Fakhretdinov, M. I.; Samsonov, K. Y.; Dmitriev, S. V.; Ekomasov, E. G. Kink dynamics in the \(\varphi^4\) model with extended impurity. (English) Zbl 07771245 Russ. J. Nonlinear Dyn. 19, No. 3, 303-320 (2023). MSC: 35C08 35L71 35Q51 PDF BibTeX XML Cite \textit{M. I. Fakhretdinov} et al., Russ. J. Nonlinear Dyn. 19, No. 3, 303--320 (2023; Zbl 07771245) Full Text: DOI MNR
Kolkovska, Natalia; Dimova, Milena; Kutev, Nikolai Nonexistence of global solutions to Klein-Gordon equations with variable coefficients power-type nonlinearities. (English) Zbl 1522.35107 Open Math. 21, Article ID 20220584, 22 p. (2023). MSC: 35B44 35A24 35L15 35L71 PDF BibTeX XML Cite \textit{N. Kolkovska} et al., Open Math. 21, Article ID 20220584, 22 p. (2023; Zbl 1522.35107) Full Text: DOI
Bentrcia, Toufik; Mennouni, Abdelaziz On the solution behavior of a nonlinear time-fractional Klein-Gordon equation: theoretical study and numerical validation. (English) Zbl 1522.35542 Commun. Nonlinear Sci. Numer. Simul. 125, Article ID 107384, 27 p. (2023). MSC: 35R11 35A35 35L20 35L71 PDF BibTeX XML Cite \textit{T. Bentrcia} and \textit{A. Mennouni}, Commun. Nonlinear Sci. Numer. Simul. 125, Article ID 107384, 27 p. (2023; Zbl 1522.35542) Full Text: DOI
Maier, Daniela; Reichel, Wolfgang; Schneider, Guido Breather solutions for a semilinear Klein-Gordon equation on a periodic metric graph. (English) Zbl 07732431 J. Math. Anal. Appl. 528, No. 2, Article ID 127520, 31 p. (2023). MSC: 35Qxx 35Bxx 35Lxx PDF BibTeX XML Cite \textit{D. Maier} et al., J. Math. Anal. Appl. 528, No. 2, Article ID 127520, 31 p. (2023; Zbl 07732431) Full Text: DOI arXiv
Brun, Pierre Partial normal form for the semilinear Klein-Gordon equation with quadratic potentials and algebraic non-resonant masses. (English) Zbl 1521.35087 J. Dyn. Differ. Equations 35, No. 3, 2641-2675 (2023). MSC: 35J05 35J61 PDF BibTeX XML Cite \textit{P. Brun}, J. Dyn. Differ. Equations 35, No. 3, 2641--2675 (2023; Zbl 1521.35087) Full Text: DOI
Ruzhansky, Michael; Sabitbek, Bolys Blow-up solutions of damped Klein-Gordon equation on the Heisenberg group. (English) Zbl 1519.35213 Eur. J. Math. 9, No. 3, Paper No. 61, 12 p. (2023). MSC: 35L71 35B44 35R03 PDF BibTeX XML Cite \textit{M. Ruzhansky} and \textit{B. Sabitbek}, Eur. J. Math. 9, No. 3, Paper No. 61, 12 p. (2023; Zbl 1519.35213) Full Text: DOI arXiv
Dong, Shijie The zero mass problem for Klein-Gordon equations. (English) Zbl 07704034 Commun. Contemp. Math. 25, No. 7, Article ID 2250029, 20 p. (2023). Reviewer: Ivan Naumkin (Nice) MSC: 35L71 35B40 35L52 PDF BibTeX XML Cite \textit{S. Dong}, Commun. Contemp. Math. 25, No. 7, Article ID 2250029, 20 p. (2023; Zbl 07704034) Full Text: DOI arXiv
Oh, Tadahiro; Robert, Tristan; Tzvetkov, Nikolay Stochastic nonlinear wave dynamics on compact surfaces. (Sur l’équation des ondes non-linéaire stochastique sur les surfaces compactes.) (English. French summary) Zbl 07697376 Ann. Henri Lebesgue 6, 161-223 (2023). MSC: 35L71 35L15 35R01 35R60 60H15 PDF BibTeX XML Cite \textit{T. Oh} et al., Ann. Henri Lebesgue 6, 161--223 (2023; Zbl 07697376) Full Text: DOI arXiv
Li, Buyang; Schratz, Katharina; Zivcovich, Franco A second-order low-regularity correction of Lie splitting for the semilinear Klein-Gordon equation. (English) Zbl 1516.65106 ESAIM, Math. Model. Numer. Anal. 57, No. 2, 899-919 (2023). MSC: 65M70 65M06 65N35 65M12 65M15 76D05 35Q30 35Q53 PDF BibTeX XML Cite \textit{B. Li} et al., ESAIM, Math. Model. Numer. Anal. 57, No. 2, 899--919 (2023; Zbl 1516.65106) Full Text: DOI arXiv
Wu, Yifei Instability of the standing waves for the nonlinear Klein-Gordon equations in one dimension. (English) Zbl 1514.35287 Trans. Am. Math. Soc. 376, No. 6, 4085-4103 (2023). MSC: 35L71 35B35 PDF BibTeX XML Cite \textit{Y. Wu}, Trans. Am. Math. Soc. 376, No. 6, 4085--4103 (2023; Zbl 1514.35287) Full Text: DOI arXiv
Demeio, Lucio; Lenci, Stefano Wave propagation on a string resting on a general nonlinear substrate. (English) Zbl 1512.35025 SIAM J. Appl. Math. 83, No. 1, 1-24 (2023). MSC: 35B10 35C07 35L71 74J30 PDF BibTeX XML Cite \textit{L. Demeio} and \textit{S. Lenci}, SIAM J. Appl. Math. 83, No. 1, 1--24 (2023; Zbl 1512.35025) Full Text: DOI
Hamano, Masaru; Ikeda, Masahiro Stability and instability of radial standing waves to NLKG equation with an inverse-square potential. (English) Zbl 1512.35028 NoDEA, Nonlinear Differ. Equ. Appl. 30, No. 3, Paper No. 39, 32 p. (2023). MSC: 35B15 35A15 35B35 35L15 35L71 PDF BibTeX XML Cite \textit{M. Hamano} and \textit{M. Ikeda}, NoDEA, Nonlinear Differ. Equ. Appl. 30, No. 3, Paper No. 39, 32 p. (2023; Zbl 1512.35028) Full Text: DOI arXiv
Guan, Wen; Rădulescu, Vicenţiu D.; Wang, Da-Bin Bound states of fractional Choquard equations with Hardy-Littlewood-Sobolev critical exponent. (English) Zbl 1512.35618 J. Differ. Equations 355, 219-247 (2023). MSC: 35R11 35A15 35B33 35B38 35J61 47H11 58E30 81Q05 PDF BibTeX XML Cite \textit{W. Guan} et al., J. Differ. Equations 355, 219--247 (2023; Zbl 1512.35618) Full Text: DOI
