, Hassen Moahmed Fahmi; Hamouda, Makram; Hamza, Mohamed Ali; Teka, Hanen Khaled Nonexistence result for the generalized Tricomi equation with the scale-invariant damping, mass term and time derivative nonlinearity. (English) Zbl 07544278 Asymptotic Anal. 128, No. 4, 495-515 (2022). MSC: 35B44 35B33 35L15 35L71 PDF BibTeX XML Cite \textit{H. M. F. Ben} et al., Asymptotic Anal. 128, No. 4, 495--515 (2022; Zbl 07544278) Full Text: DOI arXiv OpenURL
Suzuki, Masamitsu Local existence and nonexistence for fractional in time reaction-diffusion equations and systems with rapidly growing nonlinear terms. (English) Zbl 1491.35438 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 222, Article ID 112909, 17 p. (2022). MSC: 35R11 35A01 35K15 35K58 26A33 46E30 PDF BibTeX XML Cite \textit{M. Suzuki}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 222, Article ID 112909, 17 p. (2022; Zbl 1491.35438) Full Text: DOI OpenURL
Fang, Weifu Simultaneous recovery of Robin boundary and coefficient for the Laplace equation by shape derivative. (English) Zbl 1491.35452 J. Comput. Appl. Math. 413, Article ID 114376, 13 p. (2022). MSC: 35R30 35J25 65N21 PDF BibTeX XML Cite \textit{W. Fang}, J. Comput. Appl. Math. 413, Article ID 114376, 13 p. (2022; Zbl 1491.35452) Full Text: DOI OpenURL
Pskhu, A. V. Green function of the first boundary-value problem for the fractional diffusion-wave equation in a multidimensional rectangular domain. (English. Russian original) Zbl 1491.35436 J. Math. Sci., New York 260, No. 3, 325-334 (2022); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 167, 52-61 (2019). MSC: 35R11 35K20 35L20 PDF BibTeX XML Cite \textit{A. V. Pskhu}, J. Math. Sci., New York 260, No. 3, 325--334 (2022; Zbl 1491.35436); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 167, 52--61 (2019) Full Text: DOI OpenURL
Afraites, Lekbir A new coupled complex boundary method (CCBM) for an inverse obstacle problem. (English) Zbl 1491.35444 Discrete Contin. Dyn. Syst., Ser. S 15, No. 1, 23-40 (2022). MSC: 35R30 35J25 35N25 35Q93 PDF BibTeX XML Cite \textit{L. Afraites}, Discrete Contin. Dyn. Syst., Ser. S 15, No. 1, 23--40 (2022; Zbl 1491.35444) Full Text: DOI OpenURL
Sablin, M. N. Difference approach to solving boundary value problems for elliptic partial differential equations in the sense of generalized functions. (English. Russian original) Zbl 1492.65288 Mosc. Univ. Comput. Math. Cybern. 46, No. 1, 29-41 (2022); translation from Vestn. Mosk. Univ., Ser. XV 2022, No. 1, 30-41 (2022). MSC: 65N06 35J25 PDF BibTeX XML Cite \textit{M. N. Sablin}, Mosc. Univ. Comput. Math. Cybern. 46, No. 1, 29--41 (2022; Zbl 1492.65288); translation from Vestn. Mosk. Univ., Ser. XV 2022, No. 1, 30--41 (2022) Full Text: DOI OpenURL
Castaing, Charles; Godet-Thobie, C.; Saïdi, Soumia On fractional evolution inclusion coupled with a time and state dependent maximal monotone operator. (English) Zbl 1500.34006 Set-Valued Var. Anal. 30, No. 2, 621-656 (2022). MSC: 34A08 34G25 47H10 49J52 49J53 PDF BibTeX XML Cite \textit{C. Castaing} et al., Set-Valued Var. Anal. 30, No. 2, 621--656 (2022; Zbl 1500.34006) Full Text: DOI OpenURL
