Wang, Kangle Fractal solitary wave solutions for fractal nonlinear dispersive Boussinesq-like models. (English) Zbl 07553224 Fractals 30, No. 4, Article ID 2250083, 8 p. (2022). MSC: 35Qxx 34Axx 65Mxx PDF BibTeX XML Cite \textit{K. Wang}, Fractals 30, No. 4, Article ID 2250083, 8 p. (2022; Zbl 07553224) Full Text: DOI OpenURL
Wang, Kang-Le; Wang, Hao Fractal variational principles for two different types of fractal plasma models with variable coefficients. (English) Zbl 07537359 Fractals 30, No. 3, Article ID 2250043, 6 p. (2022). MSC: 35R11 35A15 35Q60 PDF BibTeX XML Cite \textit{K.-L. Wang} and \textit{H. Wang}, Fractals 30, No. 3, Article ID 2250043, 6 p. (2022; Zbl 07537359) Full Text: DOI OpenURL
Garimella, Sai Manikiran; Anand, Mohan; Rajagopal, Kumbakonam R. A new model to describe the response of a class of seemingly viscoplastic materials. (English) Zbl 07511499 Appl. Math., Praha 67, No. 2, 153-165 (2022). MSC: 34B60 PDF BibTeX XML Cite \textit{S. M. Garimella} et al., Appl. Math., Praha 67, No. 2, 153--165 (2022; Zbl 07511499) Full Text: DOI OpenURL
Wang, Kang-Jia Research on the nonlinear vibration of carbon nanotube embedded in fractal medium. (English) Zbl 07490702 Fractals 30, No. 1, Article ID 2250016, 6 p. (2022). MSC: 26Axx 26Dxx 76Txx PDF BibTeX XML Cite \textit{K.-J. Wang}, Fractals 30, No. 1, Article ID 2250016, 6 p. (2022; Zbl 07490702) Full Text: DOI OpenURL
Wang, Kang-Le Novel approach for fractal nonlinear oscillators with discontinuities by Fourier series. (English) Zbl 07490695 Fractals 30, No. 1, Article ID 2250009, 8 p. (2022). MSC: 26Axx 34Axx 65Mxx PDF BibTeX XML Cite \textit{K.-L. Wang}, Fractals 30, No. 1, Article ID 2250009, 8 p. (2022; Zbl 07490695) Full Text: DOI OpenURL
Wang, Kang-Jia; Li, Geng; Liu, Jing-Hua; Wang, Guo-Dong Solitary waves of the fractal regularized long-wave equation traveling along an unsmooth boundary. (English) Zbl 07490694 Fractals 30, No. 1, Article ID 2250008, 6 p. (2022). MSC: 35Qxx 65Mxx 65Rxx PDF BibTeX XML Cite \textit{K.-J. Wang} et al., Fractals 30, No. 1, Article ID 2250008, 6 p. (2022; Zbl 07490694) Full Text: DOI OpenURL
Tian, Yi Variational principle for some nonlinear problems. (English) Zbl 07489147 GEM. Int. J. Geomath. 13, Paper No. 4, 19 p. (2022). MSC: 65-XX 35A15 35M12 PDF BibTeX XML Cite \textit{Y. Tian}, GEM. Int. J. Geomath. 13, Paper No. 4, 19 p. (2022; Zbl 07489147) Full Text: DOI OpenURL
Tian, Dan; He, Ji-Huan A variational principle to a fractal Hunter-Saxton equation. (English) Zbl 07533265 Appl. Anal. Optim. 5, No. 1, 117-121 (2021). MSC: 35A15 35C05 35R11 PDF BibTeX XML Cite \textit{D. Tian} and \textit{J.-H. He}, Appl. Anal. Optim. 5, No. 1, 117--121 (2021; Zbl 07533265) Full Text: Link OpenURL
Li, Junjie; Singh, Gurpreet; İlhan, Onur Alp; Manafian, Jalil; Gasimov, Yusif S. Modulational instability, multiple exp-function method, SIVP, solitary and cross-kink solutions for the generalized KP equation. (English) Zbl 1484.35126 AIMS Math. 6, No. 7, 7555-7584 (2021). MSC: 35C08 35A20 35A24 35A25 35B10 70K50 PDF BibTeX XML Cite \textit{J. Li} et al., AIMS Math. 6, No. 7, 7555--7584 (2021; Zbl 1484.35126) Full Text: DOI OpenURL
Bogatko, V. I.; Potekhina, E. A. On mathematical modeling of a hypersonic flow past a thin wing with variable shape. (English. Russian original) Zbl 1484.76036 Vestn. St. Petersbg. Univ., Math. 54, No. 4, 395-399 (2021); translation from Vestn. St-Peterbg. Univ., Ser. I, Mat. Mekh. Astron. 8(66), No. 4, 639-645 (2021). MSC: 76K05 76L05 76M45 PDF BibTeX XML Cite \textit{V. I. Bogatko} and \textit{E. A. Potekhina}, Vestn. St. Petersbg. Univ., Math. 54, No. 4, 395--399 (2021; Zbl 1484.76036); translation from Vestn. St-Peterbg. Univ., Ser. I, Mat. Mekh. Astron. 8(66), No. 4, 639--645 (2021) Full Text: DOI OpenURL
Liang, Yan-Hong; Wang, Guo-Dong; Wang, Kang-Jia Solitary waves of the fractal Whitham-Broer-Kaup equation in shallow water. (English) Zbl 1482.35006 GEM. Int. J. Geomath. 12, Paper No. 22, 11 p. (2021). MSC: 35A15 35R11 76B15 PDF BibTeX XML Cite \textit{Y.-H. Liang} et al., GEM. Int. J. Geomath. 12, Paper No. 22, 11 p. (2021; Zbl 1482.35006) Full Text: DOI OpenURL
Yao, Shao-Wen A rigid pendulum in a microgravity: some special properties and a two-scale fractal model. (English) Zbl 1482.35260 Fractals 29, No. 6, Article ID 2150127, 7 p. (2021). MSC: 35R11 35L71 PDF BibTeX XML Cite \textit{S.-W. Yao}, Fractals 29, No. 6, Article ID 2150127, 7 p. (2021; Zbl 1482.35260) Full Text: DOI OpenURL