Germain, Pierre; Pusateri, Fabio; Zhang, Katherine Zhiyuan On 1d quadratic Klein-Gordon equations with a potential and symmetries. (English) Zbl 1508.35120 Arch. Ration. Mech. Anal. 247, No. 2, Paper No. 17, 39 p. (2023). MSC: 35Q53 35B65 35J10 35P25 35L71 PDF BibTeX XML Cite \textit{P. Germain} et al., Arch. Ration. Mech. Anal. 247, No. 2, Paper No. 17, 39 p. (2023; Zbl 1508.35120) Full Text: DOI arXiv
Zhang, Ziheng; Liu, Jianlun Existence and multiplicity of sign-changing solutions for Klein-Gordon equation coupled with Born-Infeld theory with subcritical exponent. (English) Zbl 1506.35066 Qual. Theory Dyn. Syst. 22, No. 1, Paper No. 7, 29 p. (2023). MSC: 35J47 35J61 35A01 35A15 PDF BibTeX XML Cite \textit{Z. Zhang} and \textit{J. Liu}, Qual. Theory Dyn. Syst. 22, No. 1, Paper No. 7, 29 p. (2023; Zbl 1506.35066) Full Text: DOI
Bchatnia, Ahmed Survey on the decay of the local energy for the solutions of the nonlinear wave equation. (English) Zbl 1522.35061 Ammari, Kaïs (ed.), Research in PDEs and related fields, The 2019 spring school, Sidi Bel Abbès, Algeria, April 8–10, 2019. Cham: Birkhäuser. Tutor. Sch. Workshops Math. Sci., 35-102 (2022). MSC: 35B40 35L20 35L71 PDF BibTeX XML Cite \textit{A. Bchatnia}, in: Research in PDEs and related fields, The 2019 spring school, Sidi Bel Abbès, Algeria, April 8--10, 2019. Cham: Birkhäuser. 35--102 (2022; Zbl 1522.35061) Full Text: DOI
Wang, Lixia; Xiong, Chunlian; Zhao, Pingping Two solutions for nonhomogeneous Klein-Gordon equations coupled with Born-Infeld type equations. (English) Zbl 1506.35063 Electron. J. Differ. Equ. 2022, Paper No. 74, 11 p. (2022). MSC: 35J47 35J61 35A01 35A15 PDF BibTeX XML Cite \textit{L. Wang} et al., Electron. J. Differ. Equ. 2022, Paper No. 74, 11 p. (2022; Zbl 1506.35063) Full Text: Link
Zhang, Xian; Huang, Chen Nontrivial solutions for Klein-Gordon-Maxwell systems with sign-changing potentials. (English) Zbl 1505.35154 Bound. Value Probl. 2022, Paper No. 83, 10 p. (2022). MSC: 35J47 35J10 35J61 35A15 PDF BibTeX XML Cite \textit{X. Zhang} and \textit{C. Huang}, Bound. Value Probl. 2022, Paper No. 83, 10 p. (2022; Zbl 1505.35154) Full Text: DOI
Friederich, Xavier On existence and uniqueness of asymptotic \(N\)-soliton-like solutions of the nonlinear Klein-Gordon equation. (English) Zbl 1502.35140 Math. Z. 302, No. 4, 2131-2191 (2022). MSC: 35Q51 35Q53 35L71 35B40 35C08 37K40 35A01 35A02 PDF BibTeX XML Cite \textit{X. Friederich}, Math. Z. 302, No. 4, 2131--2191 (2022; Zbl 1502.35140) Full Text: DOI arXiv
Yehorchenko, I.; Vorobyova, A. Conditional and hidden infinite-dimensional symmetries of wave equations. (English. Ukrainian original) Zbl 1501.35019 Ukr. Math. J. 74, No. 3, 378-384 (2022); translation from Ukr. Mat. Zh. 74, No. 3, 335-341 (2022). MSC: 35B06 35L71 PDF BibTeX XML Cite \textit{I. Yehorchenko} and \textit{A. Vorobyova}, Ukr. Math. J. 74, No. 3, 378--384 (2022; Zbl 1501.35019); translation from Ukr. Mat. Zh. 74, No. 3, 335--341 (2022) Full Text: DOI
Sun, Cong; Yan, Dong Ze; Zhang, Yong Ling Global existence and blow up of the solution for nonlinear Klein-Gordon equation with variable coefficient nonlinear source term. (English) Zbl 1500.35108 Open Math. 20, 931-945 (2022). MSC: 35J05 35J91 35A01 PDF BibTeX XML Cite \textit{C. Sun} et al., Open Math. 20, 931--945 (2022; Zbl 1500.35108) Full Text: DOI
Fukuizumi, Reika; Hoshino, Masato; Inui, Takahisa Corrigendum to: “Non relativistic and ultra relativistic limits in 2D stochastic nonlinear damped Klein-Gordon equation”. (English) Zbl 1498.35360 Nonlinearity 35, No. 10, C17-C19 (2022). MSC: 35L71 35A35 35R60 60H15 PDF BibTeX XML Cite \textit{R. Fukuizumi} et al., Nonlinearity 35, No. 10, C17--C19 (2022; Zbl 1498.35360) Full Text: DOI
Guo, Z.; Zhang, X. On the solitary solutions for the nonlinear Klein-Gordon equation coupled with Born-Infeld theory. (English) Zbl 1498.35154 J. Contemp. Math. Anal., Armen. Acad. Sci. 57, No. 3, 145-156 (2022) and Izv. Nats. Akad. Nauk Armen., Mat. 57, No. 3, 18-31 (2022). MSC: 35C08 35A15 35B38 35L71 PDF BibTeX XML Cite \textit{Z. Guo} and \textit{X. Zhang}, J. Contemp. Math. Anal., Armen. Acad. Sci. 57, No. 3, 145--156 (2022; Zbl 1498.35154) Full Text: DOI
Fu, Song-Ren; Ning, Zhen-Hu Stabilization of the critical nonlinear Klein-Gordon equation with variable coefficients on \(\mathbb{R}^3\). (English) Zbl 1504.81086 Electron. J. Differ. Equ. 2022, Paper No. 59, 18 p. (2022). MSC: 81Q05 35G16 35L72 35L15 35L71 53B21 35Q41 93D23 PDF BibTeX XML Cite \textit{S.-R. Fu} and \textit{Z.-H. Ning}, Electron. J. Differ. Equ. 2022, Paper No. 59, 18 p. (2022; Zbl 1504.81086) Full Text: Link
Germain, Pierre; Pusateri, Fabio Quadratic Klein-Gordon equations with a potential in one dimension. (English) Zbl 1495.35126 Forum Math. Pi 10, Paper No. e17, 172 p. (2022). MSC: 35L71 35P25 35Q56 42B37 PDF BibTeX XML Cite \textit{P. Germain} and \textit{F. Pusateri}, Forum Math. Pi 10, Paper No. e17, 172 p. (2022; Zbl 1495.35126) Full Text: DOI arXiv