Liu, Yulan; Pan, Shaohua Second-order optimality conditions for mathematical program with semidefinite cone complementarity constraints and applications. (English) Zbl 1489.90198 Set-Valued Var. Anal. 30, No. 2, 373-395 (2022). MSC: 90C33 49J52 49J53 90C46 PDF BibTeX XML Cite \textit{Y. Liu} and \textit{S. Pan}, Set-Valued Var. Anal. 30, No. 2, 373--395 (2022; Zbl 1489.90198) Full Text: DOI OpenURL
Peng, Li; Zhou, Yong; He, Jia Wei The well-posedness analysis of distributed order fractional diffusion problems on \(\mathbb{R}^N\). (English) Zbl 1489.35304 Monatsh. Math. 198, No. 2, 445-463 (2022). MSC: 35R11 35K15 35K58 34A12 26A33 PDF BibTeX XML Cite \textit{L. Peng} et al., Monatsh. Math. 198, No. 2, 445--463 (2022; Zbl 1489.35304) Full Text: DOI OpenURL
Hamouda, Makram; Hamza, Mohamed Ali Improvement on the blow-up for the weakly coupled wave equations with scale-invariant damping and time derivative nonlinearity. (English) Zbl 1487.35117 Mediterr. J. Math. 19, No. 3, Paper No. 136, 17 p. (2022). MSC: 35B44 35L52 35L71 PDF BibTeX XML Cite \textit{M. Hamouda} and \textit{M. A. Hamza}, Mediterr. J. Math. 19, No. 3, Paper No. 136, 17 p. (2022; Zbl 1487.35117) Full Text: DOI arXiv OpenURL
Bulavatsky, V. M. Some boundary-value problems of filtration dynamics corresponding to models of fractional diffusion of distributed order. (English. Ukrainian original) Zbl 1487.35158 Cybern. Syst. Anal. 58, No. 1, 65-76 (2022); translation from Kibern. Sist. Anal. 58, No. 1, 77-89 (2022). MSC: 35C05 35K51 35R11 35R30 PDF BibTeX XML Cite \textit{V. M. Bulavatsky}, Cybern. Syst. Anal. 58, No. 1, 65--76 (2022; Zbl 1487.35158); translation from Kibern. Sist. Anal. 58, No. 1, 77--89 (2022) Full Text: DOI OpenURL
Apostolov, Stoyan; Dimitrov, Yuri; Todorov, Venelin Constructions of second order approximations of the Caputo fractional derivative. (English) Zbl 1490.65032 Lirkov, Ivan (ed.) et al., Large-scale scientific computing. 13th international conference, LSSC 2021, Sozopol, Bulgaria, June 7–11, 2021. Revised selected papers. Cham: Springer. Lect. Notes Comput. Sci. 13127, 31-39 (2022). MSC: 65D25 PDF BibTeX XML Cite \textit{S. Apostolov} et al., Lect. Notes Comput. Sci. 13127, 31--39 (2022; Zbl 1490.65032) Full Text: DOI OpenURL
Nguyen, Anh Tuan; Yang, Chao On a time-space fractional diffusion equation with a semilinear source of exponential type. (English) Zbl 1486.35441 Electron Res. Arch. 30, No. 4, 1354-1373 (2022). MSC: 35R11 35K15 PDF BibTeX XML Cite \textit{A. T. Nguyen} and \textit{C. Yang}, Electron Res. Arch. 30, No. 4, 1354--1373 (2022; Zbl 1486.35441) Full Text: DOI OpenURL
Mosa, Gamal A.; Abdou, Mohamed A.; Gawish, Fatma A.; Abdalla, Mostafa H. On the behaviour solutions of fractional and partial integro differential heat equations and its numerical solutions. (English) Zbl 1486.35440 Math. Slovaca 72, No. 2, 397-410 (2022). MSC: 35R11 35R09 35K20 47D06 PDF BibTeX XML Cite \textit{G. A. Mosa} et al., Math. Slovaca 72, No. 2, 397--410 (2022; Zbl 1486.35440) Full Text: DOI OpenURL
Hamouda, Makram; Hamza, Mohamed Ali; Palmieri, Alessandro Blow-up and lifespan estimates for a damped wave equation in the Einstein-de Sitter spacetime with nonlinearity of derivative type. (English) Zbl 1486.35073 NoDEA, Nonlinear Differ. Equ. Appl. 29, No. 2, Paper No. 19, 15 p. (2022). MSC: 35B44 35L15 35L71 PDF BibTeX XML Cite \textit{M. Hamouda} et al., NoDEA, Nonlinear Differ. Equ. Appl. 29, No. 2, Paper No. 19, 15 p. (2022; Zbl 1486.35073) Full Text: DOI arXiv OpenURL
