Soroush, Hamed Necessary conditions in generalized semi-infinite optimization with nondifferentiable convex data. (English) Zbl 07568097 J. Math. Ext. 16, No. 10, Paper No. 5, 14 p. (2022). MSC: 90C34 90C40 49J52 PDF BibTeX XML Cite \textit{H. Soroush}, J. Math. Ext. 16, No. 10, Paper No. 5, 14 p. (2022; Zbl 07568097) Full Text: DOI OpenURL
Hare, Kevin G.; Hodges, Philip W. Applications of integer semi-infinite programing to the integer Chebyshev problem. (English) Zbl 07566914 Exp. Math. 31, No. 2, 694-700 (2022). MSC: 11C08 30C10 90C34 PDF BibTeX XML Cite \textit{K. G. Hare} and \textit{P. W. Hodges}, Exp. Math. 31, No. 2, 694--700 (2022; Zbl 07566914) Full Text: DOI OpenURL
Seidel, Tobias; Küfer, Karl-Heinz An adaptive discretization method solving semi-infinite optimization problems with quadratic rate of convergence. (English) Zbl 07565457 Optimization 71, No. 8, 2211-2239 (2022). MSC: 90C34 41A25 90C31 90C30 PDF BibTeX XML Cite \textit{T. Seidel} and \textit{K.-H. Küfer}, Optimization 71, No. 8, 2211--2239 (2022; Zbl 07565457) Full Text: DOI OpenURL
Ghobadzadeh, Marjan; Kanzi, Nader; Fallahi, Kamal Wolfe type duality for nonsmooth optimization problems with vanishing constraints. (English) Zbl 07564780 J. Math. Ext. 16, No. 9, Paper No. 7, 17 p. (2022). MSC: 90C34 90C40 49J52 PDF BibTeX XML Cite \textit{M. Ghobadzadeh} et al., J. Math. Ext. 16, No. 9, Paper No. 7, 17 p. (2022; Zbl 07564780) Full Text: DOI OpenURL
Kostyukova, Olga I.; Tchemisova, Tatiana V. Regularization algorithms for linear copositive problems. (English) Zbl 07561836 RAIRO, Oper. Res. 56, No. 3, 1353-1371 (2022). MSC: 90C25 90C46 90C30 90C34 PDF BibTeX XML Cite \textit{O. I. Kostyukova} and \textit{T. V. Tchemisova}, RAIRO, Oper. Res. 56, No. 3, 1353--1371 (2022; Zbl 07561836) Full Text: DOI OpenURL
Upadhyay, Balendu Bhooshan; Ghosh, Arnav; Mishra, Priyanka; Treanţă, Savin Optimality conditions and duality for multiobjective semi-infinite programming problems on Hadamard manifolds using generalized geodesic convexity. (English) Zbl 07560738 RAIRO, Oper. Res. 56, No. 4, 2037-2065 (2022). MSC: 90C34 90C46 90C48 90C29 58A05 58C05 49K27 PDF BibTeX XML Cite \textit{B. B. Upadhyay} et al., RAIRO, Oper. Res. 56, No. 4, 2037--2065 (2022; Zbl 07560738) Full Text: DOI OpenURL
Peng, Zai-Yun; Zhao, Yun-Bin; Yiu, Ka Fai Cedric; Zhou, Ya-Cong Stability analysis for semi-infinite vector optimization problems under functional perturbations. (English) Zbl 07559552 Numer. Funct. Anal. Optim. 43, No. 9, 1027-1049 (2022). MSC: 90C29 90C31 49K40 PDF BibTeX XML Cite \textit{Z.-Y. Peng} et al., Numer. Funct. Anal. Optim. 43, No. 9, 1027--1049 (2022; Zbl 07559552) Full Text: DOI OpenURL
Tinh, Cao Thanh; Chuong, Thai Doan Conic linear programming duals for classes of quadratic semi-infinite programs with applications. (English) Zbl 07558553 J. Optim. Theory Appl. 194, No. 2, 570-596 (2022). MSC: 90C05 90C22 90C34 90C46 PDF BibTeX XML Cite \textit{C. T. Tinh} and \textit{T. D. Chuong}, J. Optim. Theory Appl. 194, No. 2, 570--596 (2022; Zbl 07558553) Full Text: DOI OpenURL
Tung, Le Thanh Karush-Kuhn-Tucker optimality conditions and duality for multiobjective semi-infinite programming with vanishing constraints. (English) Zbl 07550800 Ann. Oper. Res. 311, No. 2, 1307-1334 (2022). MSC: 90C29 90C34 90C46 PDF BibTeX XML Cite \textit{L. T. Tung}, Ann. Oper. Res. 311, No. 2, 1307--1334 (2022; Zbl 07550800) Full Text: DOI OpenURL
Kostyukova, O. I.; Tchemisova, T. V. On strong duality in linear copositive programming. (English) Zbl 07550243 J. Glob. Optim. 83, No. 3, 457-480 (2022). MSC: 90C25 90C30 90C34 PDF BibTeX XML Cite \textit{O. I. Kostyukova} and \textit{T. V. Tchemisova}, J. Glob. Optim. 83, No. 3, 457--480 (2022; Zbl 07550243) Full Text: DOI OpenURL
Su, Tran Van; Luu, Do Van Higher-order Karush-Kuhn-Tucker optimality conditions for Borwein properly efficient solutions of multiobjective semi-infinite programming. (English) Zbl 07548183 Optimization 71, No. 6, 1749-1775 (2022). MSC: 90C46 90C29 49J52 90C34 PDF BibTeX XML Cite \textit{T. Van Su} and \textit{D. Van Luu}, Optimization 71, No. 6, 1749--1775 (2022; Zbl 07548183) Full Text: DOI OpenURL
Tuyen, N. V.; Wen, C.-F.; Son, T. Q. An approach to characterizing \(\epsilon\)-solution sets of convex programs. (English) Zbl 07542718 Top 30, No. 2, 249-269 (2022). MSC: 90C25 90C34 90C46 90C59 PDF BibTeX XML Cite \textit{N. V. Tuyen} et al., Top 30, No. 2, 249--269 (2022; Zbl 07542718) Full Text: DOI OpenURL
El Haffari, Mostafa An entropic regularized method of centers for continuous minimax problem with semi infinite constraints. (English) Zbl 1487.90637 J. Appl. Math. Comput. 68, No. 1, 637-653 (2022). MSC: 90C47 90C34 65K05 PDF BibTeX XML Cite \textit{M. El Haffari}, J. Appl. Math. Comput. 68, No. 1, 637--653 (2022; Zbl 1487.90637) Full Text: DOI OpenURL
