Schwientek, Jan; Seidel, Tobias; Küfer, Karl-Heinz A transformation-based discretization method for solving general semi-infinite optimization problems. (English) Zbl 07331448 Math. Methods Oper. Res. 93, No. 1, 83-114 (2021). MSC: 90C34 90C30 65K05 PDF BibTeX XML Cite \textit{J. Schwientek} et al., Math. Methods Oper. Res. 93, No. 1, 83--114 (2021; Zbl 07331448) Full Text: DOI
Correa, Rafael; López, M. A.; Pérez-Aros, Pedro Necessary and sufficient optimality conditions in DC semi-infinite programming. (English) Zbl 07330002 SIAM J. Optim. 31, No. 1, 837-865 (2021). MSC: 90C30 90C34 90C26 PDF BibTeX XML Cite \textit{R. Correa} et al., SIAM J. Optim. 31, No. 1, 837--865 (2021; Zbl 07330002) Full Text: DOI
Tung, Le Thanh Strong Karush-Kuhn-Tucker optimality conditions for Borwein properly efficient solutions of multiobjective semi-infinite programming. (English) Zbl 07328978 Bull. Braz. Math. Soc. (N.S.) 52, No. 1, 1-22 (2021). MSC: 90C46 90C29 90C34 49J52 PDF BibTeX XML Cite \textit{L. T. Tung}, Bull. Braz. Math. Soc. (N.S.) 52, No. 1, 1--22 (2021; Zbl 07328978) Full Text: DOI
Mohammadi, Ashkan; Mordukhovich, Boris S. Variational analysis in normed spaces with applications to constrained optimization. (English) Zbl 07319275 SIAM J. Optim. 31, No. 1, 569-603 (2021). MSC: 49J52 49J53 90C48 90C34 PDF BibTeX XML Cite \textit{A. Mohammadi} and \textit{B. S. Mordukhovich}, SIAM J. Optim. 31, No. 1, 569--603 (2021; Zbl 07319275) Full Text: DOI
Dhillon, Gurbir Semi-infinite cohomology and the linkage principle for \(\mathcal{W}\)-algebras. (English) Zbl 07319254 Adv. Math. 381, Article ID 107625, 63 p. (2021). MSC: 13 17 PDF BibTeX XML Cite \textit{G. Dhillon}, Adv. Math. 381, Article ID 107625, 63 p. (2021; Zbl 07319254) Full Text: DOI
Tanaka, Mirai; Okuno, Takayuki Extension of the LP-Newton method to conic programming problems via semi-infinite representation. (English) Zbl 07307389 Numer. Algorithms 86, No. 3, 1285-1302 (2021). MSC: 65 PDF BibTeX XML Cite \textit{M. Tanaka} and \textit{T. Okuno}, Numer. Algorithms 86, No. 3, 1285--1302 (2021; Zbl 07307389) Full Text: DOI
Guo, Feng; Sun, Xiaoxia Semidefinite programming relaxations for linear semi-infinite polynomial programming. (English) Zbl 07313907 Pac. J. Optim. 16, No. 3, 395-418 (2020). MSC: 90C22 90C23 90C34 65K05 PDF BibTeX XML Cite \textit{F. Guo} and \textit{X. Sun}, Pac. J. Optim. 16, No. 3, 395--418 (2020; Zbl 07313907) Full Text: Link
Chen, Fei; Feng, Zhi Guo; Yiu, K. F. C. Limit analysis for the optimal value of a class of minimax optimization problems. (English) Zbl 07313903 Pac. J. Optim. 16, No. 2, 315-327 (2020). MSC: 90C47 90C34 90C31 PDF BibTeX XML Cite \textit{F. Chen} et al., Pac. J. Optim. 16, No. 2, 315--327 (2020; Zbl 07313903) Full Text: Link
Tung, Le Thanh Karush-Kuhn-Tucker optimality conditions and duality for semi-infinite programming problems with vanishing constraints. (English) Zbl 07312293 J. Nonlinear Var. Anal. 4, No. 3, 319-336 (2020). MSC: 47 46 PDF BibTeX XML Cite \textit{L. T. Tung}, J. Nonlinear Var. Anal. 4, No. 3, 319--336 (2020; Zbl 07312293) Full Text: DOI
Khanh, Phan Quoc; Tung, Nguyen Minh On the Mangasarian-Fromovitz constraint qualification and Karush-Kuhn-Tucker conditions in nonsmooth semi-infinite multiobjective programming. (English) Zbl 07311805 Optim. Lett. 14, No. 8, 2055-2072 (2020). MSC: 90C29 90C34 90C46 PDF BibTeX XML Cite \textit{P. Q. Khanh} and \textit{N. M. Tung}, Optim. Lett. 14, No. 8, 2055--2072 (2020; Zbl 07311805) Full Text: DOI
Ghate, Archis Robust continuous linear programs. (English) Zbl 07311779 Optim. Lett. 14, No. 7, 1627-1642 (2020). Reviewer: Armin Hoffmann (Ilmenau) MSC: 90C34 90C17 90C05 90C15 90C48 49J27 PDF BibTeX XML Cite \textit{A. Ghate}, Optim. Lett. 14, No. 7, 1627--1642 (2020; Zbl 07311779) Full Text: DOI
Kato, Syu; Naito, Satoshi; Sagaki, Daisuke Equivariant \(K\)-theory of semi-infinite flag manifolds and the Pieri-Chevalley formula. (English) Zbl 07292312 Duke Math. J. 169, No. 13, 2421-2500 (2020). MSC: 17B37 14N15 33D52 81R10 PDF BibTeX XML Cite \textit{S. Kato} et al., Duke Math. J. 169, No. 13, 2421--2500 (2020; Zbl 07292312) Full Text: DOI Euclid
Won, Daehan; Manzour, Hasan; Chaovalitwongse, Wanpracha Convex optimization for group feature selection in networked data. (English) Zbl 1451.90034 INFORMS J. Comput. 32, No. 1, 182-198 (2020). MSC: 90B10 90C34 90C25 68T05 PDF BibTeX XML Cite \textit{D. Won} et al., INFORMS J. Comput. 32, No. 1, 182--198 (2020; Zbl 1451.90034) Full Text: DOI