Dinh, Tuan Nguyen Second-order Lagrange multiplier rules in multiobjective optimal control of semilinear parabolic equations. (English) Zbl 1485.35271 Set-Valued Var. Anal. 30, No. 1, 257-281 (2022). MSC: 35K58 35K20 49K20 49K27 90C29 90C46 PDF BibTeX XML Cite \textit{T. N. Dinh}, Set-Valued Var. Anal. 30, No. 1, 257--281 (2022; Zbl 1485.35271) Full Text: DOI OpenURL
Pham, Thanh-Hung On generalized second-order proto-differentiability of the benson proper perturbation maps in parametric vector optimization problems. (English) Zbl 07490121 Positivity 26, No. 2, Paper No. 27, 36 p. (2022). MSC: 90C31 90C29 90C26 PDF BibTeX XML Cite \textit{T.-H. Pham}, Positivity 26, No. 2, Paper No. 27, 36 p. (2022; Zbl 07490121) Full Text: DOI OpenURL
Fernández, Francisco J.; Marquéz Albés, Ignacio; Tojo, F. Adrián F. On first and second order linear Stieltjes differential equations. (English) Zbl 1491.34003 J. Math. Anal. Appl. 511, No. 1, Article ID 126010, 49 p. (2022). MSC: 34A06 34B27 26A24 34A30 PDF BibTeX XML Cite \textit{F. J. Fernández} et al., J. Math. Anal. Appl. 511, No. 1, Article ID 126010, 49 p. (2022; Zbl 1491.34003) Full Text: DOI arXiv OpenURL
Kassymov, Aidyn; Kirane, Mokhtar; Torebek, Berikbol T. Lyapunov, Hartman-Wintner and de la Vallée Poussin-type inequalities for fractional elliptic boundary value problems. (English) Zbl 1484.35014 Complex Var. Elliptic Equ. 67, No. 1, 246-258 (2022). MSC: 35A23 35B45 35J25 35R11 26A33 35P15 PDF BibTeX XML Cite \textit{A. Kassymov} et al., Complex Var. Elliptic Equ. 67, No. 1, 246--258 (2022; Zbl 1484.35014) Full Text: DOI OpenURL
Hu, Shasha; Xu, Yihong; Zhang, Yuhan Second-order characterizations for set-valued equilibrium problems with variable ordering structures. (English) Zbl 1499.90246 J. Ind. Manag. Optim. 18, No. 1, 469-486 (2022). MSC: 90C33 90C46 90C59 PDF BibTeX XML Cite \textit{S. Hu} et al., J. Ind. Manag. Optim. 18, No. 1, 469--486 (2022; Zbl 1499.90246) Full Text: DOI OpenURL
Baishya, Chandrali A new operational matrix of integration based on the independence polynomial of graph to solve fractional Poisson equation. (English) Zbl 1499.35617 J. Fract. Calc. Appl. 13, No. 1, 171-188 (2022). MSC: 35R11 35J15 65M70 PDF BibTeX XML Cite \textit{C. Baishya}, J. Fract. Calc. Appl. 13, No. 1, 171--188 (2022; Zbl 1499.35617) Full Text: Link OpenURL
Prakash, R.; Hrizi, M.; Novotny, A. A. A noniterative reconstruction method for solving a time-fractional inverse source problem from partial boundary measurements. (English) Zbl 1479.35955 Inverse Probl. 38, No. 1, Article ID 015002, 27 p. (2022). MSC: 35R30 35K20 35R11 PDF BibTeX XML Cite \textit{R. Prakash} et al., Inverse Probl. 38, No. 1, Article ID 015002, 27 p. (2022; Zbl 1479.35955) Full Text: DOI OpenURL
Byun, Sun-Sig; Han, Jeongmin \(L^p\)-estimates for the Hessians of solutions to fully nonlinear parabolic equations with oblique boundary conditions. (English) Zbl 1475.35084 J. Math. Anal. Appl. 505, No. 1, Article ID 125461, 34 p. (2022). MSC: 35B45 35D40 35K20 35K55 PDF BibTeX XML Cite \textit{S.-S. Byun} and \textit{J. Han}, J. Math. Anal. Appl. 505, No. 1, Article ID 125461, 34 p. (2022; Zbl 1475.35084) Full Text: DOI arXiv OpenURL