He, Xiaoming; Rădulescu, Vicenţiu D.; Zou, Wenming Normalized ground states for the critical fractional Choquard equation with a local perturbation. (English) Zbl 1495.35191 J. Geom. Anal. 32, No. 10, Paper No. 252, 51 p. (2022). MSC: 35R11 35A15 35B33 35J20 35J61 35Q55 46N50 81Q05 PDF BibTeX XML Cite \textit{X. He} et al., J. Geom. Anal. 32, No. 10, Paper No. 252, 51 p. (2022; Zbl 1495.35191) Full Text: DOI
Liu, Zihui; Ning, Zhen-Hu Stabilization of the critical semilinear Klein-Gordon equation in compact space. (English) Zbl 1495.35037 J. Geom. Anal. 32, No. 10, Paper No. 249, 21 p. (2022). MSC: 35B40 35L20 35L71 58J45 93D23 PDF BibTeX XML Cite \textit{Z. Liu} and \textit{Z.-H. Ning}, J. Geom. Anal. 32, No. 10, Paper No. 249, 21 p. (2022; Zbl 1495.35037) Full Text: DOI
Ali, Md Ramjan; Ghosh, Uttam; Sarkar, Susmita; Das, Shantanu Analytic solution of the fractional order non-linear Schrödinger equation and the fractional order Klein Gordon equation. (English) Zbl 1494.35061 Differ. Equ. Dyn. Syst. 30, No. 3, 499-512 (2022). MSC: 35C05 35L71 35Q55 35R11 PDF BibTeX XML Cite \textit{M. R. Ali} et al., Differ. Equ. Dyn. Syst. 30, No. 3, 499--512 (2022; Zbl 1494.35061) Full Text: DOI
Kopylova, Elena Klein-Gordon equation with mean field interaction. Orbital and asymptotic stability of solitary waves. (English) Zbl 1492.35167 Nonlinearity 35, No. 7, 3593-3629 (2022). MSC: 35L71 35B35 35B40 35C08 47F05 PDF BibTeX XML Cite \textit{E. Kopylova}, Nonlinearity 35, No. 7, 3593--3629 (2022; Zbl 1492.35167) Full Text: DOI
Masaki, Satoshi; Segata, Jun-Ichi; Uriya, Kota On asymptotic behavior of solutions to cubic nonlinear Klein-Gordon systems in one space dimension. (English) Zbl 1492.35045 Trans. Am. Math. Soc., Ser. B 9, 517-563 (2022). MSC: 35B40 35A22 35L52 35L71 PDF BibTeX XML Cite \textit{S. Masaki} et al., Trans. Am. Math. Soc., Ser. B 9, 517--563 (2022; Zbl 1492.35045) Full Text: DOI arXiv
Fukuizumi, Reika; Hoshino, Masato; Inui, Takahisa Non relativistic and ultra relativistic limits in 2D stochastic nonlinear damped Klein-Gordon equation. (English) Zbl 1491.35293 Nonlinearity 35, No. 6, 2878-2919 (2022); corrigendum ibid. 35, No. 10, C17-C19 (2022). MSC: 35L71 35A35 35R60 60H15 PDF BibTeX XML Cite \textit{R. Fukuizumi} et al., Nonlinearity 35, No. 6, 2878--2919 (2022; Zbl 1491.35293) Full Text: DOI arXiv
Dong, Shijie The zero mass problem for Klein-Gordon equations: quadratic null interactions. (English) Zbl 1498.35070 Forum Math. Sigma 10, Paper No. e27, 23 p. (2022). MSC: 35B40 35L52 35L71 PDF BibTeX XML Cite \textit{S. Dong}, Forum Math. Sigma 10, Paper No. e27, 23 p. (2022; Zbl 1498.35070) Full Text: DOI arXiv
Khuddush, Mahammad; Prasad, K. Rajendra; Bharathi, B. Global existence and blowup of solutions for a semilinear Klein-Gordon equation with the product of logarithmic and power-type nonlinearity. (English) Zbl 1491.35045 Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 68, No. 1, 187-201 (2022). MSC: 35B40 35B44 35L20 35L71 PDF BibTeX XML Cite \textit{M. Khuddush} et al., Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 68, No. 1, 187--201 (2022; Zbl 1491.35045) Full Text: DOI
Comech, Andrew On solutions with compact spectrum to nonlinear Klein-Gordon and Schrödinger equations. (English) Zbl 1486.35017 SIAM J. Math. Anal. 54, No. 2, 2128-2141 (2022). MSC: 35B10 35C08 35B40 35B41 35L71 35Q41 35Q55 37K40 81Q05 PDF BibTeX XML Cite \textit{A. Comech}, SIAM J. Math. Anal. 54, No. 2, 2128--2141 (2022; Zbl 1486.35017) Full Text: DOI arXiv
Kowalczyk, Michał; Martel, Yvan; Muñoz, Claudio Soliton dynamics for the 1D NLKG equation with symmetry and in the absence of internal modes. (English) Zbl 1486.35122 J. Eur. Math. Soc. (JEMS) 24, No. 6, 2133-2167 (2022). MSC: 35C08 35B40 35L71 37K40 PDF BibTeX XML Cite \textit{M. Kowalczyk} et al., J. Eur. Math. Soc. (JEMS) 24, No. 6, 2133--2167 (2022; Zbl 1486.35122) Full Text: DOI arXiv
Côte, Raphaël; Martel, Yvan Corrigendum to: “Multi-travelling waves for the nonlinear Klein-Gordon equation”. (English) Zbl 1494.35139 Trans. Am. Math. Soc. 375, No. 5, 3755-3757 (2022). Reviewer: Joseph Shomberg (Providence) MSC: 35Q51 35L71 35Q40 35B20 35C08 PDF BibTeX XML Cite \textit{R. Côte} and \textit{Y. Martel}, Trans. Am. Math. Soc. 375, No. 5, 3755--3757 (2022; Zbl 1494.35139) Full Text: DOI
He, Chuan-Min; Li, Lin; Chen, Shang-Jie; O’Regan, Donal Ground state solution for the nonlinear Klein-Gordon equation coupled with Born-Infeld theory with critical exponents. (English) Zbl 1485.35177 Anal. Math. Phys. 12, No. 2, Paper No. 48, 17 p. (2022). MSC: 35J47 35J61 35A01 PDF BibTeX XML Cite \textit{C.-M. He} et al., Anal. Math. Phys. 12, No. 2, Paper No. 48, 17 p. (2022; Zbl 1485.35177) Full Text: DOI
