×

Fixed trace {\(\beta\)}-Hermite ensembles: asymptotic eigenvalue density and the edge of the density. (English) Zbl 1309.15056

Summary: In the present paper, fixed trace \(\beta\)-Hermite ensembles generalizing the fixed trace Gaussian ensembles are considered. For all \(\beta\), we prove the Wigner semicircle law for these ensembles by using two different methods: one is the moment equivalence method with the help of the matrix model for general \(\beta\), the other is to use asymptotic analysis tools. At the edge of the density, we prove that the edge scaling limit for \(\beta\)-HE implies the same limit for fixed trace \(\beta\)-Hermite ensembles. Consequently, explicit limit can be given for fixed trace Gaussian orthogonal, unitary, and symplectic ensembles. Furthermore, for even \(\beta\), analogous to \(\beta\)-Hermite ensembles, a multiple integral of the Konstevich type can be obtained.{
©2010 American Institute of Physics}

MSC:

15B52 Random matrices (algebraic aspects)
60B20 Random matrices (probabilistic aspects)
28C20 Set functions and measures and integrals in infinite-dimensional spaces (Wiener measure, Gaussian measure, etc.)
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Akemann, G.; Cicuta, G. M.; Molinari, L.; Vernizzi, G., Compact support probability distributions in random matrix theory, Phys. Rev. E, 59, 1489 (1999) · doi:10.1103/PhysRevE.59.1489
[2] Akemann, G.; Vernizzi, G., Macroscopic and microscopic (non-)universality of compact support random matrix theory, Nucl. Phys. B, 583, 739 (2000) · Zbl 0984.82028 · doi:10.1016/S0550-3213(00)00325-4
[3] Balian, R., Random matrices and information theory, Nuovo Cimento B, 57, 183 (1968) · Zbl 0209.21903 · doi:10.1007/BF02710326
[4] Delannay, R.; LeCaër, G., Exact densities of states of fixed trace ensembles of random matrices, J. Phys. A, 33, 2611 (2000) · Zbl 0971.82023 · doi:10.1088/0305-4470/33/14/302
[5] Desrosiers, P.; Forrester, P. J., Hermite and Laguerre \(<mml:math display=''inline`` overflow=''scroll``>\)-ensembles: Asymptotic corrections to the eigenvalue density, Nucl. Phys. B, 743, 307 (2006) · Zbl 1214.82051 · doi:10.1016/j.nuclphysb.2006.03.002
[6] Dumitriu, I., Eigenvalue statistics for beta-ensembles (2003)
[7] Dumitriu, I.; Edelman, A., Matrix models for beta ensembles, J. Math. Phys., 43, 5830 (2002) · Zbl 1060.82020 · doi:10.1063/1.1507823
[8] Dyson, F. J., Statistical theory of the energy levels of complex systems. I, J. Math. Phys., 3, 140 (1962) · Zbl 0105.41604 · doi:10.1063/1.1703773
[9] Edelman, A.; Sutton, B. D., From random matrices to stochastic operators, J. Stat. Phys., 127, 1121 (2007) · Zbl 1131.15025 · doi:10.1007/s10955-006-9226-4
[10] Forrester, P. J., The spectrum edge of random matrix ensembles, Nucl. Phys. B, 402, 709 (1993) · Zbl 1043.82538 · doi:10.1016/0550-3213(93)90126-A
[11] Garoni, T. M.; Forrester, P. J.; Frankel, N. E., Asymptotic corrections to the eigenvalue density of the GUE and LUE, J. Math. Phys., 46, 103301 (2005) · Zbl 1111.82020 · doi:10.1063/1.2035028
[12] Garoni, T. M.; Forrester, P. J.; Frankel, N. E., Asymptotic form of the density profile for Gaussian and Laguerre random matrix ensembles with orthogonal and symplectic symmetry, J. Math. Phys., 47, 023301 (2006) · Zbl 1111.82019 · doi:10.1063/1.2165254
[13] 13.Götze, F., Gordin, M., and Levina, A., “Limit correlation functions at zero for fixed trace random matrix ensembles,” Zap. Nauchn. Semin. POMIZNSPEV0136-1244341, 68 (2007) Götze, F., Gordin, M., and Levina, A., “[J. Math. Sci. (N.Y.)<pub-id pub-id-type=”coden“ specific-use=”metadata“>JMTSEW<issn specific-use=”metadata”>1072-3374145, 6884 (2007)]. · Zbl 1153.60026
[14] Götze, F.; Gordin, M., Limit correlation functions for fixed trace random matrix, Commun. Math. Phys., 281, 203 (2008) · Zbl 1165.82016 · doi:10.1007/s00220-008-0484-7
[15] Guhr, T., Norm-dependent random matrix ensembles in external field and supersymmetry, J. Phys. A, 39, 12327 (2006) · Zbl 1107.82024 · doi:10.1088/0305-4470/39/40/003
[16] Guhr, T., Arbitrary rotation invariant matrix ensembles and supersymmetry, J. Phys. A, 39, 13191 (2006) · Zbl 1206.82051 · doi:10.1088/0305-4470/39/42/002
[17] Johansson, K., On fluctuation of eigenvalues of random Hermitian matrices, Duke Math. J., 91, 151 (1998) · Zbl 1039.82504 · doi:10.1215/S0012-7094-98-09108-6
[18] Kontsevich, M., Intersection theory on the moduli space of curves and the matrix Airy function, Commun. Math. Phys., 147, 1 (1992) · Zbl 0756.35081 · doi:10.1007/BF02099526
[19] Killip, R.; Stoiciu, M., Eigenvalue statistics for CMV matrices: From Poisson to clock via circular beta ensembles, Duke Math. J., 146, 361 (2009) · Zbl 1155.81020 · doi:10.1215/00127094-2009-001
[20] LeCaër, G.; Delannay, R., The fixed-trace \(<mml:math display=''inline`` overflow=''scroll``>\)-Hermite ensemble of random matrices and the low temperature distribution of the determinant of an \(<mml:math display=''inline`` overflow=''scroll``><mml:math display=''inline`` overflow=''scroll``>\)-Hermite matrix, J. Phys. A, 40, 1561 (2007) · Zbl 1195.81062 · doi:10.1088/1751-8113/40/7/009
[21] Liu, D. -Z.; Zhou, D. -S., Universality at zero and the spectrum edge for fixed trace Gaussian \(<mml:math display=''inline`` overflow=''scroll``>\)-ensembles of random matrices
[22] Mehta, M. L., Random Matrices (2004) · JFM 20.0557.02
[23] Rosenzweig, N., Statistical Physics, 3 (1963) · Zbl 0126.24702
[24] Ramírez, J.; Rider, B.; Virág, B., Beta ensembles, stochastic Airy spectrum, and a diffusion · Zbl 1239.60005
[25] Szegö, G., Orthogonal Polynomials (1939) · JFM 65.0278.03
[26] Sutton, B. D., The stochastic operator approach to random matrix theory (2005)
[27] Tao, T.; Vu, V., Random matrices: Universality of local eigenvalue statistics · Zbl 1217.15043
[28] Valkó, B.; Virág, B., Continuum limits of random matrices and the Brownian carousel, Invent. Math., 177, 463 (2009) · Zbl 1204.60012 · doi:10.1007/s00222-009-0180-z
[29] Xu, D.; Wang, L., Semicircle law of Vandermonde ensemble
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.