Luc, Nguyen Hoang Remarks on a 1-D nonlocal in time fractional diffusion equation with inhomogeneous source. (English) Zbl 07633976 Bull. Math. Anal. Appl. 13, No. 3, 1-12 (2021). MSC: 35R11 35B65 35K20 26A33 PDF BibTeX XML Cite \textit{N. H. Luc}, Bull. Math. Anal. Appl. 13, No. 3, 1--12 (2021; Zbl 07633976) Full Text: Link OpenURL
Phuong, Nguyen Duc; Binh, Ho Duy; Long, Le Dinh; Yen, Dang Van On a nonlocal problem for parabolic equation with time dependent coefficients. (English) Zbl 1494.35168 Adv. Difference Equ. 2021, Paper No. 209, 12 p. (2021). MSC: 35R11 35B65 35K45 26A33 PDF BibTeX XML Cite \textit{N. D. Phuong} et al., Adv. Difference Equ. 2021, Paper No. 209, 12 p. (2021; Zbl 1494.35168) Full Text: DOI OpenURL
Long, Le Dinh; Zhou, Yong; Sakthivel, Rathinasamy; Tuan, Nguyen Huy Well-posedness and ill-posedness results for backward problem for fractional pseudo-parabolic equation. (English) Zbl 1490.35214 J. Appl. Math. Comput. 67, No. 1-2, 175-206 (2021). MSC: 35K70 26A33 35B45 35B65 35K20 35R11 PDF BibTeX XML Cite \textit{L. D. Long} et al., J. Appl. Math. Comput. 67, No. 1--2, 175--206 (2021; Zbl 1490.35214) Full Text: DOI OpenURL
Cetinkaya, Suleyman; Demir, Ali Sequential time space fractional diffusion equation including nonhomogenous initial boundary conditions. (English) Zbl 1490.35515 Tbil. Math. J. 14, No. 2, 83-91 (2021). MSC: 35R11 35K20 26A33 65M70 PDF BibTeX XML Cite \textit{S. Cetinkaya} and \textit{A. Demir}, Tbil. Math. J. 14, No. 2, 83--91 (2021; Zbl 1490.35515) Full Text: DOI OpenURL
Tatar, Nasser-eddine Mittag-Leffler stability for a fractional Euler-Bernoulli problem. (English) Zbl 1485.35040 Chaos Solitons Fractals 149, Article ID 111077, 15 p. (2021). MSC: 35B35 35R11 35R10 35B40 35L20 PDF BibTeX XML Cite \textit{N.-e. Tatar}, Chaos Solitons Fractals 149, Article ID 111077, 15 p. (2021; Zbl 1485.35040) Full Text: DOI OpenURL
Macías-Díaz, J. E. Nonlinear wave transmission in harmonically driven Hamiltonian sine-Gordon regimes with memory effects. (English) Zbl 1496.65122 Chaos Solitons Fractals 142, Article ID 110362, 12 p. (2021). MSC: 65M06 35L10 PDF BibTeX XML Cite \textit{J. E. Macías-Díaz}, Chaos Solitons Fractals 142, Article ID 110362, 12 p. (2021; Zbl 1496.65122) Full Text: DOI OpenURL
Shi, Juhua; Jiang, Feida On Neumann problem for the degenerate Monge-Ampère type equations. (English) Zbl 1489.35158 Bound. Value Probl. 2021, Paper No. 11, 22 p. (2021). MSC: 35J96 35J70 35B65 PDF BibTeX XML Cite \textit{J. Shi} and \textit{F. Jiang}, Bound. Value Probl. 2021, Paper No. 11, 22 p. (2021; Zbl 1489.35158) Full Text: DOI OpenURL
Kitaeva, Ol’ga Gennad’evna Invariant manifolds of the Hoff model in “noise” spaces. (English) Zbl 1486.35484 Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat. Model. Program. 14, No. 4, 24-35 (2021). MSC: 35R60 35K20 35K70 35S10 PDF BibTeX XML Cite \textit{O. G. Kitaeva}, Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat. Model. Program. 14, No. 4, 24--35 (2021; Zbl 1486.35484) Full Text: DOI MNR OpenURL
Maksimović, Miroslav D.; Stanković, Mića S. Some new identities for the second covariant derivative of the curvature tensor. (English) Zbl 1499.53078 Facta Univ., Ser. Math. Inf. 36, No. 3, 519-528 (2021). MSC: 53B20 53B21 53A45 PDF BibTeX XML Cite \textit{M. D. Maksimović} and \textit{M. S. Stanković}, Facta Univ., Ser. Math. Inf. 36, No. 3, 519--528 (2021; Zbl 1499.53078) Full Text: DOI OpenURL