Klatte, Diethard; Kummer, Bernd On Hölder calmness of minimizing sets. (English) Zbl 07528647 Optimization 71, No. 4, 1055-1072 (2022). Reviewer: Uwe Prüfert (Freiberg) MSC: 49J53 90C31 90C25 90C34 PDF BibTeX XML Cite \textit{D. Klatte} and \textit{B. Kummer}, Optimization 71, No. 4, 1055--1072 (2022; Zbl 07528647) Full Text: DOI OpenURL
Cuong, Nguyen Duy; Kruger, Alexander Y. Error bounds revisited. (English) Zbl 07528646 Optimization 71, No. 4, 1021-1053 (2022). MSC: 49J45 49J53 49K40 90C30 90C46 PDF BibTeX XML Cite \textit{N. D. Cuong} and \textit{A. Y. Kruger}, Optimization 71, No. 4, 1021--1053 (2022; Zbl 07528646) Full Text: DOI OpenURL
Ahmad, Izhar; Kaur, Arshpreet; Sharma, Mahesh Kumar Robust sufficient optimality conditions and duality in semi-infinite multiobjective programming with data uncertainty. (Robust optimality conditions and duality in semi-infinite multiobjective programming.) (English) Zbl 07527196 Acta Math. Univ. Comen., New Ser. 91, No. 1, 87-99 (2022). MSC: 90C17 90C29 90C34 90C46 PDF BibTeX XML Cite \textit{I. Ahmad} et al., Acta Math. Univ. Comen., New Ser. 91, No. 1, 87--99 (2022; Zbl 07527196) Full Text: Link OpenURL
Sun, Xiangkai; Feng, Xinyi; Teo, Kok Lay Robust optimality, duality and saddle points for multiobjective fractional semi-infinite optimization with uncertain data. (English) Zbl 07526495 Optim. Lett. 16, No. 5, 1457-1476 (2022). Reviewer: Sorin-Mihai Grad (Paris) MSC: 90C17 90C29 90C34 90C32 90C46 PDF BibTeX XML Cite \textit{X. Sun} et al., Optim. Lett. 16, No. 5, 1457--1476 (2022; Zbl 07526495) Full Text: DOI OpenURL
Pang, Li-Ping; Wu, Qi A feasible proximal bundle algorithm with convexification for nonsmooth, nonconvex semi-infinite programming. (English) Zbl 07512669 Numer. Algorithms 90, No. 1, 387-422 (2022). MSC: 65K05 90C34 90C26 PDF BibTeX XML Cite \textit{L.-P. Pang} and \textit{Q. Wu}, Numer. Algorithms 90, No. 1, 387--422 (2022; Zbl 07512669) Full Text: DOI OpenURL
DeCorte, Evan; Filho, Fernando Mário de Oliveira; Vallentin, Frank Complete positivity and distance-avoiding sets. (English) Zbl 07495395 Math. Program. 191, No. 2 (A), 487-558 (2022). MSC: 46N10 52C10 51K99 90C22 90C34 PDF BibTeX XML Cite \textit{E. DeCorte} et al., Math. Program. 191, No. 2 (A), 487--558 (2022; Zbl 07495395) Full Text: DOI OpenURL
Gadhi, Nazih Abderrazzak; El Idrissi, Mohammed Necessary optimality conditions for a multiobjective semi-infinite interval-valued programming problem. (English) Zbl 07490499 Optim. Lett. 16, No. 2, 653-666 (2022). MSC: 90C34 PDF BibTeX XML Cite \textit{N. A. Gadhi} and \textit{M. El Idrissi}, Optim. Lett. 16, No. 2, 653--666 (2022; Zbl 07490499) Full Text: DOI OpenURL
Son, Ta Quang; Kim, Do Sang A dual scheme for solving linear countable semi-infinite fractional programming problems. (English) Zbl 1487.90613 Optim. Lett. 16, No. 2, 575-588 (2022). MSC: 90C34 90C32 90C05 PDF BibTeX XML Cite \textit{T. Q. Son} and \textit{D. S. Kim}, Optim. Lett. 16, No. 2, 575--588 (2022; Zbl 1487.90613) Full Text: DOI OpenURL
Biefel, Christian; Liers, Frauke; Rolfes, Jan; Schmidt, Martin Affinely adjustable robust linear complementarity problems. (English) Zbl 1486.90135 SIAM J. Optim. 32, No. 1, 152-172 (2022). MSC: 90C17 90C33 91B50 91A10 90C34 PDF BibTeX XML Cite \textit{C. Biefel} et al., SIAM J. Optim. 32, No. 1, 152--172 (2022; Zbl 1486.90135) Full Text: DOI arXiv OpenURL
Su, Ke; Lin, Yumeng; Xu, Chun A new adaptive method to nonlinear semi-infinite programming. (English) Zbl 07475161 J. Ind. Manag. Optim. 18, No. 2, 1133-1144 (2022). MSC: 90C30 65K05 PDF BibTeX XML Cite \textit{K. Su} et al., J. Ind. Manag. Optim. 18, No. 2, 1133--1144 (2022; Zbl 07475161) Full Text: DOI OpenURL
Goberna, M. A.; Jeyakumar, V.; Li, G.; Vicente-Pérez, J. The radius of robust feasibility of uncertain mathematical programs: a survey and recent developments. (English) Zbl 07422958 Eur. J. Oper. Res. 296, No. 3, 749-763 (2022). MSC: 90C17 90C05 90C25 90C34 90-02 PDF BibTeX XML Cite \textit{M. A. Goberna} et al., Eur. J. Oper. Res. 296, No. 3, 749--763 (2022; Zbl 07422958) Full Text: DOI OpenURL
Kapoor, Shiva; Lalitha, C. S. Continuity and closedness of constraint and solution set mappings in unified parametric semi-infinite vector optimization. (English) Zbl 1485.90125 J. Math. Anal. Appl. 506, No. 2, Article ID 125648, 17 p. (2022). Reviewer: Jan-Joachim Rückmann (Bergen) MSC: 90C29 90C34 90C31 49K40 49M37 PDF BibTeX XML Cite \textit{S. Kapoor} and \textit{C. S. Lalitha}, J. Math. Anal. Appl. 506, No. 2, Article ID 125648, 17 p. (2022; Zbl 1485.90125) Full Text: DOI OpenURL