Wang, Kang-Jia; Wang, Guo-Dong; Zhu, Hong-Wei A new perspective on the study of the fractal coupled Boussinesq-Burger equation in shallow water. (English) Zbl 07465643 Fractals 29, No. 5, Article ID 2150122, 13 p. (2021). MSC: 35Qxx 35-XX 76-XX PDF BibTeX XML Cite \textit{K.-J. Wang} et al., Fractals 29, No. 5, Article ID 2150122, 13 p. (2021; Zbl 07465643) Full Text: DOI OpenURL
Wang, Kang-Le; Wei, Chun-Fu New analytical approach for nonlinear fractal \(K(p,q)\) model. (English) Zbl 07465637 Fractals 29, No. 5, Article ID 2150116, 7 p. (2021). MSC: 65-XX 35-XX PDF BibTeX XML Cite \textit{K.-L. Wang} and \textit{C.-F. Wei}, Fractals 29, No. 5, Article ID 2150116, 7 p. (2021; Zbl 07465637) Full Text: DOI OpenURL
Wang, Kang-Jia; Wang, Guo-Dong Variational principle, solitary and periodic wave solutions of the fractal modified equal width equation in plasma physics. (English) Zbl 07465636 Fractals 29, No. 5, Article ID 2150115, 9 p. (2021). MSC: 76-XX 35-XX PDF BibTeX XML Cite \textit{K.-J. Wang} and \textit{G.-D. Wang}, Fractals 29, No. 5, Article ID 2150115, 9 p. (2021; Zbl 07465636) Full Text: DOI OpenURL
Wang, Kang-Le A novel perspective for the fractal Schrödinger equation. (English) Zbl 1482.35011 Fractals 29, No. 4, Article ID 2150093, 11 p. (2021). MSC: 35A15 35Q55 35R11 PDF BibTeX XML Cite \textit{K.-L. Wang}, Fractals 29, No. 4, Article ID 2150093, 11 p. (2021; Zbl 1482.35011) Full Text: DOI OpenURL
Wang, Kang-Jia; Wang, Guo-Dong Variational principle and approximate solution for the fractal generalized Benjamin-Bona-Mahony-Burgers equation in fluid mechanics. (English) Zbl 1482.35009 Fractals 29, No. 3, Article ID 2150075, 8 p. (2021). MSC: 35A15 35A22 35Q35 35R11 PDF BibTeX XML Cite \textit{K.-J. Wang} and \textit{G.-D. Wang}, Fractals 29, No. 3, Article ID 2150075, 8 p. (2021; Zbl 1482.35009) Full Text: DOI OpenURL
Wang, Kang-Le A new fractal transform frequency formulation for fractal nonlinear oscillators. (English) Zbl 07465405 Fractals 29, No. 3, Article ID 2150062, 7 p. (2021). MSC: 34A08 34C15 34C20 34A45 PDF BibTeX XML Cite \textit{K.-L. Wang}, Fractals 29, No. 3, Article ID 2150062, 7 p. (2021; Zbl 07465405) Full Text: DOI OpenURL
Wang, Kang-Jia Variational principle and approximate solution for the generalized Burgers-Huxley equation with fractal derivative. (English) Zbl 1482.35008 Fractals 29, No. 2, Article ID 2150044, 6 p. (2021). MSC: 35A15 35K58 35R11 PDF BibTeX XML Cite \textit{K.-J. Wang}, Fractals 29, No. 2, Article ID 2150044, 6 p. (2021; Zbl 1482.35008) Full Text: DOI OpenURL
Wang, Kang-Jia; Wang, Kang-Le Variational principles for fractal Whitham-Broer-Kaup equations in shallow water. (English) Zbl 07465369 Fractals 29, No. 2, Article ID 2150028, 9 p. (2021). MSC: 76-XX 65-XX PDF BibTeX XML Cite \textit{K.-J. Wang} and \textit{K.-L. Wang}, Fractals 29, No. 2, Article ID 2150028, 9 p. (2021; Zbl 07465369) Full Text: DOI OpenURL
He, Ji-Huan On the fractal variational principle for the telegraph equation. (English) Zbl 1482.35005 Fractals 29, No. 1, Article ID 2150022, 5 p. (2021). MSC: 35A15 35A08 35R02 35R11 28A80 PDF BibTeX XML Cite \textit{J.-H. He}, Fractals 29, No. 1, Article ID 2150022, 5 p. (2021; Zbl 1482.35005) Full Text: DOI OpenURL
Liang, Yan-Hong; Wang, Kang-Jia On a variational principle for the fractal Wu-Zhang system arising in shallow water. (English) Zbl 1479.49103 GEM. Int. J. Geomath. 12, Paper No. 8, 9 p. (2021). MSC: 49S05 76M30 49N45 PDF BibTeX XML Cite \textit{Y.-H. Liang} and \textit{K.-J. Wang}, GEM. Int. J. Geomath. 12, Paper No. 8, 9 p. (2021; Zbl 1479.49103) Full Text: DOI OpenURL
Wang, Kang-Jia; Wang, Guo-Dong Study on the explicit solutions of the Benney-Luke equation via the variational direct method. (English) Zbl 1484.76018 Math. Methods Appl. Sci. 44, No. 18, 14173-14183 (2021). MSC: 76B25 76M30 PDF BibTeX XML Cite \textit{K.-J. Wang} and \textit{G.-D. Wang}, Math. Methods Appl. Sci. 44, No. 18, 14173--14183 (2021; Zbl 1484.76018) Full Text: DOI OpenURL
Wang, Kang-Jia; Zou, Bo-Rong On new abundant solutions of the complex nonlinear Fokas-Lenells equation in optical fiber. (English) Zbl 1479.35215 Math. Methods Appl. Sci. 44, No. 18, 13881-13893 (2021). MSC: 35C08 35C07 35A15 35Q55 PDF BibTeX XML Cite \textit{K.-J. Wang} and \textit{B.-R. Zou}, Math. Methods Appl. Sci. 44, No. 18, 13881--13893 (2021; Zbl 1479.35215) Full Text: DOI OpenURL