Yin, H. M.; Chow, K. W. Breathers, cascading instabilities and Fermi-Pasta-Ulam-Tsingou recurrence of the derivative nonlinear Schrödinger equation: effects of ‘self-steepening’ nonlinearity. (English) Zbl 1491.76034 Physica D 428, Article ID 133033, 15 p. (2021). MSC: 76E30 76B15 35Q55 PDF BibTeX XML Cite \textit{H. M. Yin} and \textit{K. W. Chow}, Physica D 428, Article ID 133033, 15 p. (2021; Zbl 1491.76034) Full Text: DOI OpenURL
Bayrak, Mine Aylin; Demir, Ali Determination of time dependent diffusion coefficient in time fractional diffusion equations by fractional scaling transformations method. (English) Zbl 1484.35403 Bull. Inst. Math., Acad. Sin. (N.S.) 16, No. 4, 303-319 (2021). MSC: 35R30 35K20 35R11 PDF BibTeX XML Cite \textit{M. A. Bayrak} and \textit{A. Demir}, Bull. Inst. Math., Acad. Sin. (N.S.) 16, No. 4, 303--319 (2021; Zbl 1484.35403) Full Text: DOI OpenURL
Zhang, Yuxin; Ding, Hengfei An efficient high-order numerical algorithm for the time fractional Fokker-Planck equations. (English) Zbl 1480.65232 Int. J. Comput. Math. 98, No. 2, 357-366 (2021). MSC: 65M06 65M12 PDF BibTeX XML Cite \textit{Y. Zhang} and \textit{H. Ding}, Int. J. Comput. Math. 98, No. 2, 357--366 (2021; Zbl 1480.65232) Full Text: DOI OpenURL
Suechoei, Apassara; Ngiamsunthorn, Parinya Sa Local well-posedness of nonlinear time-fractional diffusion equation. (English) Zbl 1486.35448 Thai J. Math. 19, No. 3, 865-884 (2021). MSC: 35R11 26A33 35A01 35B30 35K15 35K58 PDF BibTeX XML Cite \textit{A. Suechoei} and \textit{P. S. Ngiamsunthorn}, Thai J. Math. 19, No. 3, 865--884 (2021; Zbl 1486.35448) Full Text: Link OpenURL
Jiang, Feida; Trudinger, Neil S. The Neumann problem for Monge-Ampère type equations revisited. (English) Zbl 1489.35156 N. Z. J. Math. 52, 671-689 (2021). Reviewer: Igor G. Nikolaev (Urbana) MSC: 35J96 35J66 PDF BibTeX XML Cite \textit{F. Jiang} and \textit{N. S. Trudinger}, N. Z. J. Math. 52, 671--689 (2021; Zbl 1489.35156) Full Text: DOI OpenURL
Yao, Shao-Wen A rigid pendulum in a microgravity: some special properties and a two-scale fractal model. (English) Zbl 1482.35260 Fractals 29, No. 6, Article ID 2150127, 7 p. (2021). MSC: 35R11 35L71 PDF BibTeX XML Cite \textit{S.-W. Yao}, Fractals 29, No. 6, Article ID 2150127, 7 p. (2021; Zbl 1482.35260) Full Text: DOI OpenURL
Aghajani, M. Hukuhara differentiability of continuous sine and cosine families of linear set-valued functions. (English) Zbl 1497.47061 Acta Math. Hung. 165, No. 2, 377-396 (2021). MSC: 47D09 47H04 39B52 PDF BibTeX XML Cite \textit{M. Aghajani}, Acta Math. Hung. 165, No. 2, 377--396 (2021; Zbl 1497.47061) Full Text: DOI OpenURL
Caponi, Maicol; Sapio, Francesco An existence result for the fractional Kelvin-Voigt’s model on time-dependent cracked domains. (English) Zbl 1481.35270 J. Evol. Equ. 21, No. 4, 4095-4143 (2021). MSC: 35L53 35R11 35A01 74H20 74R10 PDF BibTeX XML Cite \textit{M. Caponi} and \textit{F. Sapio}, J. Evol. Equ. 21, No. 4, 4095--4143 (2021; Zbl 1481.35270) Full Text: DOI arXiv OpenURL