Sharma, Basant Lal Discrete scattering by two staggered semi-infinite defects: reduction of matrix Wiener-Hopf problem. (English) Zbl 1453.74047 J. Eng. Math. 123, 41-87 (2020). MSC: 74J20 74A60 PDF BibTeX XML Cite \textit{B. L. Sharma}, J. Eng. Math. 123, 41--87 (2020; Zbl 1453.74047) Full Text: DOI
Aboussoror, A.; Adly, S.; Salim, S. An extended conjugate duality for generalized semi-infinite programming problems via a convex decomposition. (English) Zbl 07271711 Optimization 69, No. 7-8, 1635-1654 (2020). MSC: 90C34 90C26 46N10 90C46 PDF BibTeX XML Cite \textit{A. Aboussoror} et al., Optimization 69, No. 7--8, 1635--1654 (2020; Zbl 07271711) Full Text: DOI
Li, Xiangyou; Miao, Hongmei Duality conditions of nonsmooth semi-infinite multi-objective fractional programming. (Chinese. English summary) Zbl 07266698 J. Chongqing Norm. Univ., Nat. Sci. 37, No. 1, 81-85 (2020). MSC: 90C46 90C29 90C32 PDF BibTeX XML Cite \textit{X. Li} and \textit{H. Miao}, J. Chongqing Norm. Univ., Nat. Sci. 37, No. 1, 81--85 (2020; Zbl 07266698) Full Text: DOI
Karimov, K. T. Nonlocal problem for an elliptic equation with singular coefficients in a semi-infinite parallelepiped. (English) Zbl 1454.35097 Lobachevskii J. Math. 41, No. 1, 46-57 (2020). MSC: 35J25 PDF BibTeX XML Cite \textit{K. T. Karimov}, Lobachevskii J. Math. 41, No. 1, 46--57 (2020; Zbl 1454.35097) Full Text: DOI
Abgaryan, G. V.; Pleshchinskii, N. B. On resonant frequencies in the diffraction problems of electromagnetic waves by the diaphragm in a semi-infinite waveguide. (English) Zbl 1451.78030 Lobachevskii J. Math. 41, No. 7, 1325-1336 (2020). MSC: 78A50 78A45 35B34 PDF BibTeX XML Cite \textit{G. V. Abgaryan} and \textit{N. B. Pleshchinskii}, Lobachevskii J. Math. 41, No. 7, 1325--1336 (2020; Zbl 1451.78030) Full Text: DOI
Ishii, Motohiro Semi-infinite Young tableaux and standard monomial theory for semi-infinite Lakshmibai-Seshadri paths. (English) Zbl 1452.05189 Algebr. Comb. 3, No. 5, 1141-1163 (2020). MSC: 05E10 PDF BibTeX XML Cite \textit{M. Ishii}, Algebr. Comb. 3, No. 5, 1141--1163 (2020; Zbl 1452.05189) Full Text: DOI
Kubenko, V. D.; Yanchevskii, I. V. Abnormal frequencies in a semi-infinite cylindrical vessel filled with a fluid and dynamically excited by a spherical oscillator. (English. Russian original) Zbl 1443.74206 Int. Appl. Mech. 56, No. 2, 141-155 (2020); translation from Prikl. Mekh., Kiev 56, No. 2, 18-35 (2020). MSC: 74J99 76Q05 78A40 74F15 76W05 PDF BibTeX XML Cite \textit{V. D. Kubenko} and \textit{I. V. Yanchevskii}, Int. Appl. Mech. 56, No. 2, 141--155 (2020; Zbl 1443.74206); translation from Prikl. Mekh., Kiev 56, No. 2, 18--35 (2020) Full Text: DOI
Sun, Xiangkai; Teo, Kok Lay; Zeng, Jing; Liu, Liying Robust approximate optimal solutions for nonlinear semi-infinite programming with uncertainty. (English) Zbl 1451.90164 Optimization 69, No. 9, 2109-2129 (2020). MSC: 90C34 90C17 90C26 90C46 PDF BibTeX XML Cite \textit{X. Sun} et al., Optimization 69, No. 9, 2109--2129 (2020; Zbl 1451.90164) Full Text: DOI
Barragán, Abraham B.; Hernández, Lidia A.; Iusem, Alfredo N.; Todorov, Maxim I. Primal-dual partitions in linear semi-infinite programming with bounded coefficients. (English) Zbl 07246938 J. Nonlinear Var. Anal. 4, No. 2, 207-223 (2020). MSC: 47 46 PDF BibTeX XML Cite \textit{A. B. Barragán} et al., J. Nonlinear Var. Anal. 4, No. 2, 207--223 (2020; Zbl 07246938) Full Text: DOI
Behrends, Sönke; Schöbel, Anita Generating valid linear inequalities for nonlinear programs via sums of squares. (English) Zbl 07246148 J. Optim. Theory Appl. 186, No. 3, 911-935 (2020). MSC: 90C30 90C11 14P10 90C10 PDF BibTeX XML Cite \textit{S. Behrends} and \textit{A. Schöbel}, J. Optim. Theory Appl. 186, No. 3, 911--935 (2020; Zbl 07246148) Full Text: DOI
Subramanyam, Anirudh; Gounaris, Chrysanthos E.; Wiesemann, Wolfram \(K\)-adaptability in two-stage mixed-integer robust optimization. (English) Zbl 1441.90101 Math. Program. Comput. 12, No. 2, 193-224 (2020). MSC: 90C11 90C15 90C34 90C47 PDF BibTeX XML Cite \textit{A. Subramanyam} et al., Math. Program. Comput. 12, No. 2, 193--224 (2020; Zbl 1441.90101) Full Text: DOI
Gourtani, Arash; Nguyen, Tri-Dung; Xu, Huifu A distributionally robust optimization approach for two-stage facility location problems. (English) Zbl 1445.90051 EURO J. Comput. Optim. 8, No. 2, 141-172 (2020). MSC: 90B80 90C17 90C22 90C34 PDF BibTeX XML Cite \textit{A. Gourtani} et al., EURO J. Comput. Optim. 8, No. 2, 141--172 (2020; Zbl 1445.90051) Full Text: DOI
Feng, Zhi Guo; Chen, Fei; Chen, Lin; Yiu, Ka Fai Cedric Optimality analysis of a class of semi-infinite programming problems. (English) Zbl 1450.90055 J. Optim. Theory Appl. 186, No. 2, 398-411 (2020). MSC: 90C34 47H10 26B10 PDF BibTeX XML Cite \textit{Z. G. Feng} et al., J. Optim. Theory Appl. 186, No. 2, 398--411 (2020; Zbl 1450.90055) Full Text: DOI