Wang, Kang-Jia Generalized variational principle and periodic wave solution to the modified equal width-Burgers equation in nonlinear dispersion media. (English) Zbl 07413640 Phys. Lett., A 419, Article ID 127723, 5 p. (2021). MSC: 81-XX 82-XX PDF BibTeX XML Cite \textit{K.-J. Wang}, Phys. Lett., A 419, Article ID 127723, 5 p. (2021; Zbl 07413640) Full Text: DOI OpenURL
Wang, Kang-Jia; Wang, Guo-Dong Variational theory and new abundant solutions to the (1+2)-dimensional chiral nonlinear Schrödinger equation in optics. (English) Zbl 07411332 Phys. Lett., A 412, Article ID 127588, 9 p. (2021). MSC: 81-XX 82-XX PDF BibTeX XML Cite \textit{K.-J. Wang} and \textit{G.-D. Wang}, Phys. Lett., A 412, Article ID 127588, 9 p. (2021; Zbl 07411332) Full Text: DOI OpenURL
Wang, Kang-Le A study of the fractal foam drainage model in a microgravity space. (English) Zbl 1473.35641 Math. Methods Appl. Sci. 44, No. 13, 10530-10540 (2021). MSC: 35R11 35Q35 PDF BibTeX XML Cite \textit{K.-L. Wang}, Math. Methods Appl. Sci. 44, No. 13, 10530--10540 (2021; Zbl 1473.35641) Full Text: DOI OpenURL
Wang, Kang-Jia; Wang, Guo-Dong Solitary and periodic wave solutions of the generalized fourth-order Boussinesq equation via He’s variational methods. (English) Zbl 1473.35493 Math. Methods Appl. Sci. 44, No. 7, 5617-5625 (2021). MSC: 35Q53 PDF BibTeX XML Cite \textit{K.-J. Wang} and \textit{G.-D. Wang}, Math. Methods Appl. Sci. 44, No. 7, 5617--5625 (2021; Zbl 1473.35493) Full Text: DOI OpenURL
Ren, Jianguo; Ilhan, Onur Alp; Bulut, Hasan; Manafian, Jalil Multiple rogue wave, dark, bright, and solitary wave solutions to the KP-BBM equation. (English) Zbl 1465.37081 J. Geom. Phys. 164, Article ID 104159, 16 p. (2021). MSC: 37K40 37K10 37K58 PDF BibTeX XML Cite \textit{J. Ren} et al., J. Geom. Phys. 164, Article ID 104159, 16 p. (2021; Zbl 1465.37081) Full Text: DOI OpenURL
Cao, Xiao-Qun; Hou, Shi-Cheng; Guo, Ya-Nan; Zhang, Cheng-Zhuo; Peng, Ke-Cheng Variational principle for \((2+1)\)-dimensional Broer-Kaup equations with fractal derivatives. (English) Zbl 07548775 Fractals 28, No. 7, Article ID 2050107, 7 p. (2020). MSC: 35Qxx 37Kxx 35Rxx PDF BibTeX XML Cite \textit{X.-Q. Cao} et al., Fractals 28, No. 7, Article ID 2050107, 7 p. (2020; Zbl 07548775) Full Text: DOI OpenURL
Almatrafi, Mohammed Bakheet; Alharbi, Abdulghani Ragaa; Tunç, Cemil Constructions of the soliton solutions to the good Boussinesq equation. (English) Zbl 1487.65172 Adv. Difference Equ. 2020, Paper No. 629, 13 p. (2020). MSC: 65N06 65N40 65N45 65N50 35Q35 35Q51 PDF BibTeX XML Cite \textit{M. B. Almatrafi} et al., Adv. Difference Equ. 2020, Paper No. 629, 13 p. (2020; Zbl 1487.65172) Full Text: DOI OpenURL
Manafian, Jalil; Ílhan, Onur Alp; Ali, Karmina K.; Mohammed, Sizar Abid Cross-kink wave solutions and semi-inverse variational method for \((3 + 1)\)-dimensional potential-YTSF equation. (English) Zbl 1462.35146 East Asian J. Appl. Math. 10, No. 3, 549-565 (2020). MSC: 35G25 65M06 65M12 PDF BibTeX XML Cite \textit{J. Manafian} et al., East Asian J. Appl. Math. 10, No. 3, 549--565 (2020; Zbl 1462.35146) Full Text: DOI OpenURL
Zveryaev, E. M. Saint-Venant-Picard-Banach method for integrating thin-walled system equations of the theory of elasticity. (English. Russian original) Zbl 1461.74018 Mech. Solids 55, No. 7, 1042-1050 (2020); translation from Prikl. Mat. Mekh. 83, No. 5-6, 823-833 (2019). MSC: 74G10 74B05 PDF BibTeX XML Cite \textit{E. M. Zveryaev}, Mech. Solids 55, No. 7, 1042--1050 (2020; Zbl 1461.74018); translation from Prikl. Mat. Mekh. 83, No. 5--6, 823--833 (2019) Full Text: DOI OpenURL
El Dhaba, Amr Ramadan; Gabr, M. E. Flexoelectric effect induced in an anisotropic bar with cubic symmetry under torsion. (English) Zbl 1446.74119 Math. Mech. Solids 25, No. 3, 820-837 (2020). MSC: 74F15 74K10 74E10 PDF BibTeX XML Cite \textit{A. R. El Dhaba} and \textit{M. E. Gabr}, Math. Mech. Solids 25, No. 3, 820--837 (2020; Zbl 1446.74119) Full Text: DOI OpenURL
Shen, Yue; He, Ji-Huan Variational principle for a generalized KdV equation in a fractal space. (English) Zbl 1441.35009 Fractals 28, No. 4, Article ID 2050069, 4 p. (2020). MSC: 35A15 35Q53 28A80 35R11 PDF BibTeX XML Cite \textit{Y. Shen} and \textit{J.-H. He}, Fractals 28, No. 4, Article ID 2050069, 4 p. (2020; Zbl 1441.35009) Full Text: DOI OpenURL
Manafian, Jalil; Ivatloo, Behnam Mohammadi; Abapour, Mehdi Breather wave, periodic, and cross-kink solutions to the generalized Bogoyavlensky-Konopelchenko equation. (English) Zbl 1448.35436 Math. Methods Appl. Sci. 43, No. 4, 1753-1774 (2020). MSC: 35Q51 35Q35 35Q70 35E05 35C08 PDF BibTeX XML Cite \textit{J. Manafian} et al., Math. Methods Appl. Sci. 43, No. 4, 1753--1774 (2020; Zbl 1448.35436) Full Text: DOI OpenURL