Kosmakova, M. T.; Ramazanov, M. I.; Kasymova, L. Zh. To solving the heat equation with fractional load. (English) Zbl 1480.35393 Lobachevskii J. Math. 42, No. 12, 2854-2866 (2021). MSC: 35R11 35K20 PDF BibTeX XML Cite \textit{M. T. Kosmakova} et al., Lobachevskii J. Math. 42, No. 12, 2854--2866 (2021; Zbl 1480.35393) Full Text: DOI OpenURL
Anh, Tuan Nguyen; Long, Le Dinh; O’Regan, Donal; Luc, Nguyen Hoang On a nonlinear fractional Rayleigh-Stokes equation associated with nonlocal conditions. (English) Zbl 1479.35911 Math. Methods Appl. Sci. 44, No. 17, 12426-12441 (2021). MSC: 35R11 35B65 26A33 35K20 PDF BibTeX XML Cite \textit{T. N. Anh} et al., Math. Methods Appl. Sci. 44, No. 17, 12426--12441 (2021; Zbl 1479.35911) Full Text: DOI OpenURL
Xiao, Changwang; Guo, Fei On the global existence of small data classical solutions to a semilinear wave equation with a time-dependent damping. (English) Zbl 1486.35302 Math. Methods Appl. Sci. 44, No. 18, 14593-14605 (2021). Reviewer: Michael Reissig (Freiberg) MSC: 35L71 35B65 35L15 PDF BibTeX XML Cite \textit{C. Xiao} and \textit{F. Guo}, Math. Methods Appl. Sci. 44, No. 18, 14593--14605 (2021; Zbl 1486.35302) Full Text: DOI OpenURL
Tatar, Nasser-eddine Mittag-Leffler stability for a fractional viscoelastic telegraph problem. (English) Zbl 1484.35391 Math. Methods Appl. Sci. 44, No. 18, 14184-14205 (2021). MSC: 35R11 26A33 33E12 35B35 35B40 35L20 35R09 PDF BibTeX XML Cite \textit{N.-e. Tatar}, Math. Methods Appl. Sci. 44, No. 18, 14184--14205 (2021; Zbl 1484.35391) Full Text: DOI OpenURL
Nguyen, Huy Tuan; Nguyen, Huu Can; Wang, Renhai; Zhou, Yong Initial value problem for fractional Volterra integro-differential equations with Caputo derivative. (English) Zbl 1478.35226 Discrete Contin. Dyn. Syst., Ser. B 26, No. 12, 6483-6510 (2021). MSC: 35R11 35B44 35K20 35K58 35K70 35K92 35R09 47A52 47J06 PDF BibTeX XML Cite \textit{H. T. Nguyen} et al., Discrete Contin. Dyn. Syst., Ser. B 26, No. 12, 6483--6510 (2021; Zbl 1478.35226) Full Text: DOI OpenURL
Hamouda, Makram; Hamza, Mohamed Ali; Palmieri, Alessandro A note on the nonexistence of global solutions to the semilinear wave equation with nonlinearity of derivative-type in the generalized Einstein-de Sitter spacetime. (English) Zbl 1479.35138 Commun. Pure Appl. Anal. 20, No. 11, 3703-3721 (2021). MSC: 35B44 35A08 35B33 35C15 35L15 35L71 PDF BibTeX XML Cite \textit{M. Hamouda} et al., Commun. Pure Appl. Anal. 20, No. 11, 3703--3721 (2021; Zbl 1479.35138) Full Text: DOI arXiv OpenURL
Guo, Yitong; Ling, Bingo Wing-Kuen Principal component analysis with drop rank covariance matrix. (English) Zbl 1476.62126 J. Ind. Manag. Optim. 17, No. 5, 2345-2366 (2021). MSC: 62H25 90C20 90C90 PDF BibTeX XML Cite \textit{Y. Guo} and \textit{B. W. K. Ling}, J. Ind. Manag. Optim. 17, No. 5, 2345--2366 (2021; Zbl 1476.62126) Full Text: DOI OpenURL
Su, Tran Van; Hang, Dinh Dieu Second-order necessary and sufficient optimality conditions for constrained vector equilibrium problem with applications. (English) Zbl 1473.90154 Bull. Iran. Math. Soc. 47, No. 5, 1337-1362 (2021). MSC: 90C29 90C46 49K27 PDF BibTeX XML Cite \textit{T. Van Su} and \textit{D. D. Hang}, Bull. Iran. Math. Soc. 47, No. 5, 1337--1362 (2021; Zbl 1473.90154) Full Text: DOI OpenURL