Wei, Bo; Haskell, William B.; Zhao, Sixiang An inexact primal-dual algorithm for semi-infinite programming. (English) Zbl 1447.90068 Math. Methods Oper. Res. 91, No. 3, 501-544 (2020). MSC: 90C34 PDF BibTeX XML Cite \textit{B. Wei} et al., Math. Methods Oper. Res. 91, No. 3, 501--544 (2020; Zbl 1447.90068) Full Text: DOI
Ju, Jiachen; Liu, Qian Convergence properties of a class of exact penalty methods for semi-infinite optimization problems. (English) Zbl 1447.90067 Math. Methods Oper. Res. 91, No. 3, 383-403 (2020). MSC: 90C34 PDF BibTeX XML Cite \textit{J. Ju} and \textit{Q. Liu}, Math. Methods Oper. Res. 91, No. 3, 383--403 (2020; Zbl 1447.90067) Full Text: DOI
Yuen, Robert; Stoev, Stilian; Cooley, Daniel Distributionally robust inference for extreme value-at-risk. (English) Zbl 1445.91070 Insur. Math. Econ. 92, 70-89 (2020). MSC: 91G70 90C05 90C34 PDF BibTeX XML Cite \textit{R. Yuen} et al., Insur. Math. Econ. 92, 70--89 (2020; Zbl 1445.91070) Full Text: DOI
Son, Ta Quang; Van Tuyen, Nguyen; Wen, Ching-Feng Optimality conditions for approximate Pareto solutions of a nonsmooth vector optimization problem with an infinite number of constraints. (English) Zbl 07216599 Acta Math. Vietnam. 45, No. 2, 435-448 (2020). MSC: 90C29 90C46 41A65 65K10 90C34 PDF BibTeX XML Cite \textit{T. Q. Son} et al., Acta Math. Vietnam. 45, No. 2, 435--448 (2020; Zbl 07216599) Full Text: DOI
Gilles, Marc Aurèle; Vladimirsky, Alexander Evasive path planning under surveillance uncertainty. (English) Zbl 1445.49019 Dyn. Games Appl. 10, No. 2, 391-416 (2020). MSC: 49N75 49N90 49K35 91A05 90C29 35F21 90C25 49K20 PDF BibTeX XML Cite \textit{M. A. Gilles} and \textit{A. Vladimirsky}, Dyn. Games Appl. 10, No. 2, 391--416 (2020; Zbl 1445.49019) Full Text: DOI
Fan, Xiaodong; Qin, Tian Stability analysis for generalized semi-infinite optimization problems under functional perturbations. (English) Zbl 1449.90351 J. Ind. Manag. Optim. 16, No. 3, 1221-1233 (2020). MSC: 90C34 90C31 49K40 PDF BibTeX XML Cite \textit{X. Fan} and \textit{T. Qin}, J. Ind. Manag. Optim. 16, No. 3, 1221--1233 (2020; Zbl 1449.90351) Full Text: DOI
Sun, Jie; Yang, Xinmin; Yao, Qiang; Zhang, Min Risk minimization, regret minimization and progressive hedging algorithms. (English) Zbl 1440.90037 Math. Program. 181, No. 2 (B), 509-530 (2020). MSC: 90C15 90C25 90C34 PDF BibTeX XML Cite \textit{J. Sun} et al., Math. Program. 181, No. 2 (B), 509--530 (2020; Zbl 1440.90037) Full Text: DOI
Ling, Shuyang; Strohmer, Thomas Certifying global optimality of graph cuts via semidefinite relaxation: a performance guarantee for spectral clustering. (English) Zbl 1445.90109 Found. Comput. Math. 20, No. 3, 367-421 (2020). MSC: 90C34 90C27 90C46 60B20 PDF BibTeX XML Cite \textit{S. Ling} and \textit{T. Strohmer}, Found. Comput. Math. 20, No. 3, 367--421 (2020; Zbl 1445.90109) Full Text: DOI
Tinh, Phan Nhat Optimality conditions for nonsmooth vector problems in normed spaces. (English) Zbl 1440.49031 Optimization 69, No. 6, 1151-1186 (2020). Reviewer: Aris Daniilidis (Santiago) MSC: 49K27 90C30 90C34 PDF BibTeX XML Cite \textit{P. N. Tinh}, Optimization 69, No. 6, 1151--1186 (2020; Zbl 1440.49031) Full Text: DOI
Beer, Gerald; Cánovas, María Josefa; López, Marco Antonio; Parra, Juan A uniform approach to Hölder calmness of subdifferentials. (English) Zbl 1439.49030 J. Convex Anal. 27, No. 1, 165-178 (2020). MSC: 49J53 52A41 90C25 90C31 90C34 PDF BibTeX XML Cite \textit{G. Beer} et al., J. Convex Anal. 27, No. 1, 165--178 (2020; Zbl 1439.49030) Full Text: Link
Alberts, Tom; Rassoul-Agha, Firas; Simper, Mackenzie Busemann functions and semi-infinite O’Connell-Yor polymers. (English) Zbl 1437.82028 Bernoulli 26, No. 3, 1927-1955 (2020). MSC: 82D60 82C43 82C31 60G55 60J65 60J25 35B41 PDF BibTeX XML Cite \textit{T. Alberts} et al., Bernoulli 26, No. 3, 1927--1955 (2020; Zbl 1437.82028) Full Text: DOI Euclid
Kostyukova, O. I.; Tchemisova, T. V.; Dudina, O. S. Immobile indices and CQ-free optimality criteria for linear copositive programming problems. (English) Zbl 1442.90145 Set-Valued Var. Anal. 28, No. 1, 89-107 (2020). Reviewer: Gerhard-Wilhelm Weber (Poznań and Ankara) MSC: 90C25 90C34 90C46 49N15 PDF BibTeX XML Cite \textit{O. I. Kostyukova} et al., Set-Valued Var. Anal. 28, No. 1, 89--107 (2020; Zbl 1442.90145) Full Text: DOI
Ma, Yaocai; Cai, Hui Comments on: “Elasto-plastic solution for shallow tunnel in semi-infinite space”. (English) Zbl 07193560 Appl. Math. Modelling 82, 938-941 (2020). MSC: 74 76 PDF BibTeX XML Cite \textit{Y. Ma} and \textit{H. Cai}, Appl. Math. Modelling 82, 938--941 (2020; Zbl 07193560) Full Text: DOI