Zubov, L. M.; Kolesnikov, A. M.; Rudenko, O. V. Exact solutions of nonlinear micropolar elastic theory for compressible solids. (English) Zbl 1465.74010 Altenbach, Holm (ed.) et al., Recent developments in the theory of shells. Dedicated to Wojciech Pietraszkiewicz on the occasion of his 80th birthday. Cham: Springer. Adv. Struct. Mater. 110, 771-798 (2019). Reviewer: M. Cengiz Dökmeci (İstanbul) MSC: 74A35 74K20 74B20 74G05 PDF BibTeX XML Cite \textit{L. M. Zubov} et al., Adv. Struct. Mater. 110, 771--798 (2019; Zbl 1465.74010) Full Text: DOI OpenURL
Zhang, Jingjing; Shen, Yue; He, Jihuan Some analytical methods for singular boundary value problem in a fractal space: a review. (English) Zbl 1440.34025 Appl. Comput. Math. 18, No. 3, 225-235 (2019). MSC: 34B16 34B15 34L30 34-02 34E15 34A25 PDF BibTeX XML Cite \textit{J. Zhang} et al., Appl. Comput. Math. 18, No. 3, 225--235 (2019; Zbl 1440.34025) Full Text: Link OpenURL
He, Ji-Huan; Sun, Chang A variational principle for a thin film equation. (English) Zbl 1462.76021 J. Math. Chem. 57, No. 9, 2075-2081 (2019). MSC: 76A20 76M30 74K35 PDF BibTeX XML Cite \textit{J.-H. He} and \textit{C. Sun}, J. Math. Chem. 57, No. 9, 2075--2081 (2019; Zbl 1462.76021) Full Text: DOI OpenURL
Guo, Min; Fu, Chen; Zhang, Yong; Liu, Jianxin; Yang, Hongwei Study of ion-acoustic solitary waves in a magnetized plasma using the three-dimensional time-space fractional Schamel-KdV equation. (English) Zbl 1398.35196 Complexity 2018, Article ID 6852548, 17 p. (2018). MSC: 35Q53 35R11 PDF BibTeX XML Cite \textit{M. Guo} et al., Complexity 2018, Article ID 6852548, 17 p. (2018; Zbl 1398.35196) Full Text: DOI OpenURL
Ruta, Giuseppe; Elishakoff, I. Suitable radial grading may considerably increase buckling loads of FGM circular plates. (English) Zbl 1392.74044 Acta Mech. 229, No. 6, 2477-2493 (2018). MSC: 74G60 74A40 74K20 PDF BibTeX XML Cite \textit{G. Ruta} and \textit{I. Elishakoff}, Acta Mech. 229, No. 6, 2477--2493 (2018; Zbl 1392.74044) Full Text: DOI OpenURL
Engibaryan, Norayr B. On the factorization of matrix and operator Wiener-Hopf integral equations. (English. Russian original) Zbl 1395.45006 Izv. Math. 82, No. 2, 273-282 (2018); translation from Izv. Ross. Akad. Nauk, Ser. Mat. 82, No. 2, 33-42 (2018). Reviewer: I. M. Erusalimskiy (Rostov-on-Don) MSC: 45E10 45F15 47B35 PDF BibTeX XML Cite \textit{N. B. Engibaryan}, Izv. Math. 82, No. 2, 273--282 (2018; Zbl 1395.45006); translation from Izv. Ross. Akad. Nauk, Ser. Mat. 82, No. 2, 33--42 (2018) Full Text: DOI OpenURL
He, Ji-Huan Hamilton’s principle for dynamical elasticity. (English) Zbl 1462.74080 Appl. Math. Lett. 72, 65-69 (2017). MSC: 74H99 74B05 70H25 49S05 49L99 PDF BibTeX XML Cite \textit{J.-H. He}, Appl. Math. Lett. 72, 65--69 (2017; Zbl 1462.74080) Full Text: DOI OpenURL
El-Ganaini, Shoukry Solitons and other solutions to a new coupled nonlinear Schrödinger type equation. (English) Zbl 1364.35331 J. Egypt. Math. Soc. 25, No. 1, 19-27 (2017). MSC: 35Q55 35A24 35C05 35C07 35C08 35C09 35Q92 35B06 68W30 PDF BibTeX XML Cite \textit{S. El-Ganaini}, J. Egypt. Math. Soc. 25, No. 1, 19--27 (2017; Zbl 1364.35331) Full Text: DOI OpenURL
He, Ji-Huan Generalized equilibrium equations for shell derived from a generalized variational principle. (English) Zbl 1388.74069 Appl. Math. Lett. 64, 94-100 (2017). MSC: 74K25 49J40 74P05 PDF BibTeX XML Cite \textit{J.-H. He}, Appl. Math. Lett. 64, 94--100 (2017; Zbl 1388.74069) Full Text: DOI OpenURL
Liu, Hong-Yan; He, Ji-Huan; Li, Zhi-Min Variational principle for a three-point boundary value problem. (English) Zbl 1360.34039 J. Nonlinear Sci. Appl. 9, No. 8, 5169-5174 (2016). MSC: 34B10 34B15 35A15 PDF BibTeX XML Cite \textit{H.-Y. Liu} et al., J. Nonlinear Sci. Appl. 9, No. 8, 5169--5174 (2016; Zbl 1360.34039) Full Text: DOI Link Link Link OpenURL
He, Ji-Huan An alternative approach to establishment of a variational principle for the torsional problem of piezoelastic beams. (English) Zbl 1330.74061 Appl. Math. Lett. 52, 1-3 (2016). MSC: 74F15 74K10 49S05 74G75 PDF BibTeX XML Cite \textit{J.-H. He}, Appl. Math. Lett. 52, 1--3 (2016; Zbl 1330.74061) Full Text: DOI OpenURL
Liu, Hong-Yan; He, Ji-Huan; Li, Zhi-Min Lagrangians of the (\(2+1\))-dimensional KP equation with variable coefficients and cross terms. (English) Zbl 1333.35238 J. Nonlinear Sci. Appl. 9, No. 3, 870-872 (2016). Reviewer: Piotr Biler (Wroclaw) MSC: 35Q53 35A15 PDF BibTeX XML Cite \textit{H.-Y. Liu} et al., J. Nonlinear Sci. Appl. 9, No. 3, 870--872 (2016; Zbl 1333.35238) Full Text: DOI Link OpenURL