Liu, Jia; Wang, Xianjia A penalty function method for the principal-agent problem with an infinite number of incentive-compatibility constraints under moral hazard. (English) Zbl 07559802 Acta Math. Sci., Ser. B, Engl. Ed. 41, No. 5, 1749-1763 (2021). MSC: 91B44 90C34 PDF BibTeX XML Cite \textit{J. Liu} and \textit{X. Wang}, Acta Math. Sci., Ser. B, Engl. Ed. 41, No. 5, 1749--1763 (2021; Zbl 07559802) Full Text: DOI OpenURL
Jaisawal, Pushkar; Laha, Vivek On optimality and duality for nonsmooth robust multiobjective semi-infinite programming problem with mixed constraints. (English) Zbl 07549309 Linear Nonlinear Anal. 7, No. 3, 365-386 (2021). MSC: 90C17 90C34 90C46 PDF BibTeX XML Cite \textit{P. Jaisawal} and \textit{V. Laha}, Linear Nonlinear Anal. 7, No. 3, 365--386 (2021; Zbl 07549309) Full Text: Link OpenURL
Li, Gaoxi; Yuan, Liuyang; Wan, Zhongping Mixed integer semi-infinite programming problem. (Chinese. English summary) Zbl 07495002 Sci. Sin., Math. 51, No. 8, 1321-1336 (2021). MSC: 90C11 90C34 PDF BibTeX XML Cite \textit{G. Li} et al., Sci. Sin., Math. 51, No. 8, 1321--1336 (2021; Zbl 07495002) Full Text: DOI OpenURL
Bae, Kwan Deok; Piao, Guang-Ri; Hong, Zhe; Kim, Do Sang On minimax fractional semi-infinite programming problems with applications. (English) Zbl 07483527 Numer. Funct. Anal. Optim. 42, No. 13, Part 1, 1522-1538 (2021). Reviewer: Armin Hoffmann (Ilmenau) MSC: 90C32 90C34 90C46 90C48 49N15 49J52 49K35 PDF BibTeX XML Cite \textit{K. D. Bae} et al., Numer. Funct. Anal. Optim. 42, No. 13, Part 1, 1522--1538 (2021; Zbl 07483527) Full Text: DOI OpenURL
Sun, Xiangkai; Mo, Xiaoqing; Teo, Kok Lay On weighted robust approximate solutions for semi-infinite optimization with uncertain data. (English) Zbl 1480.90222 J. Nonlinear Convex Anal. 22, No. 11, 2507-2524 (2021). MSC: 90C29 90C34 90C46 PDF BibTeX XML Cite \textit{X. Sun} et al., J. Nonlinear Convex Anal. 22, No. 11, 2507--2524 (2021; Zbl 1480.90222) Full Text: Link OpenURL
Sadeghieh, Ali; Hassani Bafrani, Atefeh Quasi-duality result and linearization in multiobjective quasiconvex programming. (English) Zbl 1478.90134 J. Math. Ext. 15, No. 4, Paper No. 16, 12 p. (2021). MSC: 90C34 90C40 49J52 90C29 PDF BibTeX XML Cite \textit{A. Sadeghieh} and \textit{A. Hassani Bafrani}, J. Math. Ext. 15, No. 4, Paper No. 16, 12 p. (2021; Zbl 1478.90134) Full Text: DOI Link OpenURL
Huang, Ming; Yuan, Jinlong; Lin, Sida; Liang, Xijun; Liu, Chongyang On solving the convex semi-infinite minimax problems via superlinear \(\mathcal{VU}\) incremental bundle technique with partial inexact oracle. (English) Zbl 1484.90129 Asia-Pac. J. Oper. Res. 38, No. 5, Article ID 2140015, 32 p. (2021). MSC: 90C34 90C47 PDF BibTeX XML Cite \textit{M. Huang} et al., Asia-Pac. J. Oper. Res. 38, No. 5, Article ID 2140015, 32 p. (2021; Zbl 1484.90129) Full Text: DOI OpenURL
Wang, Haijun; Wang, Huihui Duality theorems for nondifferentiable semi-infinite interval-valued optimization problems with vanishing constraints. (English) Zbl 07465163 J. Inequal. Appl. 2021, Paper No. 182, 19 p. (2021). MSC: 90Cxx 49Jxx 49Lxx PDF BibTeX XML Cite \textit{H. Wang} and \textit{H. Wang}, J. Inequal. Appl. 2021, Paper No. 182, 19 p. (2021; Zbl 07465163) Full Text: DOI OpenURL
Mordukhovich, Boris; Pérez-Aros, Pedro Generalized Leibniz rules and Lipschitzian stability for expected-integral mappings. (English) Zbl 07453667 SIAM J. Optim. 31, No. 4, 3212-3246 (2021). Reviewer: I. M. Stancu-Minasian (Bucureşti) MSC: 90C15 90C34 28B20 PDF BibTeX XML Cite \textit{B. Mordukhovich} and \textit{P. Pérez-Aros}, SIAM J. Optim. 31, No. 4, 3212--3246 (2021; Zbl 07453667) Full Text: DOI arXiv OpenURL
Wu, Qi; Tian, Qi; Pang, Liping A bundle method for solving nonsmooth convex semi-infinite programming with inexact information. (Chinese. English summary) Zbl 07448342 J. Dalian Univ. Technol. 61, No. 4, 424-430 (2021). MSC: 90C34 PDF BibTeX XML Cite \textit{Q. Wu} et al., J. Dalian Univ. Technol. 61, No. 4, 424--430 (2021; Zbl 07448342) Full Text: DOI OpenURL
Mei, Yu; Chen, Zhi-Ping; Ji, Bing-Bing; Xu, Zhu-Jia; Liu, Jia Data-driven stochastic programming with distributionally robust constraints under Wasserstein distance: asymptotic properties. (English) Zbl 07443744 J. Oper. Res. Soc. China 9, No. 3, 525-542 (2021). MSC: 90C15 90C59 90C34 90C17 PDF BibTeX XML Cite \textit{Y. Mei} et al., J. Oper. Res. Soc. China 9, No. 3, 525--542 (2021; Zbl 07443744) Full Text: DOI OpenURL
Cerulli, Martina; Liberti, Leo Polynomial programming prevents aircraft (and other) conflicts. (English) Zbl 07443042 Oper. Res. Lett. 49, No. 4, 447-451 (2021). MSC: 90-XX 65-XX PDF BibTeX XML Cite \textit{M. Cerulli} and \textit{L. Liberti}, Oper. Res. Lett. 49, No. 4, 447--451 (2021; Zbl 07443042) Full Text: DOI OpenURL
Bulut, Aykut; Ralphs, Ted K. On the complexity of inverse mixed integer linear optimization. (English) Zbl 1481.90224 SIAM J. Optim. 31, No. 4, 3014-3043 (2021). MSC: 90C10 90C11 90C34 PDF BibTeX XML Cite \textit{A. Bulut} and \textit{T. K. Ralphs}, SIAM J. Optim. 31, No. 4, 3014--3043 (2021; Zbl 1481.90224) Full Text: DOI arXiv OpenURL