Tatar, Nasser-eddine Well-posedness and stability for a fractional thermo-viscoelastic Timoshenko problem. (English) Zbl 1476.35054 Comput. Appl. Math. 40, No. 6, Paper No. 200, 34 p. (2021). MSC: 35B40 35R11 35L20 35B35 PDF BibTeX XML Cite \textit{N.-e. Tatar}, Comput. Appl. Math. 40, No. 6, Paper No. 200, 34 p. (2021; Zbl 1476.35054) Full Text: DOI OpenURL
Cetinkaya, Suleyman; Demir, Ali Sequential space fractional diffusion equation’s solutions via new inner product. (English) Zbl 1482.35244 Asian-Eur. J. Math. 14, No. 7, Article ID 2150121, 12 p. (2021). MSC: 35R11 35K20 26A33 65M70 PDF BibTeX XML Cite \textit{S. Cetinkaya} and \textit{A. Demir}, Asian-Eur. J. Math. 14, No. 7, Article ID 2150121, 12 p. (2021; Zbl 1482.35244) Full Text: DOI OpenURL
Tatar, Nasser-Eddine Mittag-Leffler stability for a Timoshenko problem. (English) Zbl 1477.35032 Int. J. Appl. Math. Comput. Sci. 31, No. 2, 219-232 (2021). MSC: 35B40 35L20 35R11 PDF BibTeX XML Cite \textit{N.-E. Tatar}, Int. J. Appl. Math. Comput. Sci. 31, No. 2, 219--232 (2021; Zbl 1477.35032) Full Text: DOI OpenURL
Huang, Ming; Yuan, Jin-long; Pang, Li-ping; Xia, Zun-quan \(\mathcal{UV}\)-theory of a class of semidefinite programming and its applications. (English) Zbl 07420299 Acta Math. Appl. Sin., Engl. Ser. 37, No. 4, 717-737 (2021). MSC: 90C22 90C30 52A41 49J52 15A18 PDF BibTeX XML Cite \textit{M. Huang} et al., Acta Math. Appl. Sin., Engl. Ser. 37, No. 4, 717--737 (2021; Zbl 07420299) Full Text: DOI OpenURL
Dassios, Ioannis; Font, Francesc Solution method for the time-fractional hyperbolic heat equation. (English) Zbl 1476.35302 Math. Methods Appl. Sci. 44, No. 15, 11844-11855 (2021). MSC: 35R11 26A33 35A09 35L20 93-10 PDF BibTeX XML Cite \textit{I. Dassios} and \textit{F. Font}, Math. Methods Appl. Sci. 44, No. 15, 11844--11855 (2021; Zbl 1476.35302) Full Text: DOI OpenURL
Qiu, Lin; Zhang, Minghui; Qin, Qing-Hua Homogenization function method for time-fractional inverse heat conduction problem in 3D functionally graded materials. (English) Zbl 1476.35335 Appl. Math. Lett. 122, Article ID 107478, 8 p. (2021). MSC: 35R30 35L20 35R11 65M32 PDF BibTeX XML Cite \textit{L. Qiu} et al., Appl. Math. Lett. 122, Article ID 107478, 8 p. (2021; Zbl 1476.35335) Full Text: DOI OpenURL
Ren, Caixuan; Huang, Xinchi; Yamamoto, Masahiro Conditional stability for an inverse coefficient problem of a weakly coupled time-fractional diffusion system with half order by Carleman estimate. (English) Zbl 1475.35397 J. Inverse Ill-Posed Probl. 29, No. 5, 635-651 (2021). MSC: 35R11 35R30 35K51 PDF BibTeX XML Cite \textit{C. Ren} et al., J. Inverse Ill-Posed Probl. 29, No. 5, 635--651 (2021; Zbl 1475.35397) Full Text: DOI OpenURL
Sadeghi, S.; Jafari, H.; Nemati, S. Solving fractional advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. (English) Zbl 1473.35635 Discrete Contin. Dyn. Syst., Ser. S 14, No. 10, 3747-3761 (2021). MSC: 35R11 35A35 35K15 PDF BibTeX XML Cite \textit{S. Sadeghi} et al., Discrete Contin. Dyn. Syst., Ser. S 14, No. 10, 3747--3761 (2021; Zbl 1473.35635) Full Text: DOI OpenURL
Alsaedi, Ahmed; Kirane, Mokhtar; Torebek, Berikbol T. Global existence and blow-up for a space and time nonlocal reaction-diffusion equation. (English) Zbl 1473.35618 Quaest. Math. 44, No. 6, 747-753 (2021). MSC: 35R11 35B44 35B50 26A33 35K20 35K57 PDF BibTeX XML Cite \textit{A. Alsaedi} et al., Quaest. Math. 44, No. 6, 747--753 (2021; Zbl 1473.35618) Full Text: DOI arXiv OpenURL
