×

zbMATH — the first resource for mathematics

On the equivalence of the first and second order equations for gauge theories. (English) Zbl 0448.58029

MSC:
58J99 Partial differential equations on manifolds; differential operators
53C80 Applications of global differential geometry to the sciences
58D17 Manifolds of metrics (especially Riemannian)
81T08 Constructive quantum field theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Atiyah, M. F., Drinfeld, V. A., Hatchin, N. J., Mannin, Yu. I.,: Phys. Lett.65A, 185 (1978) Drinfeld, V. A., Manin, Yu. I.: Commun. Math. Phys.63, 177 (1978)
[2] A proof that local minima of the Yang-Mills action are either self or anti-self dual is given in: Bourguignon, J. P., Lawson, H. B., Simons, J.: Proc. Nat. Acad. Sci., USA,76, 1550 (1979). A proof that there are no non-self dual solutions in an open neighborhood of a self-dual solution is given above and in: Flume: Phys. Lett.76B, 593 (1978) · Zbl 0408.53023 · doi:10.1073/pnas.76.4.1550
[3] Ginzburg, V. L., Landau, L. D.: Zh. Eksp. Teor. Fiz.20, 1064 (1950)
[4] Weinberg, E.: Phys. Rev.D19, 10, 3008 (1979)
[5] Bogomol’nyi, E. B.: Sov. J. Nucl. Phys.24, 449 (1976)
[6] Taubes, C. H.: Arbitrary N-vortex solutions to the first order Ginzburg-Landau equations. Commun. Math. Phys. to appear · Zbl 0451.35101
[7] Witten, E.: Phys. Rev. Lett.38, 121 (1977) · doi:10.1103/PhysRevLett.38.121
[8] Forgacs, P., Manton, N.: Space time symmetries in gauge theories. Commun. Math. Phys., to appear
[9] Palais, R.: Foundations of global nonlinear analysis. New York: Benjamin 1968 · Zbl 0164.11102
[10] Adams, R.: Sobolev spaces. New York: Academic Press 1975 · Zbl 0314.46030
[11] Gilbarg, D., Trudinger, S.: Elliptic partial differential equations of second order. Berlin, Heidelberg, New York: Springer 1977 · Zbl 0361.35003
[12] Morrey, C.: Multiple integrals in the calculus of variations. Berlin, Heidelberg, New York: Springer 1966 · Zbl 0142.38701
[13] Uhlenbeck, K.: Removable singularities in Yang-Mills fields, Preprint, · Zbl 0491.58032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.