Fan, Xiaona; Yu, Changhui; Chen, Yan Solving a class of semi-infinite variational inequality problems via a homotopy method. (English) Zbl 1476.90326 Comput. Appl. Math. 40, No. 8, Paper No. 288, 19 p. (2021). MSC: 90C33 90C30 65C20 65L05 PDF BibTeX XML Cite \textit{X. Fan} et al., Comput. Appl. Math. 40, No. 8, Paper No. 288, 19 p. (2021; Zbl 1476.90326) Full Text: DOI OpenURL
Sun, Xiangkai; Teo, Kok Lay; Long, Xian-Jun Some characterizations of approximate solutions for robust semi-infinite optimization problems. (English) Zbl 1480.90186 J. Optim. Theory Appl. 191, No. 1, 281-310 (2021). MSC: 90C17 90C29 90C34 90C46 PDF BibTeX XML Cite \textit{X. Sun} et al., J. Optim. Theory Appl. 191, No. 1, 281--310 (2021; Zbl 1480.90186) Full Text: DOI OpenURL
Jaisawal, Pushkar; Antczak, Tadeusz; Laha, Vivek On sufficiency and duality for semi-infinite multiobjective optimisation problems involving V-invexity. (English) Zbl 1482.90198 Int. J. Math. Oper. Res. 18, No. 4, 465-483 (2021). MSC: 90C29 90C34 90C46 PDF BibTeX XML Cite \textit{P. Jaisawal} et al., Int. J. Math. Oper. Res. 18, No. 4, 465--483 (2021; Zbl 1482.90198) Full Text: DOI OpenURL
Kumar, Promila; Dagar, Jyoti Optimality and duality for multiobjective semi-infinite variational problem using higher-order B-type I functions. (English) Zbl 07421470 J. Oper. Res. Soc. China 9, No. 2, 375-393 (2021). MSC: 90C46 90C29 90C34 PDF BibTeX XML Cite \textit{P. Kumar} and \textit{J. Dagar}, J. Oper. Res. Soc. China 9, No. 2, 375--393 (2021; Zbl 07421470) Full Text: DOI OpenURL
Nie, Jiawang; Wang, Li; Ye, Jane J.; Zhong, Suhan A Lagrange multiplier expression method for bilevel polynomial optimization. (English) Zbl 07414054 SIAM J. Optim. 31, No. 3, 2368-2395 (2021). MSC: 65K05 90C22 90C26 90C34 PDF BibTeX XML Cite \textit{J. Nie} et al., SIAM J. Optim. 31, No. 3, 2368--2395 (2021; Zbl 07414054) Full Text: DOI arXiv OpenURL
Flinth, Axel; de Gournay, Frédéric; Weiss, Pierre On the linear convergence rates of exchange and continuous methods for total variation minimization. (English) Zbl 1475.49032 Math. Program. 190, No. 1-2 (A), 221-257 (2021). MSC: 49M25 49M29 90C34 65K05 PDF BibTeX XML Cite \textit{A. Flinth} et al., Math. Program. 190, No. 1--2 (A), 221--257 (2021; Zbl 1475.49032) Full Text: DOI arXiv OpenURL
Wang, Haijun; Zhang, Xiuli Strong KKT type conditions for nonsmooth semi-infinite multi-objective optimization problems. (Chinese. English summary) Zbl 07404461 Math. Pract. Theory 51, No. 9, 171-176 (2021). MSC: 90C29 90C46 90C34 PDF BibTeX XML Cite \textit{H. Wang} and \textit{X. Zhang}, Math. Pract. Theory 51, No. 9, 171--176 (2021; Zbl 07404461) OpenURL
Mo, Xiaoqing; Sun, Xiangkai Robust approximate optimality for a class of uncertain semi-infinite multi-objective optimization problems. (Chinese. English summary) Zbl 07403994 J. Jilin Univ., Sci. 59, No. 2, 257-262 (2021). MSC: 90C29 90C46 90C34 PDF BibTeX XML Cite \textit{X. Mo} and \textit{X. Sun}, J. Jilin Univ., Sci. 59, No. 2, 257--262 (2021; Zbl 07403994) Full Text: DOI OpenURL
Guo, Feng; Jiao, Liguo On solving a class of fractional semi-infinite polynomial programming problems. (English) Zbl 07402745 Comput. Optim. Appl. 80, No. 2, 439-481 (2021). MSC: 65K05 90C22 90C29 90C34 90Cxx PDF BibTeX XML Cite \textit{F. Guo} and \textit{L. Jiao}, Comput. Optim. Appl. 80, No. 2, 439--481 (2021; Zbl 07402745) Full Text: DOI arXiv OpenURL
Mordukhovich, Boris S.; Pérez-Aros, Pedro New extremal principles with applications to stochastic and semi-infinite programming. (English) Zbl 1483.90097 Math. Program. 189, No. 1-2 (B), 527-553 (2021). Reviewer: I. M. Stancu-Minasian (Bucureşti) MSC: 90C15 90C34 PDF BibTeX XML Cite \textit{B. S. Mordukhovich} and \textit{P. Pérez-Aros}, Math. Program. 189, No. 1--2 (B), 527--553 (2021; Zbl 1483.90097) Full Text: DOI arXiv OpenURL
Correa, R.; Hantoute, A.; López, M. A. Subdifferential of the supremum function: moving back and forth between continuous and non-continuous settings. (English) Zbl 1484.46080 Math. Program. 189, No. 1-2 (B), 217-247 (2021). MSC: 46N10 52A41 90C25 49J52 PDF BibTeX XML Cite \textit{R. Correa} et al., Math. Program. 189, No. 1--2 (B), 217--247 (2021; Zbl 1484.46080) Full Text: DOI arXiv OpenURL
Beer, G.; Cánovas, M. J.; López, M. A.; Parra, J. Lipschitz modulus of linear and convex inequality systems with the Hausdorff metric. (English) Zbl 1477.90108 Math. Program. 189, No. 1-2 (B), 75-98 (2021). MSC: 90C31 49J53 49K40 90C05 90C25 90C34 PDF BibTeX XML Cite \textit{G. Beer} et al., Math. Program. 189, No. 1--2 (B), 75--98 (2021; Zbl 1477.90108) Full Text: DOI arXiv OpenURL