Beck, Christian; Becker, Sebastian; Cheridito, Patrick; Jentzen, Arnulf; Neufeld, Ariel Deep splitting method for parabolic PDEs. (English) Zbl 1501.65054 SIAM J. Sci. Comput. 43, No. 5, A3135-A3154 (2021). MSC: 65M22 68T07 60H35 65C05 35K15 35K55 91G20 91G60 93E20 PDF BibTeX XML Cite \textit{C. Beck} et al., SIAM J. Sci. Comput. 43, No. 5, A3135--A3154 (2021; Zbl 1501.65054) Full Text: DOI arXiv OpenURL
Cortázar, Carmen; Quirós, Fernando; Wolanski, Noemí A heat equation with memory: large-time behavior. (English) Zbl 1472.35049 J. Funct. Anal. 281, No. 9, Article ID 109174, 40 p. (2021). MSC: 35B40 35A08 35K15 35R11 PDF BibTeX XML Cite \textit{C. Cortázar} et al., J. Funct. Anal. 281, No. 9, Article ID 109174, 40 p. (2021; Zbl 1472.35049) Full Text: DOI arXiv OpenURL
Durdiev, Durdimurod K.; Rahmonov, Askar A.; Bozorov, Zavqiddin R. A two-dimensional diffusion coefficient determination problem for the time-fractional equation. (English) Zbl 1473.35650 Math. Methods Appl. Sci. 44, No. 13, 10753-10761 (2021). MSC: 35R30 35A08 35A35 35B45 35K15 PDF BibTeX XML Cite \textit{D. K. Durdiev} et al., Math. Methods Appl. Sci. 44, No. 13, 10753--10761 (2021; Zbl 1473.35650) Full Text: DOI OpenURL
Dassios, Ioannis; Baleanu, Dumitru Optimal solutions for singular linear systems of Caputo fractional differential equations. (English) Zbl 1478.34007 Math. Methods Appl. Sci. 44, No. 10, 7884-7896 (2021). MSC: 34A08 34A30 34A09 34A12 65L08 26A33 PDF BibTeX XML Cite \textit{I. Dassios} and \textit{D. Baleanu}, Math. Methods Appl. Sci. 44, No. 10, 7884--7896 (2021; Zbl 1478.34007) Full Text: DOI Link OpenURL
Kumar, Amit; Baleanu, Dumitru An analysis for Klein-Gordon equation using fractional derivative having Mittag-Leffler-type kernel. (English) Zbl 1475.35390 Math. Methods Appl. Sci. 44, No. 7, 5458-5474 (2021). MSC: 35R11 35A35 35K15 PDF BibTeX XML Cite \textit{A. Kumar} and \textit{D. Baleanu}, Math. Methods Appl. Sci. 44, No. 7, 5458--5474 (2021; Zbl 1475.35390) Full Text: DOI OpenURL
Cortázar, Carmen; Quirós, Fernando; Wolanski, Noemí Large-time behavior for a fully nonlocal heat equation. (English) Zbl 1471.35044 Vietnam J. Math. 49, No. 3, 831-844 (2021). MSC: 35B40 35R11 35K15 35R09 45K05 PDF BibTeX XML Cite \textit{C. Cortázar} et al., Vietnam J. Math. 49, No. 3, 831--844 (2021; Zbl 1471.35044) Full Text: DOI arXiv OpenURL
Li, Changpin; Li, Zhiqiang The blow-up and global existence of solution to Caputo-Hadamard fractional partial differential equation with fractional Laplacian. (English) Zbl 1471.35302 J. Nonlinear Sci. 31, No. 5, Paper No. 80, 35 p. (2021). MSC: 35R11 35B44 35K15 26A33 PDF BibTeX XML Cite \textit{C. Li} and \textit{Z. Li}, J. Nonlinear Sci. 31, No. 5, Paper No. 80, 35 p. (2021; Zbl 1471.35302) Full Text: DOI OpenURL
Beretta, Elena; Francini, Elisa; Vessella, Sergio Lipschitz stable determination of polygonal conductivity inclusions in a two-dimensional layered medium from the Dirichlet-to-Neumann map. (English) Zbl 1475.35410 SIAM J. Math. Anal. 53, No. 4, 4303-4327 (2021). Reviewer: Sergey G. Pyatkov (Khanty-Mansiysk) MSC: 35R30 35J25 35B45 PDF BibTeX XML Cite \textit{E. Beretta} et al., SIAM J. Math. Anal. 53, No. 4, 4303--4327 (2021; Zbl 1475.35410) Full Text: DOI arXiv OpenURL