Akbari, Mozhgan; Taghizadeh, Nasir Applications of He’s variational principle method and the Kudryashov method to nonlinear time-fractional differential equations. (English) Zbl 1421.35317 Casp. J. Math. Sci. 4, No. 2, 215-225 (2015). MSC: 35Q53 35R11 35A15 35C08 35C05 35R30 PDF BibTeX XML Cite \textit{M. Akbari} and \textit{N. Taghizadeh}, Casp. J. Math. Sci. 4, No. 2, 215--225 (2015; Zbl 1421.35317) Full Text: Link OpenURL
Pucci, Edvige; Rajagopal, K. R.; Saccomandi, Giuseppe On the determination of semi-inverse solutions of nonlinear Cauchy elasticity: the not so simple case of anti-plane shear. (English) Zbl 1423.74136 Int. J. Eng. Sci. 88, 3-14 (2015). MSC: 74B20 74G75 PDF BibTeX XML Cite \textit{E. Pucci} et al., Int. J. Eng. Sci. 88, 3--14 (2015; Zbl 1423.74136) Full Text: DOI OpenURL
Masoudi, Mozhgan; Saffari, Reza Study of a quadratic redshift-based correction in \(f(R)\) gravity with Baryonic matter. (English) Zbl 1332.83011 Int. J. Mod. Phys. D 24, No. 11, Article ID 1550091, 14 p. (2015). MSC: 83B05 83D05 83F05 PDF BibTeX XML Cite \textit{M. Masoudi} and \textit{R. Saffari}, Int. J. Mod. Phys. D 24, No. 11, Article ID 1550091, 14 p. (2015; Zbl 1332.83011) Full Text: DOI OpenURL
Mirzazadeh, M. Topological and non-topological soliton solutions of Hamiltonian amplitude equation by He’s semi-inverse method and ansatz approach. (English) Zbl 1326.35070 J. Egypt. Math. Soc. 23, No. 2, 292-296 (2015). MSC: 35C07 35Q51 37K40 PDF BibTeX XML Cite \textit{M. Mirzazadeh}, J. Egypt. Math. Soc. 23, No. 2, 292--296 (2015; Zbl 1326.35070) Full Text: DOI OpenURL
Wang, Yang; Wei, Long Auxiliary Lagrangian and conservation laws for a wave equation incorporating dissipation. (English) Zbl 1311.35134 Commun. Theor. Phys. 63, No. 4, 481-486 (2015). MSC: 35L05 35L65 70H33 PDF BibTeX XML Cite \textit{Y. Wang} and \textit{L. Wei}, Commun. Theor. Phys. 63, No. 4, 481--486 (2015; Zbl 1311.35134) Full Text: DOI OpenURL
He, Ji-Huan Lagrangians for self-adjoint and non-self-adjoint equations. (English) Zbl 1259.35109 Appl. Math. Lett. 26, No. 3, 373-375 (2013). MSC: 35K25 35K65 35K59 PDF BibTeX XML Cite \textit{J.-H. He}, Appl. Math. Lett. 26, No. 3, 373--375 (2013; Zbl 1259.35109) Full Text: DOI OpenURL
He, Ji-Huan Lagrangian for nonlinear perturbed heat and wave equations. (English) Zbl 1270.35321 Appl. Math. Lett. 26, No. 1, 158-159 (2013). MSC: 35L72 35A25 PDF BibTeX XML Cite \textit{J.-H. He}, Appl. Math. Lett. 26, No. 1, 158--159 (2013; Zbl 1270.35321) Full Text: DOI OpenURL
Lacitignola, D.; Saccomandi, G. An anomalous feature in a semi-inverse solution of a simple model of non-Newtonian fluid mechanics. (English) Zbl 1423.76025 Int. J. Eng. Sci. 60, 94-98 (2012). MSC: 76A05 PDF BibTeX XML Cite \textit{D. Lacitignola} and \textit{G. Saccomandi}, Int. J. Eng. Sci. 60, 94--98 (2012; Zbl 1423.76025) Full Text: DOI OpenURL
El-Ganaini, Shoukry Exact solutions of the equation of one-dimensional motion of a Pion Meson particle in an atom using two different approaches. (English) Zbl 1348.81478 Adv. Stud. Theor. Phys. 6, No. 17-20, 843-854 (2012). MSC: 81V35 35Q40 35C05 PDF BibTeX XML Cite \textit{S. El-Ganaini}, Adv. Stud. Theor. Phys. 6, No. 17--20, 843--854 (2012; Zbl 1348.81478) OpenURL
Zhang, Weimin Variational approach to the bright-soliton of the fourth order nonlinear Schrödinger equation with cubic nonlinearity. (English) Zbl 1260.35215 Int. J. Mod. Phys. B 26, No. 26, Article ID 1250147, 6 p. (2012). MSC: 35Q55 35C08 PDF BibTeX XML Cite \textit{W. Zhang}, Int. J. Mod. Phys. B 26, No. 26, Article ID 1250147, 6 p. (2012; Zbl 1260.35215) Full Text: DOI OpenURL
Adali, Sarp Variational principles for the nonlocal continuum model of orthotropic graphene sheets embedded in an elastic medium. (English) Zbl 1265.49048 Acta Math. Sci., Ser. B, Engl. Ed. 32, No. 1, 325-338 (2012). MSC: 49S05 74H45 74K99 PDF BibTeX XML Cite \textit{S. Adali}, Acta Math. Sci., Ser. B, Engl. Ed. 32, No. 1, 325--338 (2012; Zbl 1265.49048) Full Text: DOI OpenURL
El-Sabbagh, M. F.; El-Ganaini, S. I. New exact travelling wave solutions of the generalized Zakharov system via distinct methods. (English) Zbl 1259.35179 Int. Math. Forum 7, No. 41-44, 2191-2204 (2012). MSC: 35Q51 35C07 35C08 PDF BibTeX XML Cite \textit{M. F. El-Sabbagh} and \textit{S. I. El-Ganaini}, Int. Math. Forum 7, No. 41--44, 2191--2204 (2012; Zbl 1259.35179) Full Text: Link OpenURL