Koenig, Adam W.; D’Amico, Simone Fast algorithm for fuel-optimal impulsive control of linear systems with time-varying cost. (English) Zbl 1471.93146 IEEE Trans. Autom. Control 66, No. 9, 4029-4042 (2021). MSC: 93C27 93C05 93-08 90C34 PDF BibTeX XML Cite \textit{A. W. Koenig} and \textit{S. D'Amico}, IEEE Trans. Autom. Control 66, No. 9, 4029--4042 (2021; Zbl 1471.93146) Full Text: DOI arXiv OpenURL
Ghafari, N.; Mohebi, H. Optimality conditions for nonconvex problems over nearly convex feasible sets. (English) Zbl 07384616 Arab. J. Math. 10, No. 2, 395-408 (2021). MSC: 90C26 90C30 90C34 90C46 PDF BibTeX XML Cite \textit{N. Ghafari} and \textit{H. Mohebi}, Arab. J. Math. 10, No. 2, 395--408 (2021; Zbl 07384616) Full Text: DOI OpenURL
Bakhtiari, Hassan; Mohebi, Hossein Lagrange multiplier characterizations of constrained best approximation with infinite constraints. (English) Zbl 1475.90118 J. Optim. Theory Appl. 189, No. 3, 814-835 (2021). MSC: 90C34 41A29 41A50 90C26 90C46 PDF BibTeX XML Cite \textit{H. Bakhtiari} and \textit{H. Mohebi}, J. Optim. Theory Appl. 189, No. 3, 814--835 (2021; Zbl 1475.90118) Full Text: DOI OpenURL
Mohand, Ouanes Tighter bound functions for nonconvex functions over simplexes. (English) Zbl 07375350 RAIRO, Oper. Res. 55, Suppl., S2373-S2381 (2021). MSC: 65K05 90C30 90C34 PDF BibTeX XML Cite \textit{O. Mohand}, RAIRO, Oper. Res. 55, S2373--S2381 (2021; Zbl 07375350) Full Text: DOI OpenURL
Joshi, Bhuwan Chandra Optimality and duality for nonsmooth semi-infinite mathematical program with equilibrium constraints involving generalized invexity of order \(\sigma > 0\). (English) Zbl 1478.90133 RAIRO, Oper. Res. 55, Suppl., S2221-S2240 (2021). Reviewer: Jan-Joachim Rückmann (Bergen) MSC: 90C34 90C46 49J52 PDF BibTeX XML Cite \textit{B. C. Joshi}, RAIRO, Oper. Res. 55, S2221--S2240 (2021; Zbl 1478.90133) Full Text: DOI OpenURL
Pérez-Aros, Pedro; Vilches, Emilio Moreau envelope of supremum functions with applications to infinite and stochastic programming. (English) Zbl 1478.49014 SIAM J. Optim. 31, No. 3, 1635-1657 (2021). Reviewer: Marcin Anholcer (Poznań) MSC: 49J53 90C15 90C34 90C25 PDF BibTeX XML Cite \textit{P. Pérez-Aros} and \textit{E. Vilches}, SIAM J. Optim. 31, No. 3, 1635--1657 (2021; Zbl 1478.49014) Full Text: DOI OpenURL
Hendrix, Eligius M. T.; Boglarka, G.-Tóth; Messine, Frederic; Casado, Leocadio G. On derivative based bounding for simplicial branch and bound. (English) Zbl 1471.90167 RAIRO, Oper. Res. 55, No. 3, 2023-2034 (2021). MSC: 90C57 65K05 90C30 90C34 PDF BibTeX XML Cite \textit{E. M. T. Hendrix} et al., RAIRO, Oper. Res. 55, No. 3, 2023--2034 (2021; Zbl 1471.90167) Full Text: DOI OpenURL
Yadav, Tamanna; Gupta, S. K. On duality theory for multiobjective semi-infinite fractional optimization model using higher order convexity. (English) Zbl 1471.90135 RAIRO, Oper. Res. 55, No. 3, 1343-1370 (2021). MSC: 90C29 90C34 90C32 90C46 PDF BibTeX XML Cite \textit{T. Yadav} and \textit{S. K. Gupta}, RAIRO, Oper. Res. 55, No. 3, 1343--1370 (2021; Zbl 1471.90135) Full Text: DOI OpenURL
Jennane, Mohsine; Kalmoun, El Mostafa; Lafhim, Lahoussine Erratum to: “Optimality conditions for nonsmooth interval-valued and multiobjective semi-infinite programming”. (English) Zbl 1472.49030 RAIRO, Oper. Res. 55, No. 1, 23-25 (2021). MSC: 49J52 90C46 58E35 PDF BibTeX XML Cite \textit{M. Jennane} et al., RAIRO, Oper. Res. 55, No. 1, 23--25 (2021; Zbl 1472.49030) Full Text: DOI OpenURL
Jennane, Mohsine; Kalmoun, El Mostafa; Lafhim, Lahoussine Optimality conditions for nonsmooth interval-valued and multiobjective semi-infinite programming. (English) Zbl 1468.49016 RAIRO, Oper. Res. 55, No. 1, 1-11 (2021); erratum ibid. 55, No. 1, 23-25 (2021). MSC: 49J52 90C46 58E35 PDF BibTeX XML Cite \textit{M. Jennane} et al., RAIRO, Oper. Res. 55, No. 1, 1--11 (2021; Zbl 1468.49016) Full Text: DOI OpenURL
Jiao, Liguo; Kim, Do Sang; Zhou, Yuying Quasi \(\epsilon\)-solutions in a semi-infinite programming problem with locally Lipschitz data. (English) Zbl 1471.90154 Optim. Lett. 15, No. 5, 1759-1772 (2021). MSC: 90C34 90C46 49N15 PDF BibTeX XML Cite \textit{L. Jiao} et al., Optim. Lett. 15, No. 5, 1759--1772 (2021; Zbl 1471.90154) Full Text: DOI OpenURL
Wang, Cong; Wu, Jie; Wu, Qiang Totally positive algebraic integers with small trace. (English) Zbl 1469.11483 Math. Comput. 90, No. 331, 2317-2332 (2021). Reviewer: Artūras Dubickas (Vilnius) MSC: 11Y40 11R06 PDF BibTeX XML Cite \textit{C. Wang} et al., Math. Comput. 90, No. 331, 2317--2332 (2021; Zbl 1469.11483) Full Text: DOI OpenURL
Dempe, Stephan; Dinh, Nguyen; Dutta, Joydeep; Pandit, Tanushree Simple bilevel programming and extensions. (English) Zbl 07367261 Math. Program. 188, No. 1(A), 227-253 (2021). MSC: 90C25 90C46 65K05 PDF BibTeX XML Cite \textit{S. Dempe} et al., Math. Program. 188, No. 1(A), 227--253 (2021; Zbl 07367261) Full Text: DOI arXiv OpenURL