Alzalg, Baha Logarithmic-barrier decomposition interior-point methods for stochastic linear optimization in a Hilbert space. (English) Zbl 1441.90102 Numer. Funct. Anal. Optim. 41, No. 8, 901-928 (2020). MSC: 90C15 90C34 90C48 46C07 90C51 PDF BibTeX XML Cite \textit{B. Alzalg}, Numer. Funct. Anal. Optim. 41, No. 8, 901--928 (2020; Zbl 1441.90102) Full Text: DOI
Okuno, Takayuki; Fukushima, Masao An interior point sequential quadratic programming-type method for log-determinant semi-infinite programs. (English) Zbl 1436.90143 J. Comput. Appl. Math. 376, Article ID 112784, 20 p. (2020). MSC: 90C34 90C30 90C20 90C51 65K05 PDF BibTeX XML Cite \textit{T. Okuno} and \textit{M. Fukushima}, J. Comput. Appl. Math. 376, Article ID 112784, 20 p. (2020; Zbl 1436.90143) Full Text: DOI
Pang, Li-Ping; Wu, Qi; Wang, Jin-He; Wu, Qiong A discretization algorithm for nonsmooth convex semi-infinite programming problems based on bundle methods. (English) Zbl 1433.90175 Comput. Optim. Appl. 76, No. 1, 125-153 (2020). MSC: 90C34 90C25 90C56 PDF BibTeX XML Cite \textit{L.-P. Pang} et al., Comput. Optim. Appl. 76, No. 1, 125--153 (2020; Zbl 1433.90175) Full Text: DOI
Son, T. Q.; Wen, C. F. Weak-subdifferentials for vector functions and applications to multiobjective semi-infinite optimization problems. (English) Zbl 1451.90133 Appl. Anal. 99, No. 5, 840-855 (2020). Reviewer: Jan-Joachim Rückmann (Bergen) MSC: 90C26 90C34 49N15 90C46 PDF BibTeX XML Cite \textit{T. Q. Son} and \textit{C. F. Wen}, Appl. Anal. 99, No. 5, 840--855 (2020; Zbl 1451.90133) Full Text: DOI
Tung, Le Thanh Karush-Kuhn-Tucker optimality conditions and duality for multiobjective semi-infinite programming via tangential subdifferentials. (English) Zbl 1453.90176 Numer. Funct. Anal. Optim. 41, No. 6, 659-684 (2020). Reviewer: Juan-Enrique Martínez-Legaz (Barcelona) MSC: 90C34 90C29 90C46 49J52 PDF BibTeX XML Cite \textit{L. T. Tung}, Numer. Funct. Anal. Optim. 41, No. 6, 659--684 (2020; Zbl 1453.90176) Full Text: DOI
Guo, Feng; Sun, Xiaoxia On semi-infinite systems of convex polynomial inequalities and polynomial optimization problems. (English) Zbl 1441.90167 Comput. Optim. Appl. 75, No. 3, 669-699 (2020). MSC: 90C34 90C22 90C23 65K05 PDF BibTeX XML Cite \textit{F. Guo} and \textit{X. Sun}, Comput. Optim. Appl. 75, No. 3, 669--699 (2020; Zbl 1441.90167) Full Text: DOI
Anderson, Edward; Xu, Huifu; Zhang, Dali Varying confidence levels for CVaR risk measures and minimax limits. (English) Zbl 1436.90092 Math. Program. 180, No. 1-2 (A), 327-370 (2020). MSC: 90C15 90C17 65K05 91B05 PDF BibTeX XML Cite \textit{E. Anderson} et al., Math. Program. 180, No. 1--2 (A), 327--370 (2020; Zbl 1436.90092) Full Text: DOI
Burtscheidt, Johanna; Claus, Matthias; Dempe, Stephan Risk-averse models in bilevel stochastic linear programming. (English) Zbl 1431.90099 SIAM J. Optim. 30, No. 1, 377-406 (2020). MSC: 90C15 90C26 90C31 90C34 91A65 PDF BibTeX XML Cite \textit{J. Burtscheidt} et al., SIAM J. Optim. 30, No. 1, 377--406 (2020; Zbl 1431.90099) Full Text: DOI
Sadeghieh, Ali; Barilla, David; Caristi, Giuseppe; Kanzi, Nader \(\varPhi\)-weak Slater constraint qualification in nonsmooth multiobjective semi-infinite programming. (English) Zbl 1429.90069 Le Thi, Hoai An (ed.) et al., Optimization of complex systems: theory, models, algorithms and applications. Selected papers of the 6th world congress on global optimization (WCGO 2019), University of Lorraine, Metz, France, July 8–10, 2019. Cham: Springer. Adv. Intell. Syst. Comput. 991, 702-710 (2020). MSC: 90C29 90C34 90C46 PDF BibTeX XML Cite \textit{A. Sadeghieh} et al., Adv. Intell. Syst. Comput. 991, 702--710 (2020; Zbl 1429.90069) Full Text: DOI
Schultz, Eduardo S.; Hannemann-Tamás, Ralf; Mitsos, Alexander Guaranteed satisfaction of inequality state constraints in PDE-constrained optimization. (English) Zbl 1431.49029 Automatica 111, Article ID 108653, 6 p. (2020). MSC: 49K20 90C39 PDF BibTeX XML Cite \textit{E. S. Schultz} et al., Automatica 111, Article ID 108653, 6 p. (2020; Zbl 1431.49029) Full Text: DOI
Kostyukova, O. I.; Tchemisova, T. V. Optimality conditions for linear copositive programming problems with isolated immobile indices. (English) Zbl 1434.90137 Optimization 69, No. 1, 145-164 (2020). MSC: 90C25 90C30 90C34 90C46 15B48 PDF BibTeX XML Cite \textit{O. I. Kostyukova} and \textit{T. V. Tchemisova}, Optimization 69, No. 1, 145--164 (2020; Zbl 1434.90137) Full Text: DOI