Aryan, Shrey Existence of two-solitary waves with logarithmic distance for the nonlinear Klein-Gordon equation. (English) Zbl 1485.35046 Commun. Contemp. Math. 24, No. 1, Article ID 2050091, 25 p. (2022). MSC: 35B40 35C08 35L15 35L71 37K40 PDF BibTeX XML Cite \textit{S. Aryan}, Commun. Contemp. Math. 24, No. 1, Article ID 2050091, 25 p. (2022; Zbl 1485.35046) Full Text: DOI arXiv
Côte, Raphaël; Yuan, Xu Asymptotics of solutions with a compactness property for the nonlinear damped Klein-Gordon equation. (English) Zbl 1484.35052 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 218, Article ID 112768, 34 p. (2022). MSC: 35B40 35L15 35L71 37K40 PDF BibTeX XML Cite \textit{R. Côte} and \textit{X. Yuan}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 218, Article ID 112768, 34 p. (2022; Zbl 1484.35052) Full Text: DOI arXiv
Zhang, Ziyun Exponential convergence of Sobolev gradient descent for a class of nonlinear eigenproblems. (English) Zbl 1483.35143 Commun. Math. Sci. 20, No. 2, 377-403 (2022). MSC: 35P30 35A35 35J25 35J61 47J10 65K10 65N25 81Q05 PDF BibTeX XML Cite \textit{Z. Zhang}, Commun. Math. Sci. 20, No. 2, 377--403 (2022; Zbl 1483.35143) Full Text: DOI arXiv
Chen, Jie; Wang, Baoxiang Almost sure scattering for the nonlinear Klein-Gordon equations with Sobolev critical power. (English) Zbl 1483.35136 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 217, Article ID 112732, 33 p. (2022). MSC: 35L71 35L15 35P25 35R60 PDF BibTeX XML Cite \textit{J. Chen} and \textit{B. Wang}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 217, Article ID 112732, 33 p. (2022; Zbl 1483.35136) Full Text: DOI arXiv
Alonso-Izquierdo, A.; Nieto, L. M.; Queiroga-Nunes, J. Asymmetric scattering between kinks and wobblers. (English) Zbl 1514.35391 Commun. Nonlinear Sci. Numer. Simul. 107, Article ID 106183, 14 p. (2022). Reviewer: Louise Gassot (Basel) MSC: 35Q53 35L71 35C05 35C08 35P25 PDF BibTeX XML Cite \textit{A. Alonso-Izquierdo} et al., Commun. Nonlinear Sci. Numer. Simul. 107, Article ID 106183, 14 p. (2022; Zbl 1514.35391) Full Text: DOI arXiv
Bhimani, Divyang G. Global well-posedness for Klein-Gordon-Hartree and fractional Hartree equations on modulation spaces. (English) Zbl 1496.35169 Electron. J. Differ. Equ. 2021, Paper No. 101, 23 p. (2021). MSC: 35G25 35A01 35L15 35L71 35Q55 35R11 42B35 PDF BibTeX XML Cite \textit{D. G. Bhimani}, Electron. J. Differ. Equ. 2021, Paper No. 101, 23 p. (2021; Zbl 1496.35169) Full Text: arXiv Link
Ye, Yaojun; Li, Lanlan Global existence and blow-up of solutions for logarithmic Klein-Gordon equation. (English) Zbl 1484.35276 AIMS Math. 6, No. 7, 6898-6914 (2021). MSC: 35L05 35L10 35B40 35B44 35L20 35L71 PDF BibTeX XML Cite \textit{Y. Ye} and \textit{L. Li}, AIMS Math. 6, No. 7, 6898--6914 (2021; Zbl 1484.35276) Full Text: DOI
Cazenave, Thierry; Naumkin, Ivan Local smooth solutions of the nonlinear Klein-Gordon equation. (English) Zbl 1479.35570 Discrete Contin. Dyn. Syst., Ser. S 14, No. 5, 1649-1672 (2021). MSC: 35L71 35L15 35L60 35A01 35B65 PDF BibTeX XML Cite \textit{T. Cazenave} and \textit{I. Naumkin}, Discrete Contin. Dyn. Syst., Ser. S 14, No. 5, 1649--1672 (2021; Zbl 1479.35570) Full Text: DOI arXiv
Comech, Andrew; Kopylova, Elena Orbital stability and spectral properties of solitary waves of Klein-Gordon equation with concentrated nonlinearity. (English) Zbl 1478.35080 Commun. Pure Appl. Anal. 20, No. 6, 2187-2209 (2021). MSC: 35C08 35B35 35L15 35L71 PDF BibTeX XML Cite \textit{A. Comech} and \textit{E. Kopylova}, Commun. Pure Appl. Anal. 20, No. 6, 2187--2209 (2021; Zbl 1478.35080) Full Text: DOI
Nakamura, Makoto; Takashima, H. On the Cauchy problem for the Klein-Gordon equation with the Hartree type semilinear term in the de Sitter spacetime. (English) Zbl 07396224 Differ. Integral Equ. 34, No. 7-8, 351-382 (2021). Reviewer: Chengbo Wang (Hangzhou) MSC: 35L05 35L71 35Q75 35B30 35B40 35B44 PDF BibTeX XML Cite \textit{M. Nakamura} and \textit{H. Takashima}, Differ. Integral Equ. 34, No. 7--8, 351--382 (2021; Zbl 07396224)
Segata, Jun-Ichi Asymptotic behavior in time of solutions to complex-valued nonlinear Klein-Gordon equation in one space dimension. (English) Zbl 1473.35058 Hokkaido Math. J. 50, No. 2, 187-205 (2021). MSC: 35B40 35L15 35L71 81Q05 PDF BibTeX XML Cite \textit{J.-I. Segata}, Hokkaido Math. J. 50, No. 2, 187--205 (2021; Zbl 1473.35058) Full Text: DOI Link
Yuan, Xu Conditional stability of multi-solitons for the 1D NLKG equation with double power nonlinearity. (English) Zbl 1471.35034 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 38, No. 5, 1487-1524 (2021). MSC: 35B35 35L15 35L71 PDF BibTeX XML Cite \textit{X. Yuan}, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 38, No. 5, 1487--1524 (2021; Zbl 1471.35034) Full Text: DOI arXiv
Chaichenets, L.; Pattakos, N. On the global wellposedness of the Klein-Gordon equation for initial data in modulation spaces. (English) Zbl 1468.35095 Proc. Am. Math. Soc. 149, No. 9, 3849-3861 (2021). MSC: 35L71 35A01 35A02 35L15 PDF BibTeX XML Cite \textit{L. Chaichenets} and \textit{N. Pattakos}, Proc. Am. Math. Soc. 149, No. 9, 3849--3861 (2021; Zbl 1468.35095) Full Text: DOI arXiv Link