Dolgopolik, Maxim V. A unified study of necessary and sufficient optimality conditions for minimax and Chebyshev problems with cone constraints. (English) Zbl 1478.90145 Minimax Theory Appl. 6, No. 1, 061-125 (2021). Reviewer: Nicolas Hadjisavvas (Ermoupoli) MSC: 90C47 49K35 90C22 90C34 PDF BibTeX XML Cite \textit{M. V. Dolgopolik}, Minimax Theory Appl. 6, No. 1, 061--125 (2021; Zbl 1478.90145) Full Text: arXiv Link OpenURL
Djelassi, Hatim; Mitsos, Alexander Global solution of semi-infinite programs with existence constraints. (English) Zbl 1469.90151 J. Optim. Theory Appl. 188, No. 3, 863-881 (2021). MSC: 90C34 65K05 90C26 90C33 PDF BibTeX XML Cite \textit{H. Djelassi} and \textit{A. Mitsos}, J. Optim. Theory Appl. 188, No. 3, 863--881 (2021; Zbl 1469.90151) Full Text: DOI OpenURL
Zhong, Li-nan; Jin, Yuan-feng Optimality conditions for minimax optimization problems with an infinite number of constraints and related applications. (English) Zbl 07347333 Acta Math. Appl. Sin., Engl. Ser. 37, No. 2, 251-263 (2021). MSC: 90C47 90C29 90C34 49N15 90C46 PDF BibTeX XML Cite \textit{L.-n. Zhong} and \textit{Y.-f. Jin}, Acta Math. Appl. Sin., Engl. Ser. 37, No. 2, 251--263 (2021; Zbl 07347333) Full Text: DOI OpenURL
Long, Xian-Jun; Liu, Juan; Huang, Nan-Jing Characterizing the solution set for nonconvex semi-infinite programs involving tangential subdifferentials. (English) Zbl 1470.90095 Numer. Funct. Anal. Optim. 42, No. 3, 279-297 (2021). Reviewer: Sorin-Mihai Grad (Wien) MSC: 90C26 90C34 90C46 PDF BibTeX XML Cite \textit{X.-J. Long} et al., Numer. Funct. Anal. Optim. 42, No. 3, 279--297 (2021; Zbl 1470.90095) Full Text: DOI OpenURL
Fu, Jun; Tian, Fangyin Dynamic optimization of nonlinear systems with guaranteed feasibility of inequality-path-constraints. (English) Zbl 1464.90111 Automatica 127, Article ID 109516, 8 p. (2021). MSC: 90C39 90C34 PDF BibTeX XML Cite \textit{J. Fu} and \textit{F. Tian}, Automatica 127, Article ID 109516, 8 p. (2021; Zbl 1464.90111) Full Text: DOI OpenURL
Schwientek, Jan; Seidel, Tobias; Küfer, Karl-Heinz A transformation-based discretization method for solving general semi-infinite optimization problems. (English) Zbl 1462.90146 Math. Methods Oper. Res. 93, No. 1, 83-114 (2021). MSC: 90C34 90C30 65K05 PDF BibTeX XML Cite \textit{J. Schwientek} et al., Math. Methods Oper. Res. 93, No. 1, 83--114 (2021; Zbl 1462.90146) Full Text: DOI OpenURL
Correa, Rafael; López, M. A.; Pérez-Aros, Pedro Necessary and sufficient optimality conditions in DC semi-infinite programming. (English) Zbl 07330002 SIAM J. Optim. 31, No. 1, 837-865 (2021). MSC: 90C34 90C26 PDF BibTeX XML Cite \textit{R. Correa} et al., SIAM J. Optim. 31, No. 1, 837--865 (2021; Zbl 07330002) Full Text: DOI OpenURL
Tung, Le Thanh Strong Karush-Kuhn-Tucker optimality conditions for Borwein properly efficient solutions of multiobjective semi-infinite programming. (English) Zbl 1473.90155 Bull. Braz. Math. Soc. (N.S.) 52, No. 1, 1-22 (2021). Reviewer: Sorin-Mihai Grad (Wien) MSC: 90C29 90C34 90C46 49J52 PDF BibTeX XML Cite \textit{L. T. Tung}, Bull. Braz. Math. Soc. (N.S.) 52, No. 1, 1--22 (2021; Zbl 1473.90155) Full Text: DOI OpenURL
Mohammadi, Ashkan; Mordukhovich, Boris S. Variational analysis in normed spaces with applications to constrained optimization. (English) Zbl 1459.49007 SIAM J. Optim. 31, No. 1, 569-603 (2021). MSC: 49J52 49J53 90C48 90C34 PDF BibTeX XML Cite \textit{A. Mohammadi} and \textit{B. S. Mordukhovich}, SIAM J. Optim. 31, No. 1, 569--603 (2021; Zbl 1459.49007) Full Text: DOI arXiv OpenURL
Tanaka, Mirai; Okuno, Takayuki Extension of the LP-Newton method to conic programming problems via semi-infinite representation. (English) Zbl 1464.90102 Numer. Algorithms 86, No. 3, 1285-1302 (2021). MSC: 90C30 90C34 90C53 PDF BibTeX XML Cite \textit{M. Tanaka} and \textit{T. Okuno}, Numer. Algorithms 86, No. 3, 1285--1302 (2021; Zbl 1464.90102) Full Text: DOI arXiv OpenURL
Kerdkaew, Jutamas; Wangkeeree, Rabian; Lee, Gue Myung Approximate optimality for quasi approximate solutions in nonsmooth semi-infinite programming problems, using \(\varepsilon\)-upper semi-regular semi-convexificators. (English) Zbl 07540537 Filomat 34, No. 6, 2073-2089 (2020). MSC: 90C30 90C46 49J52 PDF BibTeX XML Cite \textit{J. Kerdkaew} et al., Filomat 34, No. 6, 2073--2089 (2020; Zbl 07540537) Full Text: DOI OpenURL
Caruso, Francesco; Lignola, M. Beatrice; Morgan, Jacqueline Regularization and approximation methods in Stackelberg games and bilevel optimization. (English) Zbl 1479.91064 Dempe, Stephan (ed.) et al., Bilevel optimization. Advances and next challenges. Cham: Springer. Springer Optim. Appl. 161, 77-138 (2020). MSC: 91A65 91A20 90C34 PDF BibTeX XML Cite \textit{F. Caruso} et al., Springer Optim. Appl. 161, 77--138 (2020; Zbl 1479.91064) Full Text: DOI OpenURL