Liu, Fagui; Feng, Guoxin Exact solutions to a high-order nonlinear Schrödinger equation. (Chinese. English summary) Zbl 1265.35335 J. Zhengzhou Univ., Nat. Sci. Ed. 43, No. 4, 1-4 (2011). MSC: 35Q55 PDF BibTeX XML Cite \textit{F. Liu} and \textit{G. Feng}, J. Zhengzhou Univ., Nat. Sci. Ed. 43, No. 4, 1--4 (2011; Zbl 1265.35335) OpenURL
Zhang, Wei-Min Solitary solutions and singular periodic solutions of the Drinfeld-Sokolov-Wilson equation by variational approach. (English) Zbl 1242.65273 Appl. Math. Sci., Ruse 5, No. 37-40, 1887-1894 (2011). MSC: 65N99 35Q51 35Q53 PDF BibTeX XML Cite \textit{W.-M. Zhang}, Appl. Math. Sci., Ruse 5, No. 37--40, 1887--1894 (2011; Zbl 1242.65273) Full Text: Link OpenURL
Cao, Xiaoqun; Song, Junqiang; Zhang, Weimin; Zhu, Xiaoqian; Zhao, Jun Generalized variational principles for Boussinesq equation systems. (Chinese. English summary) Zbl 1249.35260 Acta Phys. Sin. 60, No. 8, 080401 (2011). MSC: 35Q35 49S05 PDF BibTeX XML Cite \textit{X. Cao} et al., Acta Phys. Sin. 60, No. 8, 080401 (2011; Zbl 1249.35260) OpenURL
Jabbari, A.; Kheiri, H.; Bekir, A. Exact solutions of the coupled Higgs equation and the Maccari system using He’s semi-inverse method and \((\frac{G'}{G})\)-expansion method. (English) Zbl 1231.35191 Comput. Math. Appl. 62, No. 5, 2177-2186 (2011). MSC: 35Q51 35C08 35L71 35B10 35C05 PDF BibTeX XML Cite \textit{A. Jabbari} et al., Comput. Math. Appl. 62, No. 5, 2177--2186 (2011; Zbl 1231.35191) Full Text: DOI OpenURL
Zheng, Cheng-Bo; Liu, Bin; Wang, Zuo-Jun; Lü, Hong-Shi Generalized variational principles for micromorphic magnetoelectroelastodynamics. (English) Zbl 1219.78145 Comput. Math. Appl. 61, No. 8, 2201-2204 (2011). MSC: 78M25 78M10 78A25 35A15 74F15 PDF BibTeX XML Cite \textit{C.-B. Zheng} et al., Comput. Math. Appl. 61, No. 8, 2201--2204 (2011; Zbl 1219.78145) Full Text: DOI OpenURL
Zhou, Xin-Wei; Wang, Lin A variational principle for coupled nonlinear Schrödinger equations with variable coefficients and high nonlinearity. (English) Zbl 1219.65146 Comput. Math. Appl. 61, No. 8, 2035-2038 (2011). MSC: 65N99 35Q55 35A15 PDF BibTeX XML Cite \textit{X.-W. Zhou} and \textit{L. Wang}, Comput. Math. Appl. 61, No. 8, 2035--2038 (2011; Zbl 1219.65146) Full Text: DOI OpenURL
Mohamad-Jawad, Anwar Ja’afar; Petković, Marko D.; Biswas, Anjan Applications of He’s principles to partial differential equations. (English) Zbl 1213.65132 Appl. Math. Comput. 217, No. 16, 7039-7047 (2011). MSC: 65M70 35K05 35Q53 76N15 PDF BibTeX XML Cite \textit{A. J. Mohamad-Jawad} et al., Appl. Math. Comput. 217, No. 16, 7039--7047 (2011; Zbl 1213.65132) Full Text: DOI OpenURL
Baniassadi, Majid; Ghazavizadeh, Akbar; Rahmani, Rouhollah; Abrinia, Karen A novel semi-inverse solution method for elastoplastic torsion of heat treated rods. (English) Zbl 1258.74122 Meccanica 45, No. 3, 375-392 (2010). MSC: 74K10 74F05 74C05 PDF BibTeX XML Cite \textit{M. Baniassadi} et al., Meccanica 45, No. 3, 375--392 (2010; Zbl 1258.74122) Full Text: DOI OpenURL
Wu, Yue Variational approach to solitary solutions using Jacobi-elliptic functions. (English) Zbl 1218.35069 Math. Comput. Appl. 15, No. 5, 910-923 (2010). MSC: 35C08 33E05 PDF BibTeX XML Cite \textit{Y. Wu}, Math. Comput. Appl. 15, No. 5, 910--923 (2010; Zbl 1218.35069) Full Text: DOI OpenURL
Wang, Zuo-Jun; Zheng, De-Zhong; Zheng, Cheng-Bo Simplified Gurtin-type generalized variational principles for fully dynamic magneto-electro-elasticity with geometrical nonlinearity. (English) Zbl 1203.74038 Int. J. Solids Struct. 47, No. 22-23, 3115-3120 (2010). MSC: 74F15 PDF BibTeX XML Cite \textit{Z.-J. Wang} et al., Int. J. Solids Struct. 47, No. 22--23, 3115--3120 (2010; Zbl 1203.74038) Full Text: DOI OpenURL
Tao, Zhao-Ling A note on the variational approach to the Benjamin-Bona-Mahony equation using He’s semi-inverse method. (English) Zbl 1197.65159 Int. J. Comput. Math. 87, No. 8, 1752-1754 (2010). MSC: 65M70 35Q35 PDF BibTeX XML Cite \textit{Z.-L. Tao}, Int. J. Comput. Math. 87, No. 8, 1752--1754 (2010; Zbl 1197.65159) Full Text: DOI OpenURL
Chen, J. T.; Lee, Y. T.; Shieh, S. C. Revisit of two classical elasticity problems by using the Trefftz method. (English) Zbl 1244.74213 Eng. Anal. Bound. Elem. 33, No. 6, 890-895 (2009). MSC: 74S30 74K20 74G70 PDF BibTeX XML Cite \textit{J. T. Chen} et al., Eng. Anal. Bound. Elem. 33, No. 6, 890--895 (2009; Zbl 1244.74213) Full Text: DOI OpenURL