Nakamura, Makoto On some effects of background metrics for several partial differential equations. (English) Zbl 1469.35095 Giga, Yoshikazu (ed.) et al., The role of metrics in the theory of partial differential equations. Proceedings of the 11th Mathematical Society of Japan, Seasonal Institute (MSJ-SI), Nagoya University, Japan, July 2–13 2018. Tokyo: Mathematical Society of Japan. Adv. Stud. Pure Math. 85, 315-324 (2021). MSC: 35G20 35Q30 35Q75 PDF BibTeX XML Cite \textit{M. Nakamura}, Adv. Stud. Pure Math. 85, 315--324 (2021; Zbl 1469.35095) Full Text: DOI
Pampu, Ademir B. On the growth of the Sobolev norms for the nonlinear Klein-Gordon equation. (English) Zbl 1464.35049 J. Dyn. Differ. Equations 33, No. 2, 817-832 (2021). MSC: 35B45 35L71 35R01 PDF BibTeX XML Cite \textit{A. B. Pampu}, J. Dyn. Differ. Equations 33, No. 2, 817--832 (2021; Zbl 1464.35049) Full Text: DOI
Clarke, W. A.; Marangell, R. A new Evans function for quasi-periodic solutions of the linearised sine-Gordon equation. (English) Zbl 1462.35025 J. Nonlinear Sci. 30, No. 6, 3421-3442 (2020). MSC: 35B15 35L71 35C07 35B32 35B35 35P05 47A75 PDF BibTeX XML Cite \textit{W. A. Clarke} and \textit{R. Marangell}, J. Nonlinear Sci. 30, No. 6, 3421--3442 (2020; Zbl 1462.35025) Full Text: DOI arXiv
Zhang, Hong-Wei Wave and Klein-Gordon equations on certain locally symmetric spaces. (English) Zbl 1460.35336 J. Geom. Anal. 30, No. 4, 4386-4406 (2020). MSC: 35Q55 43A85 22E30 35P25 47J35 58D25 35A01 35A02 35L05 PDF BibTeX XML Cite \textit{H.-W. Zhang}, J. Geom. Anal. 30, No. 4, 4386--4406 (2020; Zbl 1460.35336) Full Text: DOI arXiv
Al-Shawba, Altaf A.; Abdullah, Farah A.; Azmi, Amirah; Akbar, M. Ali An extension of the double \((G'/G,1/G)\)-expansion method for conformable fractional differential equations. (English) Zbl 1458.35443 Complexity 2020, Article ID 7967328, 13 p. (2020). MSC: 35R11 35K58 35C05 PDF BibTeX XML Cite \textit{A. A. Al-Shawba} et al., Complexity 2020, Article ID 7967328, 13 p. (2020; Zbl 1458.35443) Full Text: DOI
Forcella, Luigi; Hari, Lysianne Large data scattering for NLKG on waveguide \(\mathbb{R}^d\times\mathbb{T}\). (English) Zbl 1455.35162 J. Hyperbolic Differ. Equ. 17, No. 2, 355-394 (2020). MSC: 35P25 35B40 35L71 35L15 PDF BibTeX XML Cite \textit{L. Forcella} and \textit{L. Hari}, J. Hyperbolic Differ. Equ. 17, No. 2, 355--394 (2020; Zbl 1455.35162) Full Text: DOI arXiv
Ikeda, Masahiro; Inui, Takahisa; Okamoto, Mamoru Scattering for the one-dimensional Klein-Gordon equation with exponential nonlinearity. (English) Zbl 1455.35164 J. Hyperbolic Differ. Equ. 17, No. 2, 295-354 (2020). MSC: 35P25 35B40 35L71 35L15 PDF BibTeX XML Cite \textit{M. Ikeda} et al., J. Hyperbolic Differ. Equ. 17, No. 2, 295--354 (2020; Zbl 1455.35164) Full Text: DOI arXiv
Guo, Boling; Liu, Fengxia Well-posedness for the massive nonlinear wave equation on asymptotically AdS spacetimes. (English) Zbl 1453.35129 Math. Methods Appl. Sci. 43, No. 15, 8930-8944 (2020). MSC: 35L71 35L15 58C30 PDF BibTeX XML Cite \textit{B. Guo} and \textit{F. Liu}, Math. Methods Appl. Sci. 43, No. 15, 8930--8944 (2020; Zbl 1453.35129) Full Text: DOI
Scheider, Dominic Breather solutions of the cubic Klein-Gordon equation. (English) Zbl 1452.35107 Nonlinearity 33, No. 12, 7140-7166 (2020). MSC: 35L71 35L15 35B32 35B10 35J05 PDF BibTeX XML Cite \textit{D. Scheider}, Nonlinearity 33, No. 12, 7140--7166 (2020; Zbl 1452.35107) Full Text: DOI arXiv
Che, Guofeng; Chen, Haibo Infinitely many solutions for the Klein-Gordon equation with sublinear nonlinearity coupled with Born-Infeld theory. (English) Zbl 1448.35205 Bull. Iran. Math. Soc. 46, No. 4, 1083-1100 (2020). MSC: 35J61 35J20 35A01 PDF BibTeX XML Cite \textit{G. Che} and \textit{H. Chen}, Bull. Iran. Math. Soc. 46, No. 4, 1083--1100 (2020; Zbl 1448.35205) Full Text: DOI
Oh, Tadahiro; Thomann, Laurent Invariant Gibbs measures for the 2-\(d\) defocusing nonlinear wave equations. (English. French summary) Zbl 1443.35101 Ann. Fac. Sci. Toulouse, Math. (6) 29, No. 1, 1-26 (2020). MSC: 35L71 35L15 PDF BibTeX XML Cite \textit{T. Oh} and \textit{L. Thomann}, Ann. Fac. Sci. Toulouse, Math. (6) 29, No. 1, 1--26 (2020; Zbl 1443.35101) Full Text: DOI arXiv
Girardi, Giovanni Small data solutions for semilinear waves with time-dependent damping and mass terms. (English) Zbl 1442.35261 Boggiatto, Paolo (ed.) et al., Advances in microlocal and time-frequency analysis. Contributions of the conference on microlocal and time-frequency analysis 2018, MLTFA18, in honor of Prof. Luigi Rodino on the occasion of his 70th birthday, Torino, Italy, July 2–6, 2018. Cham: Birkhäuser. Appl. Numer. Harmon. Anal., 227-240 (2020). MSC: 35L71 35B33 35L15 PDF BibTeX XML Cite \textit{G. Girardi}, in: Advances in microlocal and time-frequency analysis. Contributions of the conference on microlocal and time-frequency analysis 2018, MLTFA18, in honor of Prof. Luigi Rodino on the occasion of his 70th birthday, Torino, Italy, July 2--6, 2018. Cham: Birkhäuser. 227--240 (2020; Zbl 1442.35261) Full Text: DOI