Bazin, Damien; Julien, Ludovic; Musy, Olivier On Stackelberg-Nash equilibria in bilevel optimization games. (English) Zbl 1479.91063 Dempe, Stephan (ed.) et al., Bilevel optimization. Advances and next challenges. Cham: Springer. Springer Optim. Appl. 161, 27-51 (2020). MSC: 91A65 91B54 90C34 PDF BibTeX XML Cite \textit{D. Bazin} et al., Springer Optim. Appl. 161, 27--51 (2020; Zbl 1479.91063) Full Text: DOI OpenURL
Lampariello, Lorenzo; Sagratella, Simone; Shikhman, Vladimir; Stein, Oliver Interactions between bilevel optimization and Nash games. (English) Zbl 1479.91014 Dempe, Stephan (ed.) et al., Bilevel optimization. Advances and next challenges. Cham: Springer. Springer Optim. Appl. 161, 3-26 (2020). MSC: 91A10 90C34 PDF BibTeX XML Cite \textit{L. Lampariello} et al., Springer Optim. Appl. 161, 3--26 (2020; Zbl 1479.91014) Full Text: DOI OpenURL
Tung, Le Thanh Karush-Kuhn-Tucker optimality conditions and duality for convex semi-infinite programming with multiple interval-valued objective functions. (English) Zbl 1475.90124 J. Appl. Math. Comput. 62, No. 1-2, 67-91 (2020). MSC: 90C46 90C34 90C70 PDF BibTeX XML Cite \textit{L. T. Tung}, J. Appl. Math. Comput. 62, No. 1--2, 67--91 (2020; Zbl 1475.90124) Full Text: DOI OpenURL
Antczak, Tadeusz; Shukla, Kalpana Higher order duality for a new class of nonconvex semi-infinite multiobjective fractional programming with support functions. (English) Zbl 1473.90176 J. Appl. Anal. Comput. 10, No. 6, 2806-2825 (2020). MSC: 90C46 90C20 90C26 PDF BibTeX XML Cite \textit{T. Antczak} and \textit{K. Shukla}, J. Appl. Anal. Comput. 10, No. 6, 2806--2825 (2020; Zbl 1473.90176) Full Text: DOI OpenURL
Zhou, Jing; Deng, Zhibin A low-dimensional SDP relaxation based spatial branch and bound method for nonconvex quadratic programs. (English) Zbl 1476.90275 J. Ind. Manag. Optim. 16, No. 5, 2087-2102 (2020). MSC: 90C26 90C34 PDF BibTeX XML Cite \textit{J. Zhou} and \textit{Z. Deng}, J. Ind. Manag. Optim. 16, No. 5, 2087--2102 (2020; Zbl 1476.90275) Full Text: DOI OpenURL
Tuyen, Nguyen Van; Xiao, Yi-Bin; Son, Ta Quang On approximate KKT optimality conditions for cone-constrained vector optimization problems. (English) Zbl 1460.90175 J. Nonlinear Convex Anal. 21, No. 1, 105-117 (2020). MSC: 90C29 90C46 90C34 PDF BibTeX XML Cite \textit{N. Van Tuyen} et al., J. Nonlinear Convex Anal. 21, No. 1, 105--117 (2020; Zbl 1460.90175) Full Text: arXiv Link OpenURL
Jiao, Liguo; Dinh, Bui Van; Kim, Do Sang; Yoon, Min Mixed type duality for a class of multiple objective optimization problems with an infinite number of constraints. (English) Zbl 1460.90166 J. Nonlinear Convex Anal. 21, No. 1, 49-61 (2020). MSC: 90C29 90C34 49N15 90C46 PDF BibTeX XML Cite \textit{L. Jiao} et al., J. Nonlinear Convex Anal. 21, No. 1, 49--61 (2020; Zbl 1460.90166) Full Text: Link OpenURL
Shitkovskaya, Tatiana; Hong, Zhe; Kim, Do Sang; Piao, Guang-Ri Approximate necessary optimality in fractional semi-infinite multiobjective optimization. (English) Zbl 1460.90173 J. Nonlinear Convex Anal. 21, No. 1, 195-204 (2020). MSC: 90C29 90C32 90C34 49J52 65J10 PDF BibTeX XML Cite \textit{T. Shitkovskaya} et al., J. Nonlinear Convex Anal. 21, No. 1, 195--204 (2020; Zbl 1460.90173) Full Text: Link OpenURL
Chuong, Thai Doan; Jeyakumar, Vaithilingam Generalized Farkas lemma with adjustable variables and two-stage robust linear programs. (English) Zbl 1468.90076 J. Optim. Theory Appl. 187, No. 2, 488-519 (2020). MSC: 90C17 90C46 65K10 PDF BibTeX XML Cite \textit{T. D. Chuong} and \textit{V. Jeyakumar}, J. Optim. Theory Appl. 187, No. 2, 488--519 (2020; Zbl 1468.90076) Full Text: DOI OpenURL
Wei, Bo; Haskell, William B.; Zhao, Sixiang The CoMirror algorithm with random constraint sampling for convex semi-infinite programming. (English) Zbl 1467.90081 Ann. Oper. Res. 295, No. 2, 809-841 (2020). MSC: 90C34 90C59 PDF BibTeX XML Cite \textit{B. Wei} et al., Ann. Oper. Res. 295, No. 2, 809--841 (2020; Zbl 1467.90081) Full Text: DOI OpenURL
Correa, R.; Hantoute, A.; López, M. A. Subdifferential of the supremum via compactification of the index set. (English) Zbl 1475.46068 Vietnam J. Math. 48, No. 3, 569-588 (2020). MSC: 46N10 52A41 90C25 PDF BibTeX XML Cite \textit{R. Correa} et al., Vietnam J. Math. 48, No. 3, 569--588 (2020; Zbl 1475.46068) Full Text: DOI Link OpenURL
Yang, Yongliang; Wang, Fusheng; Zhen, Na A non-monotone SQP algorithm with L-BFGS update for solving semi-infinite minimax problem based on active set technique. (Chinese. English summary) Zbl 1474.90512 J. Math., Wuhan Univ. 40, No. 5, 577-584 (2020). MSC: 90C47 90C34 65K05 90C20 PDF BibTeX XML Cite \textit{Y. Yang} et al., J. Math., Wuhan Univ. 40, No. 5, 577--584 (2020; Zbl 1474.90512) Full Text: DOI OpenURL