Akteke-Öztürk, Başak; Weber, Gerhard-Wilhelm; Köksal, Gülser Generalized desirability functions: a structural and topological analysis of desirability functions. (English) Zbl 1439.90062 Optimization 69, No. 1, 115-130 (2020). Reviewer: Jan-Joachim Rückmann (Bergen) MSC: 90C29 90C34 90C90 90B50 54A05 26A27 PDF BibTeX XML Cite \textit{B. Akteke-Öztürk} et al., Optimization 69, No. 1, 115--130 (2020; Zbl 1439.90062) Full Text: DOI
Marendet, Antoine; Goldsztejn, Alexandre; Chabert, Gilles; Jermann, Christophe A standard branch-and-bound approach for nonlinear semi-infinite problems. (English) Zbl 1430.90536 Eur. J. Oper. Res. 282, No. 2, 438-452 (2020). MSC: 90C34 90C30 65K05 PDF BibTeX XML Cite \textit{A. Marendet} et al., Eur. J. Oper. Res. 282, No. 2, 438--452 (2020; Zbl 1430.90536) Full Text: DOI
Naito, Satoshi; Nomoto, Fumihiko; Sagaki, Daisuke Tensor product decomposition theorem for quantum Lakshmibai-Seshadri paths and standard monomial theory for semi-infinite Lakshmibai-Seshadri paths. (English) Zbl 07137746 J. Comb. Theory, Ser. A 169, Article ID 105122, 36 p. (2020). MSC: 17B PDF BibTeX XML Cite \textit{S. Naito} et al., J. Comb. Theory, Ser. A 169, Article ID 105122, 36 p. (2020; Zbl 07137746) Full Text: DOI arXiv
Almeida Guimarães, Dilson; Salles da Cunha, Alexandre; Pereira, Dilson Lucas Semidefinite programming lower bounds and branch-and-bound algorithms for the quadratic minimum spanning tree problem. (English) Zbl 1430.90473 Eur. J. Oper. Res. 280, No. 1, 46-58 (2020). MSC: 90C27 90C22 90C35 PDF BibTeX XML Cite \textit{D. Almeida Guimarães} et al., Eur. J. Oper. Res. 280, No. 1, 46--58 (2020; Zbl 1430.90473) Full Text: DOI
Long, Xian-Jun; Tang, Li-Ping; Peng, Jian-Wen Optimality conditions for semi-infinite programming problems under relaxed quasiconvexity assumptions. (English) Zbl 1454.90101 Pac. J. Optim. 15, No. 4, 519-528 (2019). MSC: 90C34 90C46 90C26 PDF BibTeX XML Cite \textit{X.-J. Long} et al., Pac. J. Optim. 15, No. 4, 519--528 (2019; Zbl 1454.90101) Full Text: Link
Long, Xian-Jun; Peng, Zai-Yun; Wang, Xianfu Stable Farkas lemmas and duality for nonconvex composite semi-infinite programming problems. (English) Zbl 07313230 Pac. J. Optim. 15, No. 2, 295-315 (2019). MSC: 90C34 90C46 PDF BibTeX XML Cite \textit{X.-J. Long} et al., Pac. J. Optim. 15, No. 2, 295--315 (2019; Zbl 07313230) Full Text: Link
Zhao, Yong; Liu, Yongchao; Yang, Xinming Distributionally robust reward-risk ratio programming with Wasserstein metric. (English) Zbl 1454.90039 Pac. J. Optim. 15, No. 1, 69-90 (2019). MSC: 90C15 90C34 90C47 PDF BibTeX XML Cite \textit{Y. Zhao} et al., Pac. J. Optim. 15, No. 1, 69--90 (2019; Zbl 1454.90039) Full Text: Link
Basak, Prasanta; Mandal, S. C. Semi-infinite moving crack between two bonded dissimilar isotropic strips. (English) Zbl 1442.74199 Meccanica 54, No. 6, 855-871 (2019). MSC: 74R10 42A38 PDF BibTeX XML Cite \textit{P. Basak} and \textit{S. C. Mandal}, Meccanica 54, No. 6, 855--871 (2019; Zbl 1442.74199) Full Text: DOI
Khantree, Chanoksuda; Wangkeeree, Rabian On quasi approximate solutions for nonsmooth robust semi-infinite optimization problems. (English) Zbl 07238249 Carpathian J. Math. 35, No. 3, 417-426 (2019). MSC: 90C25 90C46 90C34 PDF BibTeX XML Cite \textit{C. Khantree} and \textit{R. Wangkeeree}, Carpathian J. Math. 35, No. 3, 417--426 (2019; Zbl 07238249)
Zou, Jin-feng; Wang, Feng; Wei, An A semi-analytical solution for shallow tunnels with radius-iterative-approach in semi-infinite space. (English) Zbl 07187146 Appl. Math. Modelling 73, 285-302 (2019). MSC: 74 76 PDF BibTeX XML Cite \textit{J.-f. Zou} et al., Appl. Math. Modelling 73, 285--302 (2019; Zbl 07187146) Full Text: DOI
Gong, Zhaohua; Liu, Chongyang; Teo, Kok Lay; Sun, Jie Distributionally robust parameter identification of a time-delay dynamical system with stochastic measurements. (English) Zbl 07186548 Appl. Math. Modelling 69, 685-695 (2019). MSC: 90 93 PDF BibTeX XML Cite \textit{Z. Gong} et al., Appl. Math. Modelling 69, 685--695 (2019; Zbl 07186548) Full Text: DOI
Sun, Min; Tian, Maoying; Wang, Yiju Discrete-time Zhang neural networks for time-varying nonlinear optimization. (English) Zbl 1453.90175 Discrete Dyn. Nat. Soc. 2019, Article ID 4745759, 14 p. (2019). MSC: 90C34 PDF BibTeX XML Cite \textit{M. Sun} et al., Discrete Dyn. Nat. Soc. 2019, Article ID 4745759, 14 p. (2019; Zbl 1453.90175) Full Text: DOI
Chuong, Thai Doan Exact relaxations for parametric robust linear optimization problems. (English) Zbl 07165760 Oper. Res. Lett. 47, No. 2, 105-109 (2019). MSC: 90 PDF BibTeX XML Cite \textit{T. D. Chuong}, Oper. Res. Lett. 47, No. 2, 105--109 (2019; Zbl 07165760) Full Text: DOI