Masaki, Satoshi; Segata, Jun-ichi; Uriya, Kota Long range scattering for the complex-valued Klein-Gordon equation with quadratic nonlinearity in two dimensions. (English. French summary) Zbl 1444.35117 J. Math. Pures Appl. (9) 139, 177-203 (2020). MSC: 35L71 35L15 35B40 81Q05 PDF BibTeX XML Cite \textit{S. Masaki} et al., J. Math. Pures Appl. (9) 139, 177--203 (2020; Zbl 1444.35117) Full Text: DOI arXiv
Komech, Aleksandr I.; Kopylova, Elena A. Attractors of nonlinear Hamiltonian partial differential equations. (English. Russian original) Zbl 1439.35001 Russ. Math. Surv. 75, No. 1, 1-87 (2020); translation from Usp. Mat. Nauk 75, No. 1, 3-94 (2020). MSC: 35-02 35B41 35B40 35C08 35L71 35B06 PDF BibTeX XML Cite \textit{A. I. Komech} and \textit{E. A. Kopylova}, Russ. Math. Surv. 75, No. 1, 1--87 (2020; Zbl 1439.35001); translation from Usp. Mat. Nauk 75, No. 1, 3--94 (2020) Full Text: DOI arXiv
Galstian, Anahit; Yagdjian, Karen The global existence of small self-interacting scalar field propagating in the contracting universe. (English) Zbl 1436.35299 NoDEA, Nonlinear Differ. Equ. Appl. 27, No. 3, Paper No. 28, 24 p. (2020). MSC: 35Q85 35L71 35Q40 35Q75 83F05 PDF BibTeX XML Cite \textit{A. Galstian} and \textit{K. Yagdjian}, NoDEA, Nonlinear Differ. Equ. Appl. 27, No. 3, Paper No. 28, 24 p. (2020; Zbl 1436.35299) Full Text: DOI arXiv
Oh, Tadahiro; Tzvetkov, Nikolay Quasi-invariant Gaussian measures for the two-dimensional defocusing cubic nonlinear wave equation. (English) Zbl 1441.35175 J. Eur. Math. Soc. (JEMS) 22, No. 6, 1785-1826 (2020). MSC: 35L71 35L20 60H30 PDF BibTeX XML Cite \textit{T. Oh} and \textit{N. Tzvetkov}, J. Eur. Math. Soc. (JEMS) 22, No. 6, 1785--1826 (2020; Zbl 1441.35175) Full Text: DOI arXiv
Maier, Daniela Construction of breather solutions for nonlinear Klein-Gordon equations on periodic metric graphs. (English) Zbl 1439.35336 J. Differ. Equations 268, No. 6, 2491-2509 (2020). MSC: 35L71 35L15 35R02 PDF BibTeX XML Cite \textit{D. Maier}, J. Differ. Equations 268, No. 6, 2491--2509 (2020; Zbl 1439.35336) Full Text: DOI arXiv
Naumkin, Ivan Modified scattering for the mixed initial-boundary problem for the nonlinear Klein-Gordon equation. (English) Zbl 1435.35222 Nonlinearity 33, No. 1, 276-324 (2020). Reviewer: Denis Borisov (Ufa) MSC: 35L20 35L71 35B40 35A01 35A02 PDF BibTeX XML Cite \textit{I. Naumkin}, Nonlinearity 33, No. 1, 276--324 (2020; Zbl 1435.35222) Full Text: DOI
Çulha, Sevil; Daşcıoğlu, Ayşegül Analytic solutions of the space-time conformable fractional Klein-Gordon equation in general form. (English) Zbl 1505.35348 Waves Random Complex Media 29, No. 4, 775-790 (2019). MSC: 35R11 35L71 PDF BibTeX XML Cite \textit{S. Çulha} and \textit{A. Daşcıoğlu}, Waves Random Complex Media 29, No. 4, 775--790 (2019; Zbl 1505.35348) Full Text: DOI
Hepson, Ozlem Ersoy; Korkmaz, Alper; Dag, Idiris On the numerical solution of the Klein-Gordon equation by exponential cubic B-spline collocation method. (English) Zbl 1487.65165 Commun. Fac. Sci. Univ. Ank., Sér. A1, Math. Stat. 68, No. 1, 412-421 (2019). MSC: 65M70 35L71 41A15 PDF BibTeX XML Cite \textit{O. E. Hepson} et al., Commun. Fac. Sci. Univ. Ank., Sér. A1, Math. Stat. 68, No. 1, 412--421 (2019; Zbl 1487.65165) Full Text: DOI arXiv
Sy, Mouhamadou Invariant measure and large time dynamics of the cubic Klein-Gordon equation in \(3D\). (English) Zbl 1457.60110 Stoch. Partial Differ. Equ., Anal. Comput. 7, No. 3, 379-416 (2019). MSC: 60H30 28D05 35B40 35L71 PDF BibTeX XML Cite \textit{M. Sy}, Stoch. Partial Differ. Equ., Anal. Comput. 7, No. 3, 379--416 (2019; Zbl 1457.60110) Full Text: DOI arXiv
Galstian, Anahit; Yagdjian, Karen The self-interacting scalar field propagating in FLRW model of the contracting universe. (English) Zbl 1426.35163 Lindahl, Karl-Olof (ed.) et al., Analysis, probability, applications, and computation. Proceedings of the 11th ISAAC congress, Växjö, Sweden, August 14–18, 2017. Cham: Birkhäuser. Trends Math., 315-323 (2019). MSC: 35L71 35L15 35B44 PDF BibTeX XML Cite \textit{A. Galstian} and \textit{K. Yagdjian}, in: Analysis, probability, applications, and computation. Proceedings of the 11th ISAAC congress, Växjö, Sweden, August 14--18, 2017. Cham: Birkhäuser. 315--323 (2019; Zbl 1426.35163) Full Text: DOI
Rahimian, Mohammad; Nadjafikhah, Mehdi Approximate symmetry and exact solutions of the perturbed nonlinear Klein-Gordon equation. (English) Zbl 1438.35010 Comput. Methods Differ. Equ. 7, No. 2, 266-275 (2019). MSC: 35A30 35B25 35C05 35L71 PDF BibTeX XML Cite \textit{M. Rahimian} and \textit{M. Nadjafikhah}, Comput. Methods Differ. Equ. 7, No. 2, 266--275 (2019; Zbl 1438.35010) Full Text: Link