Elishakoff, Isaac; Pentaras, Demetris Design of heterogeneous clamped circular plates with specified fundamental natural frequency. (English) Zbl 1215.74045 Int. J. Solids Struct. 46, No. 10, 1997-2010 (2009). MSC: 74K20 74H45 PDF BibTeX XML Cite \textit{I. Elishakoff} and \textit{D. Pentaras}, Int. J. Solids Struct. 46, No. 10, 1997--2010 (2009; Zbl 1215.74045) Full Text: DOI OpenURL
Xu, Lan; Zhang, Nan A variational approach to analyzing catalytic reactions in short monoliths. (English) Zbl 1189.35090 Comput. Math. Appl. 58, No. 11-12, 2460-2463 (2009). MSC: 35J57 65N99 92E99 PDF BibTeX XML Cite \textit{L. Xu} and \textit{N. Zhang}, Comput. Math. Appl. 58, No. 11--12, 2460--2463 (2009; Zbl 1189.35090) Full Text: DOI OpenURL
Tao, Zhao-Ling Solving the breaking soliton equation by He’s variational method. (English) Zbl 1189.65260 Comput. Math. Appl. 58, No. 11-12, 2395-2397 (2009). MSC: 65M99 PDF BibTeX XML Cite \textit{Z.-L. Tao}, Comput. Math. Appl. 58, No. 11--12, 2395--2397 (2009; Zbl 1189.65260) Full Text: DOI OpenURL
Wu, Zhao-Chun Variational-based finite element method for inverse shape design of heat conduction. (English) Zbl 1177.65145 Commun. Numer. Methods Eng. 25, No. 11, 1107-1119 (2009). MSC: 65M32 PDF BibTeX XML Cite \textit{Z.-C. Wu}, Commun. Numer. Methods Eng. 25, No. 11, 1107--1119 (2009; Zbl 1177.65145) Full Text: DOI OpenURL
Zhang, Weimin Generalized variational principle for long water-wave equation by He’s semi-inverse method. (English) Zbl 1185.35202 Math. Probl. Eng. 2009, Article ID 925187, 5 p. (2009). MSC: 35Q35 35A15 76B15 76M30 49J05 PDF BibTeX XML Cite \textit{W. Zhang}, Math. Probl. Eng. 2009, Article ID 925187, 5 p. (2009; Zbl 1185.35202) Full Text: DOI EuDML OpenURL
Tao, Zhao-Ling Variational approach to the Benjamin Ono equation. (English) Zbl 1168.35304 Nonlinear Anal., Real World Appl. 10, No. 3, 1939-1941 (2009). MSC: 35A25 35Q51 35A15 PDF BibTeX XML Cite \textit{Z.-L. Tao}, Nonlinear Anal., Real World Appl. 10, No. 3, 1939--1941 (2009; Zbl 1168.35304) Full Text: DOI OpenURL
Adali, S. Variational principles for multi-walled carbon nanotubes undergoing buckling based on nonlocal elasticity theory. (English) Zbl 1223.82082 Phys. Lett., A 372, No. 35, 5701-5705 (2008). MSC: 82D80 49S05 74K10 74B99 PDF BibTeX XML Cite \textit{S. Adali}, Phys. Lett., A 372, No. 35, 5701--5705 (2008; Zbl 1223.82082) Full Text: DOI OpenURL
Yao, Li; Chang, Jin-Rong Variational principle for nonlinear Schrödinger equation with high nonlinearity. (English) Zbl 1161.58307 J. Nonlinear Sci. Appl. 1, No. 1, 1-4 (2008). MSC: 58E30 35A15 34G20 PDF BibTeX XML Cite \textit{L. Yao} and \textit{J.-R. Chang}, J. Nonlinear Sci. Appl. 1, No. 1, 1--4 (2008; Zbl 1161.58307) Full Text: DOI EuDML EMIS OpenURL
Xu, Lan Variational approach to solitons of nonlinear dispersive \(K(m, n)\) equations. (English) Zbl 1143.35361 Chaos Solitons Fractals 37, No. 1, 137-143 (2008). MSC: 35Q53 35Q51 35A15 PDF BibTeX XML Cite \textit{L. Xu}, Chaos Solitons Fractals 37, No. 1, 137--143 (2008; Zbl 1143.35361) Full Text: DOI OpenURL
Tao, Zhao-Ling Variational approach to the inviscid compressible fluid. (English) Zbl 1135.35305 Acta Appl. Math. 100, No. 3, 291-294 (2008). MSC: 35A15 35F25 34C30 35Q35 PDF BibTeX XML Cite \textit{Z.-L. Tao}, Acta Appl. Math. 100, No. 3, 291--294 (2008; Zbl 1135.35305) Full Text: DOI OpenURL
He, Ji-Huan Variational principle for two-dimensional incompressible inviscid flow. (English) Zbl 1209.76025 Phys. Lett., A 371, No. 1-2, 39-40 (2007). MSC: 76M25 76D05 PDF BibTeX XML Cite \textit{J.-H. He}, Phys. Lett., A 371, No. 1--2, 39--40 (2007; Zbl 1209.76025) Full Text: DOI OpenURL
Zhou, Xin-Wei Variational approach to the Broer-Kaup-Kupershmidt equation. (English) Zbl 1197.65116 Phys. Lett., A 363, No. 1-2, 108-109 (2007). MSC: 65L99 37K10 PDF BibTeX XML Cite \textit{X.-W. Zhou}, Phys. Lett., A 363, No. 1--2, 108--109 (2007; Zbl 1197.65116) Full Text: DOI OpenURL
Zhang, Juan Variational approach to solitary wave solution of the generalized Zakharov equation. (English) Zbl 1141.65391 Comput. Math. Appl. 54, No. 7-8, 1043-1046 (2007). MSC: 65M70 35Q51 35Q53 PDF BibTeX XML Cite \textit{J. Zhang}, Comput. Math. Appl. 54, No. 7--8, 1043--1046 (2007; Zbl 1141.65391) Full Text: DOI OpenURL
Öziş, Turgut; Yıldırım, Ahmet Application of He’s semi-inverse method to the nonlinear Schrödinger equation. (English) Zbl 1157.65465 Comput. Math. Appl. 54, No. 7-8, 1039-1042 (2007). MSC: 65M99 35Q51 35Q55 PDF BibTeX XML Cite \textit{T. Öziş} and \textit{A. Yıldırım}, Comput. Math. Appl. 54, No. 7--8, 1039--1042 (2007; Zbl 1157.65465) Full Text: DOI OpenURL