Son, Ta Quang; Wen, Ching Feng Weak-stability and saddle point theorems for a multiobjective optimization problem with an infinite number of constraints. (English) Zbl 1430.90519 Turk. J. Math. 43, No. 4, 1953-1966 (2019). MSC: 90C29 49J53 90C31 90C34 PDF BibTeX XML Cite \textit{T. Q. Son} and \textit{C. F. Wen}, Turk. J. Math. 43, No. 4, 1953--1966 (2019; Zbl 1430.90519) Full Text: Link
Rapoport, Edgar Ya. Method for parametric optimization in problems of the multichannel control of systems with distributed parameters. (English. Russian original) Zbl 1432.49024 J. Comput. Syst. Sci. Int. 58, No. 4, 545-559 (2019); translation from Izv. Ross. Akad. Nauk, Teor. Sist. Upravl. 2019, No. 4, 47-61 (2019). MSC: 49K10 90C31 90C34 PDF BibTeX XML Cite \textit{E. Ya. Rapoport}, J. Comput. Syst. Sci. Int. 58, No. 4, 545--559 (2019; Zbl 1432.49024); translation from Izv. Ross. Akad. Nauk, Teor. Sist. Upravl. 2019, No. 4, 47--61 (2019) Full Text: DOI
Rodrigues de Sousa, Vilmar Jefté; Anjos, Miguel F.; Le Digabel, Sébastien Improving the linear relaxation of maximum \(k\)-cut with semidefinite-based constraints. (English) Zbl 1437.90141 EURO J. Comput. Optim. 7, No. 2, 123-151 (2019). MSC: 90C27 90C22 90C35 90C57 PDF BibTeX XML Cite \textit{V. J. Rodrigues de Sousa} et al., EURO J. Comput. Optim. 7, No. 2, 123--151 (2019; Zbl 1437.90141) Full Text: DOI
Dmitruk, A. V.; Osmolovskii, N. P. Variations of the \(v\)-change of time in problems with state constraints. (English. Russian original) Zbl 1431.49024 Proc. Steklov Inst. Math. 305, Suppl. 1, S49-S64 (2019); translation from Tr. Inst. Mat. Mekh. (Ekaterinburg) 24, No. 1, 76-92 (2018). MSC: 49K15 PDF BibTeX XML Cite \textit{A. V. Dmitruk} and \textit{N. P. Osmolovskii}, Proc. Steklov Inst. Math. 305, S49--S64 (2019; Zbl 1431.49024); translation from Tr. Inst. Mat. Mekh. (Ekaterinburg) 24, No. 1, 76--92 (2018) Full Text: DOI
Kruger, Alexander Y.; López, Marco A.; Yang, Xiaoqi; Zhu, Jiangxing Hölder error bounds and Hölder calmness with applications to convex semi-infinite optimization. (English) Zbl 1430.49014 Set-Valued Var. Anal. 27, No. 4, 995-1023 (2019). MSC: 49J53 90C25 90C31 90C34 PDF BibTeX XML Cite \textit{A. Y. Kruger} et al., Set-Valued Var. Anal. 27, No. 4, 995--1023 (2019; Zbl 1430.49014) Full Text: DOI
Gupta, Pooja; Mishra, S. K.; Mohapatra, R. N. Duality models for multiobjective semiinfinite fractional programming problems involving type-I and related functions. (English) Zbl 1425.90121 Quaest. Math. 42, No. 9, 1199-1220 (2019). MSC: 90C34 90C29 PDF BibTeX XML Cite \textit{P. Gupta} et al., Quaest. Math. 42, No. 9, 1199--1220 (2019; Zbl 1425.90121) Full Text: DOI
Djelassi, Hatim; Glass, Moll; Mitsos, Alexander Discretization-based algorithms for generalized semi-infinite and bilevel programs with coupling equality constraints. (English) Zbl 1428.90169 J. Glob. Optim. 75, No. 2, 341-392 (2019). MSC: 90C34 90C11 90C26 PDF BibTeX XML Cite \textit{H. Djelassi} et al., J. Glob. Optim. 75, No. 2, 341--392 (2019; Zbl 1428.90169) Full Text: DOI
Eftekhari, Armin; Thompson, Andrew Sparse inverse problems over measures: equivalence of the conditional gradient and exchange methods. (English) Zbl 1421.90113 SIAM J. Optim. 29, No. 2, 1329-1349 (2019). MSC: 90C25 90C34 49M29 PDF BibTeX XML Cite \textit{A. Eftekhari} and \textit{A. Thompson}, SIAM J. Optim. 29, No. 2, 1329--1349 (2019; Zbl 1421.90113) Full Text: DOI arXiv
Lee, Jae Hyoung; Lee, Gue Myung On \(\epsilon\)-solutions for robust semi-infinite optimization problems. (English) Zbl 1421.90150 Positivity 23, No. 3, 651-669 (2019). MSC: 90C34 90C25 90C46 PDF BibTeX XML Cite \textit{J. H. Lee} and \textit{G. M. Lee}, Positivity 23, No. 3, 651--669 (2019; Zbl 1421.90150) Full Text: DOI
Astaf’ev, N. N.; Ivanov, A. V.; Trofimov, S. P. The set of target vectors in a semi-infinite linear program with a duality gap. (English. Russian original) Zbl 1419.90061 Proc. Steklov Inst. Math. 304, Suppl. 1, S14-S22 (2019); translation from Tr. Inst. Mat. Mekh. (Ekaterinburg) 22, No. 4, 43-52 (2016). MSC: 90C05 90C34 PDF BibTeX XML Cite \textit{N. N. Astaf'ev} et al., Proc. Steklov Inst. Math. 304, S14--S22 (2019; Zbl 1419.90061); translation from Tr. Inst. Mat. Mekh. (Ekaterinburg) 22, No. 4, 43--52 (2016) Full Text: DOI
Dmitruk, Andrei V.; Osmolovskii, Nikolai P. Proof of the maximum principle for a problem with state constraints by the \(v\)-change of time variable. (English) Zbl 1419.49021 Discrete Contin. Dyn. Syst., Ser. B 24, No. 5, 2189-2204 (2019). MSC: 49K15 49K27 46N10 PDF BibTeX XML Cite \textit{A. V. Dmitruk} and \textit{N. P. Osmolovskii}, Discrete Contin. Dyn. Syst., Ser. B 24, No. 5, 2189--2204 (2019; Zbl 1419.49021) Full Text: DOI