Tsuchiya, Takuya; Nakamura, Makoto On the numerical experiments of the Cauchy problem for semi-linear Klein-Gordon equations in the De Sitter spacetime. (English) Zbl 1418.65154 J. Comput. Appl. Math. 361, 396-412 (2019). MSC: 65M99 35L70 35Q75 PDF BibTeX XML Cite \textit{T. Tsuchiya} and \textit{M. Nakamura}, J. Comput. Appl. Math. 361, 396--412 (2019; Zbl 1418.65154) Full Text: DOI arXiv
Luo, Yongbing; Yang, Yanbing; Ahmed, Md Salik; Yu, Tao; Zhang, Mingyou; Wang, Ligang; Xu, Huichao Global existence and blow up of the solution for nonlinear Klein-Gordon equation with general power-type nonlinearities at three initial energy levels. (English) Zbl 1430.35158 Appl. Numer. Math. 141, 102-123 (2019). Reviewer: Denis Borisov (Ufa) MSC: 35L71 35B44 35L15 PDF BibTeX XML Cite \textit{Y. Luo} et al., Appl. Numer. Math. 141, 102--123 (2019; Zbl 1430.35158) Full Text: DOI
Mohamad, Haidar; Oliver, Marcel A direct construction of a slow manifold for a semilinear wave equation of Klein-Gordon type. (English) Zbl 1415.35206 J. Differ. Equations 267, No. 1, 1-14 (2019). Reviewer: Denis Borisov (Ufa) MSC: 35L71 81Q05 35B25 35Q55 37L25 35B42 PDF BibTeX XML Cite \textit{H. Mohamad} and \textit{M. Oliver}, J. Differ. Equations 267, No. 1, 1--14 (2019; Zbl 1415.35206) Full Text: DOI
D’Abbicco, M.; Girardi, G.; Reissig, M. A scale of critical exponents for semilinear waves with time-dependent damping and mass terms. (English) Zbl 1415.35039 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 179, 15-40 (2019). MSC: 35B40 35L15 35L71 35B33 PDF BibTeX XML Cite \textit{M. D'Abbicco} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 179, 15--40 (2019; Zbl 1415.35039) Full Text: DOI Link
Nemati Saray, Behzad; Lakestani, Mehrdad; Cattani, Carlo Evaluation of mixed Crank-Nicolson scheme and tau method for the solution of Klein-Gordon equation. (English) Zbl 1427.65217 Appl. Math. Comput. 331, 169-181 (2018). MSC: 65M20 35K20 35L71 65M06 65M12 PDF BibTeX XML Cite \textit{B. Nemati Saray} et al., Appl. Math. Comput. 331, 169--181 (2018; Zbl 1427.65217) Full Text: DOI
Gür, Şevket; Uysal, Mesude Elif Continuous dependence of solutions to the strongly damped nonlinear Klein-Gordon equation. (English) Zbl 1424.35261 Turk. J. Math. 42, No. 3, 904-910 (2018). MSC: 35L76 35B60 35L35 PDF BibTeX XML Cite \textit{Ş. Gür} and \textit{M. E. Uysal}, Turk. J. Math. 42, No. 3, 904--910 (2018; Zbl 1424.35261) Full Text: DOI
Masaki, Satoshi; Segata, Jun-ichi Modified scattering for the Klein-Gordon equation with the critical nonlinearity in three dimensions. (English) Zbl 1397.35154 Commun. Pure Appl. Anal. 17, No. 4, 1595-1611 (2018). MSC: 35L71 35B40 81Q05 PDF BibTeX XML Cite \textit{S. Masaki} and \textit{J.-i. Segata}, Commun. Pure Appl. Anal. 17, No. 4, 1595--1611 (2018; Zbl 1397.35154) Full Text: DOI arXiv
Côte, Raphaël; Martel, Yvan Multi-travelling waves for the nonlinear Klein-Gordon equation. (English) Zbl 1403.35260 Trans. Am. Math. Soc. 370, No. 10, 7461-7487 (2018); corrigendum ibid. 375, No. 5, 3755-3757 (2022). Reviewer: Joseph Shomberg (Providence) MSC: 35Q51 35L71 35Q40 35B20 PDF BibTeX XML Cite \textit{R. Côte} and \textit{Y. Martel}, Trans. Am. Math. Soc. 370, No. 10, 7461--7487 (2018; Zbl 1403.35260) Full Text: DOI arXiv
Venkatesh, S. G.; Balachandar, S. Raja; Ayyaswamy, S. K.; Krishnaveni, K. An efficient approach for solving Klein-Gordon equation arising in quantum field theory using wavelets. (English) Zbl 1395.65109 Comput. Appl. Math. 37, No. 1, 81-98 (2018). MSC: 65M70 35L71 35A20 35D30 35L20 65T60 81Q05 PDF BibTeX XML Cite \textit{S. G. Venkatesh} et al., Comput. Appl. Math. 37, No. 1, 81--98 (2018; Zbl 1395.65109) Full Text: DOI
Georgiev, Vladimir; Stefanov, Atanas On the classification of the spectrally stable standing waves of the Hartree problem. (English) Zbl 1390.81147 Physica D 370, 29-39 (2018). MSC: 81Q05 35C08 35R11 PDF BibTeX XML Cite \textit{V. Georgiev} and \textit{A. Stefanov}, Physica D 370, 29--39 (2018; Zbl 1390.81147) Full Text: DOI arXiv
Yagdjian, Karen; Balogh, Andras The maximum principle and sign changing solutions of the hyperbolic equation with the Higgs potential. (English) Zbl 1406.35077 J. Math. Anal. Appl. 465, No. 1, 403-422 (2018). MSC: 35B50 35L20 PDF BibTeX XML Cite \textit{K. Yagdjian} and \textit{A. Balogh}, J. Math. Anal. Appl. 465, No. 1, 403--422 (2018; Zbl 1406.35077) Full Text: DOI arXiv
Mukherjee, Mayukh Nonlinear travelling waves on complete Riemannian manifolds. (English) Zbl 1384.35028 Adv. Differ. Equ. 23, No. 1-2, 65-88 (2018). Reviewer: Dian K. Palagachev (Bari) MSC: 35J61 PDF BibTeX XML Cite \textit{M. Mukherjee}, Adv. Differ. Equ. 23, No. 1--2, 65--88 (2018; Zbl 1384.35028) Full Text: Euclid
Umarov, Khasan Galsanovich The Cauchy problem for the equation of bending vibrations of a nonlinear-elastic rod of infinite length. (Russian. English summary) Zbl 1450.35160 Vladikavkaz. Mat. Zh. 19, No. 3, 59-69 (2017). MSC: 35L20 35L71 74K10 74H45 47D06 PDF BibTeX XML Cite \textit{K. G. Umarov}, Vladikavkaz. Mat. Zh. 19, No. 3, 59--69 (2017; Zbl 1450.35160) Full Text: MNR