Zhou, Xin-Wei Variational theory for physiological flow. (English) Zbl 1267.76090 Comput. Math. Appl. 54, No. 7-8, 1000-1002 (2007). MSC: 76M25 65M99 76Z05 92C35 PDF BibTeX XML Cite \textit{X.-W. Zhou}, Comput. Math. Appl. 54, No. 7--8, 1000--1002 (2007; Zbl 1267.76090) Full Text: DOI OpenURL
Hua, Fangxia; Li, Desheng Variational principle for nonlinear Schrödinger equation with variable coefficients. (English) Zbl 1139.65051 Int. J. Pure Appl. Math. 41, No. 2, 209-212 (2007). MSC: 65K10 49J20 49M15 35Q55 PDF BibTeX XML Cite \textit{F. Hua} and \textit{D. Li}, Int. J. Pure Appl. Math. 41, No. 2, 209--212 (2007; Zbl 1139.65051) OpenURL
Wu, Yue Variational approach to higher-order water-wave equations. (English) Zbl 1131.76015 Chaos Solitons Fractals 32, No. 1, 195-198 (2007). MSC: 76B15 76M30 PDF BibTeX XML Cite \textit{Y. Wu}, Chaos Solitons Fractals 32, No. 1, 195--198 (2007; Zbl 1131.76015) Full Text: DOI OpenURL
Xu, Lan Variational principles for coupled nonlinear Schrödinger equations. (English) Zbl 1236.35175 Phys. Lett., A 359, No. 6, 627-629 (2006). MSC: 35Q55 PDF BibTeX XML Cite \textit{L. Xu}, Phys. Lett., A 359, No. 6, 627--629 (2006; Zbl 1236.35175) Full Text: DOI OpenURL
Asghar, S.; Mohyuddin, M. R.; Hayat, T.; Siddiqui, A. M. On inverse solutions of unsteady Riabouchinski flows of second-grade fluid. (English) Zbl 1131.76005 Tamsui Oxf. J. Math. Sci. 22, No. 2, 221-229 (2006). MSC: 76A05 PDF BibTeX XML Cite \textit{S. Asghar} et al., Tamsui Oxf. J. Math. Sci. 22, No. 2, 221--229 (2006; Zbl 1131.76005) OpenURL
Kalashnikov, V. V.; Karyakin, M. I. Second-order effects and Saint Venant’s principle in the torsion problem of a nonlinear elastic rod. (Russian, English) Zbl 1150.74364 Prikl. Mekh. Tekh. Fiz. 47, No. 6, 129-136 (2006); translation in J. Appl. Mech. Tech. Phys. 47, No. 6, 879-885 (2006). Reviewer: N. I. Alexandrova (Novosibirsk) MSC: 74B20 74A10 PDF BibTeX XML Cite \textit{V. V. Kalashnikov} and \textit{M. I. Karyakin}, Prikl. Mekh. Tekh. Fiz. 47, No. 6, 129--136 (2006; Zbl 1150.74364); translation in J. Appl. Mech. Tech. Phys. 47, No. 6, 879--885 (2006) Full Text: DOI OpenURL
He, Jihuan A generalized variational principle in micromorphic thermoelasticity. (English) Zbl 1091.74012 Mech. Res. Commun. 32, No. 1, 93-98 (2005). MSC: 74F05 74B05 74G65 49S05 PDF BibTeX XML Cite \textit{J. He}, Mech. Res. Commun. 32, No. 1, 93--98 (2005; Zbl 1091.74012) Full Text: DOI OpenURL
He, Ji-Huan Variational theory for 2-dimensional free surface flow: why are G. L. Liu’s variational principles incorrect? (English) Zbl 1099.76503 J. Comput. Appl. Mech. 5, No. 1, 7-19 (2004). MSC: 76B07 76M30 PDF BibTeX XML Cite \textit{J.-H. He}, J. Comput. Appl. Mech. 5, No. 1, 7--19 (2004; Zbl 1099.76503) OpenURL
Nardinocchi, P.; Teresi, L.; Tiero, A. Constitutive identification of affine rods. (English) Zbl 1029.74029 Mech. Res. Commun. 30, No. 1, 61-68 (2003). MSC: 74K10 PDF BibTeX XML Cite \textit{P. Nardinocchi} et al., Mech. Res. Commun. 30, No. 1, 61--68 (2003; Zbl 1029.74029) Full Text: DOI OpenURL
He, Jihuan A Lagrangian for von Kármán equations of large deflection problem of thin circular plate. (English) Zbl 1038.74029 Appl. Math. Comput. 143, No. 2-3, 543-549 (2003). MSC: 74K20 74G10 PDF BibTeX XML Cite \textit{J. He}, Appl. Math. Comput. 143, No. 2--3, 543--549 (2003; Zbl 1038.74029) Full Text: DOI OpenURL
He, Jihuan Variational approach to the Lane–Emden equation. (English) Zbl 1022.65076 Appl. Math. Comput. 143, No. 2-3, 539-541 (2003). MSC: 65L05 65L60 34A34 PDF BibTeX XML Cite \textit{J. He}, Appl. Math. Comput. 143, No. 2--3, 539--541 (2003; Zbl 1022.65076) Full Text: DOI OpenURL
He, Jihuan Variational approach to the Thomas-Fermi equation. (English) Zbl 1022.65083 Appl. Math. Comput. 143, No. 2-3, 533-535 (2003). MSC: 65L10 65L60 34B15 PDF BibTeX XML Cite \textit{J. He}, Appl. Math. Comput. 143, No. 2--3, 533--535 (2003; Zbl 1022.65083) Full Text: DOI OpenURL
He, J.-H. Generalized variational principles for thermopiezoelectricity. (English) Zbl 1032.74025 Arch. Appl. Mech. 72, No. 4-5, 248-256 (2002). MSC: 74F15 74F05 49S05 PDF BibTeX XML Cite \textit{J. H. He}, Arch. Appl. Mech. 72, No. 4--5, 248--256 (2002; Zbl 1032.74025) Full Text: DOI OpenURL
Carabineanu, Adrian Numerical and qualitative study of the problem of incompressible jets with curvilinear walls. (English) Zbl 1084.76506 An. Univ. Bucur., Mat. 50, No. 1-2, 37-44 (2001). MSC: 76B03 76B10 35J25 PDF BibTeX XML Cite \textit{A. Carabineanu}, An. Univ. Bucur., Mat. 50, No. 1--2, 37--44 (2001; Zbl 1084.76506) OpenURL