Gong, Zhaohua; Liu, Chongyang; Sun, Jie; Teo, Kok Lay Distributionally robust \(L_1\)-estimation in multiple linear regression. (English) Zbl 1425.90120 Optim. Lett. 13, No. 4, 935-947 (2019). MSC: 90C34 62J05 PDF BibTeX XML Cite \textit{Z. Gong} et al., Optim. Lett. 13, No. 4, 935--947 (2019; Zbl 1425.90120) Full Text: DOI
Wu, Qiong; Wang, Jin-He; Zhang, Hong-Wei; Wang, Shuang; Pang, Li-Ping Nonsmooth optimization method for \(H_\infty\) output feedback control. (English) Zbl 1418.90266 Asia-Pac. J. Oper. Res. 36, No. 3, Article ID 1950015, 23 p. (2019). MSC: 90C34 90C26 PDF BibTeX XML Cite \textit{Q. Wu} et al., Asia-Pac. J. Oper. Res. 36, No. 3, Article ID 1950015, 23 p. (2019; Zbl 1418.90266) Full Text: DOI
Luo, Fengqiao; Mehrotra, Sanjay Decomposition algorithm for distributionally robust optimization using Wasserstein metric with an application to a class of regression models. (English) Zbl 1430.90557 Eur. J. Oper. Res. 278, No. 1, 20-35 (2019). MSC: 90C47 90C15 60B10 62J02 90C34 PDF BibTeX XML Cite \textit{F. Luo} and \textit{S. Mehrotra}, Eur. J. Oper. Res. 278, No. 1, 20--35 (2019; Zbl 1430.90557) Full Text: DOI
Kapoor, Shiva; Lalitha, C. S. Stability in unified semi-infinite vector optimization. (English) Zbl 1425.90122 J. Glob. Optim. 74, No. 2, 383-399 (2019). MSC: 90C34 90C29 90C31 PDF BibTeX XML Cite \textit{S. Kapoor} and \textit{C. S. Lalitha}, J. Glob. Optim. 74, No. 2, 383--399 (2019; Zbl 1425.90122) Full Text: DOI
Gadhi, Nazih Abderrazzak Necessary optimality conditions for a nonsmooth semi-infinite programming problem. (English) Zbl 07069298 J. Glob. Optim. 74, No. 1, 161-168 (2019). MSC: 90C29 90C26 90C70 49K99 PDF BibTeX XML Cite \textit{N. A. Gadhi}, J. Glob. Optim. 74, No. 1, 161--168 (2019; Zbl 07069298) Full Text: DOI
Carlsson, John Gunnar; Wang, Ye Distributions with maximum spread subject to Wasserstein distance constraints. (English) Zbl 1424.90196 J. Oper. Res. Soc. China 7, No. 1, 69-105 (2019). MSC: 90C15 90C34 PDF BibTeX XML Cite \textit{J. G. Carlsson} and \textit{Y. Wang}, J. Oper. Res. Soc. China 7, No. 1, 69--105 (2019; Zbl 1424.90196) Full Text: DOI
Peng, Zai-Yun; Wang, Xianfu; Yang, Xin-Min Connectedness of approximate efficient solutions for generalized semi-infinite vector optimization problems. (English) Zbl 1430.90514 Set-Valued Var. Anal. 27, No. 1, 103-118 (2019). Reviewer: Frank Werner (Magdeburg) MSC: 90C29 90C31 PDF BibTeX XML Cite \textit{Z.-Y. Peng} et al., Set-Valued Var. Anal. 27, No. 1, 103--118 (2019; Zbl 1430.90514) Full Text: DOI
Elbassioni, Khaled; Makino, Kazuhisa; Najy, Waleed A multiplicative weight updates algorithm for packing and covering semi-infinite linear programs. (English) Zbl 1430.90535 Algorithmica 81, No. 6, 2377-2429 (2019). MSC: 90C34 90C27 90C15 PDF BibTeX XML Cite \textit{K. Elbassioni} et al., Algorithmica 81, No. 6, 2377--2429 (2019; Zbl 1430.90535) Full Text: DOI
Brunel, Victor-Emmanuel Concentration of the empirical level sets of Tukey’s halfspace depth. (English) Zbl 1416.62285 Probab. Theory Relat. Fields 173, No. 3-4, 1165-1196 (2019). MSC: 62H05 90C34 90C05 62F10 PDF BibTeX XML Cite \textit{V.-E. Brunel}, Probab. Theory Relat. Fields 173, No. 3--4, 1165--1196 (2019; Zbl 1416.62285) Full Text: DOI arXiv
Yanıkoğlu, İhsan; Gorissen, Bram L.; den Hertog, Dick A survey of adjustable robust optimization. (English) Zbl 1430.90537 Eur. J. Oper. Res. 277, No. 3, 799-813 (2019). MSC: 90C34 90C47 PDF BibTeX XML Cite \textit{İ. Yanıkoğlu} et al., Eur. J. Oper. Res. 277, No. 3, 799--813 (2019; Zbl 1430.90537) Full Text: DOI
Wang, Zhiguo; Shen, Xiaojing; Zhu, Yunmin On equivalence of major relaxation methods for minimum ellipsoid covering intersection of ellipsoids. (English) Zbl 1434.90208 Automatica 103, 337-345 (2019). MSC: 90C34 PDF BibTeX XML Cite \textit{Z. Wang} et al., Automatica 103, 337--345 (2019; Zbl 1434.90208) Full Text: DOI
Bonnans, J. Frédéric Convex and stochastic optimization. (English) Zbl 1417.90001 Universitext. Cham: Springer (ISBN 978-3-030-14976-5/pbk; 978-3-030-14977-2/ebook). xiii, 311 p. (2019). Reviewer: I. M. Stancu-Minasian (Bucureşti) MSC: 90-01 90C15 90C22 90C25 90C40 90C34 90C46 PDF BibTeX XML Cite \textit{J. F. Bonnans}, Convex and stochastic optimization. Cham: Springer (2019; Zbl 1417.90001) Full Text: DOI
Kanzi, Nader; Caristi, Giuseppe; Sadeghieh, Ali Optimality conditions for semi-infinite programming problems involving generalized convexity. (English) Zbl 07040053 Optim. Lett. 13, No. 1, 113-126 (2019). MSC: 90C PDF BibTeX XML Cite \textit{N. Kanzi} et al., Optim. Lett. 13, No. 1, 113--126 (2019; Zbl 07040053) Full Text: DOI