Yang, Yongliang; Wang, Fusheng; Zhen, Na A non-monotonic SQCQP algorithm for semi-infinite minimax discretization problems. (Chinese. English summary) Zbl 1474.90321 J. Jilin Univ., Sci. 58, No. 5, 1107-1112 (2020). MSC: 90C20 90C47 90C34 PDF BibTeX XML Cite \textit{Y. Yang} et al., J. Jilin Univ., Sci. 58, No. 5, 1107--1112 (2020; Zbl 1474.90321) Full Text: DOI OpenURL
Joshi, Bhuwan Chandra; Mishra, Shashi Kant; Kumar, Pankaj On semi-infinite mathematical programming problems with equilibrium constraints using generalized convexity. (English) Zbl 1474.90490 J. Oper. Res. Soc. China 8, No. 4, 619-636 (2020). MSC: 90C34 90C46 49J52 90C30 PDF BibTeX XML Cite \textit{B. C. Joshi} et al., J. Oper. Res. Soc. China 8, No. 4, 619--636 (2020; Zbl 1474.90490) Full Text: DOI OpenURL
Guo, Feng; Sun, Xiaoxia Semidefinite programming relaxations for linear semi-infinite polynomial programming. (English) Zbl 1460.90127 Pac. J. Optim. 16, No. 3, 395-418 (2020). MSC: 90C22 90C23 90C34 65K05 PDF BibTeX XML Cite \textit{F. Guo} and \textit{X. Sun}, Pac. J. Optim. 16, No. 3, 395--418 (2020; Zbl 1460.90127) Full Text: arXiv Link OpenURL
Chen, Fei; Feng, Zhi Guo; Yiu, K. F. C. Limit analysis for the optimal value of a class of minimax optimization problems. (English) Zbl 1460.90200 Pac. J. Optim. 16, No. 2, 315-327 (2020). MSC: 90C47 90C34 90C31 PDF BibTeX XML Cite \textit{F. Chen} et al., Pac. J. Optim. 16, No. 2, 315--327 (2020; Zbl 1460.90200) Full Text: Link OpenURL
Tung, Le Thanh Karush-Kuhn-Tucker optimality conditions and duality for semi-infinite programming problems with vanishing constraints. (English) Zbl 1477.90114 J. Nonlinear Var. Anal. 4, No. 3, 319-336 (2020). Reviewer: Tatiana Tchemisova (Aveiro) MSC: 90C34 PDF BibTeX XML Cite \textit{L. T. Tung}, J. Nonlinear Var. Anal. 4, No. 3, 319--336 (2020; Zbl 1477.90114) Full Text: DOI OpenURL
Khanh, Phan Quoc; Tung, Nguyen Minh On the Mangasarian-Fromovitz constraint qualification and Karush-Kuhn-Tucker conditions in nonsmooth semi-infinite multiobjective programming. (English) Zbl 07311805 Optim. Lett. 14, No. 8, 2055-2072 (2020). MSC: 90C29 90C34 90C46 PDF BibTeX XML Cite \textit{P. Q. Khanh} and \textit{N. M. Tung}, Optim. Lett. 14, No. 8, 2055--2072 (2020; Zbl 07311805) Full Text: DOI OpenURL
Ghate, Archis Robust continuous linear programs. (English) Zbl 1464.90109 Optim. Lett. 14, No. 7, 1627-1642 (2020). Reviewer: Armin Hoffmann (Ilmenau) MSC: 90C34 90C17 90C05 90C15 90C48 49J27 PDF BibTeX XML Cite \textit{A. Ghate}, Optim. Lett. 14, No. 7, 1627--1642 (2020; Zbl 1464.90109) Full Text: DOI OpenURL
Won, Daehan; Manzour, Hasan; Chaovalitwongse, Wanpracha Convex optimization for group feature selection in networked data. (English) Zbl 1451.90034 INFORMS J. Comput. 32, No. 1, 182-198 (2020). MSC: 90B10 90C34 90C25 68T05 PDF BibTeX XML Cite \textit{D. Won} et al., INFORMS J. Comput. 32, No. 1, 182--198 (2020; Zbl 1451.90034) Full Text: DOI OpenURL
Aboussoror, A.; Adly, S.; Salim, S. An extended conjugate duality for generalized semi-infinite programming problems via a convex decomposition. (English) Zbl 07271711 Optimization 69, No. 7-8, 1635-1654 (2020). MSC: 90C34 90C26 46N10 90C46 PDF BibTeX XML Cite \textit{A. Aboussoror} et al., Optimization 69, No. 7--8, 1635--1654 (2020; Zbl 07271711) Full Text: DOI HAL OpenURL
Li, Xiangyou; Miao, Hongmei Duality conditions of nonsmooth semi-infinite multi-objective fractional programming. (Chinese. English summary) Zbl 1463.90191 J. Chongqing Norm. Univ., Nat. Sci. 37, No. 1, 81-85 (2020). MSC: 90C29 90C46 90C32 90C34 PDF BibTeX XML Cite \textit{X. Li} and \textit{H. Miao}, J. Chongqing Norm. Univ., Nat. Sci. 37, No. 1, 81--85 (2020; Zbl 1463.90191) Full Text: DOI OpenURL
Sun, Xiangkai; Teo, Kok Lay; Zeng, Jing; Liu, Liying Robust approximate optimal solutions for nonlinear semi-infinite programming with uncertainty. (English) Zbl 1451.90164 Optimization 69, No. 9, 2109-2129 (2020). MSC: 90C34 90C17 90C26 90C46 PDF BibTeX XML Cite \textit{X. Sun} et al., Optimization 69, No. 9, 2109--2129 (2020; Zbl 1451.90164) Full Text: DOI OpenURL
Barragán, Abraham B.; Hernández, Lidia A.; Iusem, Alfredo N.; Todorov, Maxim I. Primal-dual partitions in linear semi-infinite programming with bounded coefficients. (English) Zbl 1485.90141 J. Nonlinear Var. Anal. 4, No. 2, 207-223 (2020). MSC: 90C34 PDF BibTeX XML Cite \textit{A. B. Barragán} et al., J. Nonlinear Var. Anal. 4, No. 2, 207--223 (2020; Zbl 1485.90141) Full Text: DOI OpenURL
Behrends, Sönke; Schöbel, Anita Generating valid linear inequalities for nonlinear programs via sums of squares. (English) Zbl 1457.90151 J. Optim. Theory Appl. 186, No. 3, 911-935 (2020). MSC: 90C30 90C11 14P10 90C10 PDF BibTeX XML Cite \textit{S. Behrends} and \textit{A. Schöbel}, J. Optim. Theory Appl. 186, No. 3, 911--935 (2020; Zbl 1457.90151) Full Text: DOI OpenURL