×

Null congruence spacetimes constructed from 3-dimensional Robertson-Walker spaces. (English) Zbl 1161.53355

Summary: Null congruence space-times are constructed from three-dimensional time-orientable Lorentzian manifolds by taking a particular ellipse in the lightcone above every point. Starting from a three-dimensional Robertson-Walker space, new null congruence space-times are obtained and several of their curvature properties are deduced. In particular, it is shown that the static Einstein universe is locally isometric to a certain null congruence space-time. Furthermore, a method is given to construct trapped surfaces which admit an isometric spacelike circle action in null congruence space-times.

MSC:

53C50 Global differential geometry of Lorentz manifolds, manifolds with indefinite metrics
83C20 Classes of solutions; algebraically special solutions, metrics with symmetries for problems in general relativity and gravitational theory
83C75 Space-time singularities, cosmic censorship, etc.
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Beem, J. K.; Ehrlich, P. E.; Easley, K. L., Global Lorentzian Geometry, Pure and Applied Math., vol. 202 (1996), Marcel Dekker: Marcel Dekker New York · Zbl 0846.53001
[2] Besse, A., Einstein Manifolds (1987), Springer-Verlag: Springer-Verlag Berlin, Heidelberg · Zbl 0613.53001
[3] Carlip, C., Quantum gravity in \(2 + 1\) dimensions: The case of the closed universe, Living Rev. Relativity, 8, 1-63 (2005) · Zbl 1071.83024
[4] Choquet-Bruhat, Y., Future complete \(S^1\) symmetric Einsteinian spacetimes, the unpolarized case, C. R. Math. Acad. Sci. Paris, 337, 129-136 (2003) · Zbl 1027.83005
[5] Choquet-Bruhat, Y.; Moncrief, V., Nonlinear stability of an expanding universe with the \(S^1\) isometry group, (Partial Differential Equations and Mathematical Physics. Partial Differential Equations and Mathematical Physics, Tokyo, 2001. Partial Differential Equations and Mathematical Physics. Partial Differential Equations and Mathematical Physics, Tokyo, 2001, Progr. Nonlinear Differential Equations Appl., vol. 52 (2003), Birkhäuser Boston: Birkhäuser Boston Boston, MA), 57-71 · Zbl 1062.35149
[6] Geroch, R., Spinor structure of space-times in general relativity. I, J. Math. Phys., 9, 1739-1744 (1968) · Zbl 0165.29402
[7] Gray, A., Pseudo-Riemannian almost product manifolds and submersions, J. Math. Mech., 16, 715-737 (1967) · Zbl 0147.21201
[8] Gutiérrez, M.; Palomo, F. J.; Romero, A., A new approach to the study of conjugate points along null geodesics on certain compact Lorentzian manifolds, Proc. del Congreso Geometría de Lorentz. Proc. del Congreso Geometría de Lorentz, Benalmádena 2001. Proc. del Congreso Geometría de Lorentz. Proc. del Congreso Geometría de Lorentz, Benalmádena 2001, Pub. de la RSME, 5, 171-181 (2003)
[9] Gutiérrez, M.; Palomo, F. J.; Romero, A., A Berger-Green type inequality for compact Lorentzian manifolds, Trans. Amer. Math. Soc.. Trans. Amer. Math. Soc., Trans. Amer. Math. Soc., 355, 5119-5120 (2003), Erratum:
[10] Gutiérrez, M.; Palomo, F. J.; Romero, A., Conjugate points along null geodesics on Lorentzian manifolds with symmetries, Proc. X Fall Workshop on Geometry and Physics. Proc. X Fall Workshop on Geometry and Physics, Miraflores de la Sierra, Madrid. Proc. X Fall Workshop on Geometry and Physics. Proc. X Fall Workshop on Geometry and Physics, Miraflores de la Sierra, Madrid, Pub. de la RSME, 4, 169-182 (2003) · Zbl 1152.53318
[11] Gutiérrez, M.; Palomo, F. J.; Romero, A., Lorentzian manifolds with no Null Conjugate Points, Math. Proc. Camb. Phil. Soc., 137, 363-375 (2004) · Zbl 1061.53048
[12] Haesen, S.; Palomo, F. J.; Romero, A., A new method to construct spacetimes with a spacelike circle action (2006), preprint
[13] Harris, S. G., A characterization of Robertson-Walker spaces by null sectional curvature, Gen. Relat. Grav., 17, 493-498 (1985) · Zbl 0562.53015
[14] Hawking, S. W.; Ellis, G. F.R., The Large Scale Structure of Space-Time (1973), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0265.53054
[15] Kobayashi, S.; Nomizu, K., Foundations of Differential Geometry, vol. 1 (1963), John Wiley and Sons: John Wiley and Sons New York · Zbl 0119.37502
[16] Koch-Sen, L., Infinitesimal null isotropy and Robertson-Walker metrics, J. Math. Phys., 26, 407-410 (1985) · Zbl 0561.53058
[17] Kühnel, W., Differential Geometry. Curves-Surfaces-Manifolds, Student Math. Library, vol. 16 (2002), Amer. Math. Soc.
[18] Marsden, J. E., Lectures on Mechanics, London Math. Soc., Lecture Notes Series, vol. 174 (1992), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0744.70004
[19] Mounoud, P., Some topological and metrics properties of the space of Lorentz metrics, Differential Geom. Appl., 15, 47-57 (2001) · Zbl 1039.53077
[20] O’Neill, B., The fundamental equations of a submersion, Mich. Math. J., 13, 459-469 (1966) · Zbl 0145.18602
[21] O’Neill, B., Semi-Riemannian Geometry with Applications to Relativity (1983), Academic Press: Academic Press New York · Zbl 0531.53051
[22] Palomo, F. J.; Romero, A., Certain actual topics on modern Lorentzian geometry, (Dillen, F.; Verstraelen, L., Handbook of Differential Geometry, vol. 2 (2006), Elsevier: Elsevier Amsterdam), Chapter 8 · Zbl 1152.53059
[23] Palomo, F. J., The fibre bundle of degenerate tangent planes of a Lorentzian manifold and the smoothness of the null sectional curvature, Differential Geom. Appl., 25, 667-673 (2007) · Zbl 1131.53037
[24] Penrose, R., Gravitational collapse and space-time singularities, Phys. Rev. Lett., 14, 57-59 (1965) · Zbl 0125.21206
[25] Sakai, T., Riemannian Geometry, Translations of Mathematical Monographs, vol. 149 (1996), Amer. Math. Soc.: Amer. Math. Soc. Providence
[26] Senovilla, J. M.M., Classification of spacelike surfaces in spacetime, Class. Quantum Grav., 24, 3091-3124 (2007) · Zbl 1117.83102
[27] Stephani, H., Über Lösungen der Einsteinschen Feldgleichungen, die sich in einen fünfdimensionalen flachen Raum einbetten lassen, Commun. Math. Phys., 4, 137-142 (1967) · Zbl 0152.45903
[28] Stephani, H., Konform flache Gravitationsfelder, Commun. Math. Phys., 5, 337-342 (1967) · Zbl 0152.46001
[29] Stephani, H.; Kramer, D.; MacCallum, M.; Hoenselaers, C.; Herlt, E., Exact Solutions to Einstein’s Field Equations, Cambridge Monographs on Mathematical Physics (2003), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 1057.83004
[30] Wu, H., On the de Rham decomposition theorem, Illinois J. Math., 8, 291-311 (1964) · Zbl 0122.40005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.