Kirst, Peter; Stein, Oliver Global optimization of generalized semi-infinite programs using disjunctive programming. (English) Zbl 1417.90141 J. Glob. Optim. 73, No. 1, 1-25 (2019). MSC: 90C34 90C26 90C57 PDF BibTeX XML Cite \textit{P. Kirst} and \textit{O. Stein}, J. Glob. Optim. 73, No. 1, 1--25 (2019; Zbl 1417.90141) Full Text: DOI
Pérez-Aros, Pedro Formulae for the conjugate and the subdifferential of the supremum function. (English) Zbl 1409.90143 J. Optim. Theory Appl. 180, No. 2, 397-427 (2019). MSC: 90C25 90C34 46N10 PDF BibTeX XML Cite \textit{P. Pérez-Aros}, J. Optim. Theory Appl. 180, No. 2, 397--427 (2019; Zbl 1409.90143) Full Text: DOI arXiv
Hess, Christian; Seri, Raffaello Generic consistency for approximate stochastic programming and statistical problems. (English) Zbl 1410.90136 SIAM J. Optim. 29, No. 1, 290-317 (2019). MSC: 90C15 90C59 60F15 60B10 62F40 90C34 PDF BibTeX XML Cite \textit{C. Hess} and \textit{R. Seri}, SIAM J. Optim. 29, No. 1, 290--317 (2019; Zbl 1410.90136) Full Text: DOI
Lv, Jian; Pang, Li-Ping; Xu, Na; Xiao, Ze-Hao An infeasible bundle method for nonconvex constrained optimization with application to semi-infinite programming problems. (English) Zbl 1410.90169 Numer. Algorithms 80, No. 2, 397-427 (2019). MSC: 90C26 90C34 49J52 93B40 PDF BibTeX XML Cite \textit{J. Lv} et al., Numer. Algorithms 80, No. 2, 397--427 (2019; Zbl 1410.90169) Full Text: DOI
Van Parys, Bart P. G.; Goulart, Paul J.; Morari, Manfred Distributionally robust expectation inequalities for structured distributions. (English) Zbl 1410.90231 Math. Program. 173, No. 1-2 (A), 251-280 (2019). MSC: 90C34 90C15 PDF BibTeX XML Cite \textit{B. P. G. Van Parys} et al., Math. Program. 173, No. 1--2 (A), 251--280 (2019; Zbl 1410.90231) Full Text: DOI
Li, Bowen; Jiang, Ruiwei; Mathieu, Johanna L. Ambiguous risk constraints with moment and unimodality information. (English) Zbl 1410.90139 Math. Program. 173, No. 1-2 (A), 151-192 (2019). MSC: 90C15 90C22 90C34 PDF BibTeX XML Cite \textit{B. Li} et al., Math. Program. 173, No. 1--2 (A), 151--192 (2019; Zbl 1410.90139) Full Text: DOI
Liu, Shiping; Münch, Florentin; Peyerimhoff, Norbert Curvature and higher order Buser inequalities for the graph connection Laplacian. (English) Zbl 1404.05113 SIAM J. Discrete Math. 33, No. 1, 257-305 (2019). MSC: 05C50 53C23 58J35 05C76 90C34 PDF BibTeX XML Cite \textit{S. Liu} et al., SIAM J. Discrete Math. 33, No. 1, 257--305 (2019; Zbl 1404.05113) Full Text: DOI arXiv
Blado, Daniel; Toriello, Alejandro Relaxation analysis for the dynamic knapsack problem with stochastic item sizes. (English) Zbl 1411.90340 SIAM J. Optim. 29, No. 1, 1-30 (2019). MSC: 90C34 90C40 PDF BibTeX XML Cite \textit{D. Blado} and \textit{A. Toriello}, SIAM J. Optim. 29, No. 1, 1--30 (2019; Zbl 1411.90340) Full Text: DOI
Han, Yu; Gong, Xun-Hua; Huang, Nan-Jing Existence of solutions for symmetric vector set-valued quasi-equilibrium problems with applications. (English) Zbl 07305732 Pac. J. Optim. 14, No. 1, 31-49 (2018). MSC: 49J53 54C60 91B50 PDF BibTeX XML Cite \textit{Y. Han} et al., Pac. J. Optim. 14, No. 1, 31--49 (2018; Zbl 07305732) Full Text: Link
Gao, Ming Jie; Yiu, Ka Fai Cedric; Wu, Soon Yi A perturbation exchange algorithm for convex semi-infinite programming with applications in sparse beamformer design. (English) Zbl 07305731 Pac. J. Optim. 14, No. 1, 15-30 (2018). MSC: 90C34 65K05 68U99 PDF BibTeX XML Cite \textit{M. J. Gao} et al., Pac. J. Optim. 14, No. 1, 15--30 (2018; Zbl 07305731) Full Text: Link
Shitkovskaya, Tatiana; Hong, Zhe; Kim, Do Sang Optimality conditions for generalized approximate solutions in semi-infinite multiobjective optimization. (English) Zbl 1451.90155 J. Nonlinear Convex Anal. 19, No. 10, 1643-1654 (2018). MSC: 90C30 90C34 90C46 PDF BibTeX XML Cite \textit{T. Shitkovskaya} et al., J. Nonlinear Convex Anal. 19, No. 10, 1643--1654 (2018; Zbl 1451.90155) Full Text: Link
Kumar, Promila; Jyoti Duality for non-differentiable multi-objective semi-infinite programming for higher order invex functions. (English) Zbl 1452.90290 Int. J. Math. Oper. Res. 12, No. 4, 457-470 (2018). MSC: 90C29 90C34 90C46 PDF BibTeX XML Cite \textit{P. Kumar} and \textit{Jyoti}, Int. J. Math. Oper. Res. 12, No. 4, 457--470 (2018; Zbl 1452.90290) Full Text: DOI
Zou, Jin-Feng; Wei, An; Yang, Tao Elasto-plastic solution for shallow tunnel in semi-infinite space. (English) Zbl 07183314 Appl. Math. Modelling 64, 669-687 (2018); corrigendum ibid. 82, 942–946 (2020). MSC: 74 76 PDF BibTeX XML Cite \textit{J.-F. Zou} et al., Appl. Math. Modelling 64, 669--687 (2018; Zbl 07183314) Full Text: DOI