Burq, Nicolas; Raugel, Geneviève; Schlag, Wilhelm Long time dynamics for damped Klein-Gordon equations. (Dynamique en temps grand des solutions de l’équation de Klein-Gordon amortie.) (English. French summary) Zbl 1392.35041 Ann. Sci. Éc. Norm. Supér. (4) 50, No. 6, 1447-1498 (2017). Reviewer: Luis Vazquez (Madrid) MSC: 35B40 35A09 35B07 35B44 35L71 35L52 PDF BibTeX XML Cite \textit{N. Burq} et al., Ann. Sci. Éc. Norm. Supér. (4) 50, No. 6, 1447--1498 (2017; Zbl 1392.35041) Full Text: DOI arXiv Link
Lu, Nan Small amplitude periodic solutions of Klein-Gordon equations. (English) Zbl 1388.35006 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 34, No. 5, 1255-1272 (2017). Reviewer: Guy Katriel (Haifa) MSC: 35B10 35L71 PDF BibTeX XML Cite \textit{N. Lu}, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 34, No. 5, 1255--1272 (2017; Zbl 1388.35006) Full Text: DOI arXiv
Chen, Shang-Jie; Song, Shu-Zhi The existence of multiple solutions for the Klein-Gordon equation with concave and convex nonlinearities coupled with Born-Infeld theory on \(\mathbf{R}^3\). (English) Zbl 1376.35064 Nonlinear Anal., Real World Appl. 38, 78-95 (2017). MSC: 35J61 35J20 PDF BibTeX XML Cite \textit{S.-J. Chen} and \textit{S.-Z. Song}, Nonlinear Anal., Real World Appl. 38, 78--95 (2017; Zbl 1376.35064) Full Text: DOI
Delort, Jean-Marc; Imekraz, Rafik Long-time existence for the semilinear Klein-Gordon equation on a compact boundary-less Riemannian manifold. (English) Zbl 1365.37056 Commun. Partial Differ. Equations 42, No. 3, 388-416 (2017). Reviewer: Jesús Hernández (Madrid) MSC: 37K40 35P10 35P20 37K25 81Q05 35Q53 PDF BibTeX XML Cite \textit{J.-M. Delort} and \textit{R. Imekraz}, Commun. Partial Differ. Equations 42, No. 3, 388--416 (2017; Zbl 1365.37056) Full Text: DOI
Mendelson, Dana Symplectic non-squeezing for the cubic nonlinear Klein-Gordon equation on \(\mathbb{T}^3\). (English) Zbl 1370.35210 J. Funct. Anal. 272, No. 7, 3019-3092 (2017). Reviewer: Ivan Naumkin (Nice) MSC: 35L71 35L20 PDF BibTeX XML Cite \textit{D. Mendelson}, J. Funct. Anal. 272, No. 7, 3019--3092 (2017; Zbl 1370.35210) Full Text: DOI arXiv
Wang, Zhibo; Vong, Seakweng A compact difference scheme for a two dimensional nonlinear fractional Klein-Gordon equation in polar coordinates. (English) Zbl 1443.65147 Comput. Math. Appl. 71, No. 12, 2524-2540 (2016). MSC: 65M06 65M12 35B25 35B35 35L71 PDF BibTeX XML Cite \textit{Z. Wang} and \textit{S. Vong}, Comput. Math. Appl. 71, No. 12, 2524--2540 (2016; Zbl 1443.65147) Full Text: DOI
Dimova, M.; Kolkovska, N.; Kutev, N. Revised concavity method and application to Klein-Gordon equation. (English) Zbl 1474.35482 Filomat 30, No. 3, 831-839 (2016). MSC: 35L71 35A01 35A24 35B44 PDF BibTeX XML Cite \textit{M. Dimova} et al., Filomat 30, No. 3, 831--839 (2016; Zbl 1474.35482) Full Text: DOI
Cuccagna, Scipio; Maeda, Masaya; Phan, Tuoc V. On small energy stabilization in the NLKG with a trapping potential. (English) Zbl 1356.35142 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 146, 32-58 (2016). Reviewer: Michael Reissig (Freiberg) MSC: 35L71 35L15 PDF BibTeX XML Cite \textit{S. Cuccagna} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 146, 32--58 (2016; Zbl 1356.35142) Full Text: DOI arXiv
Zhang, Jian; Li, Xiaoguang; Wu, Yonghong; Caccetta, Louis Stability of standing waves for the Klein-Gordon-Hartree equation. (English) Zbl 1338.35038 Appl. Anal. 95, No. 5, 1000-1012 (2016). MSC: 35B35 35A15 35L15 35L71 35R09 PDF BibTeX XML Cite \textit{J. Zhang} et al., Appl. Anal. 95, No. 5, 1000--1012 (2016; Zbl 1338.35038) Full Text: DOI
Bachelot, Alain On the Klein-Gordon equation near a de Sitter brane. (English. French summary) Zbl 1336.35241 J. Math. Pures Appl. (9) 105, No. 2, 165-197 (2016). MSC: 35L71 35Q85 83E15 35B40 PDF BibTeX XML Cite \textit{A. Bachelot}, J. Math. Pures Appl. (9) 105, No. 2, 165--197 (2016; Zbl 1336.35241) Full Text: DOI arXiv
Kutev, N.; Kolkovska, N.; Dimova, M. Finite time blow up of the solutions to nonlinear Klein-Gordon equation with arbitrary high positive initial energy. (English) Zbl 1488.35116 Serdica Math. J. 41, No. 4, 481-492 (2015). MSC: 35B44 35L71 35L15 35A01 PDF BibTeX XML Cite \textit{N. Kutev} et al., Serdica Math. J. 41, No. 4, 481--492 (2015; Zbl 1488.35116) Full Text: Link
Jang, T. S. A new solution procedure for the nonlinear telegraph equation. (English) Zbl 1510.65278 Commun. Nonlinear Sci. Numer. Simul. 29, No. 1-3, 307-326 (2015). MSC: 65M99 35L71 PDF BibTeX XML Cite \textit{T. S. Jang}, Commun. Nonlinear Sci. Numer. Simul. 29, No. 1--3, 307--326 (2015; Zbl 1510.65278) Full Text: DOI
Rogers, C.; Saccomandi, G.; Vergori, L. Nonlinear elastodynamics of materials with strong ellipticity condition: Carroll-type solutions. (English) Zbl 1454.35377 Wave Motion 56, 147-164 (2015). MSC: 35Q74 74B20 35L71 PDF BibTeX XML Cite \textit{C. Rogers} et al., Wave Motion 56, 147--164 (2015; Zbl 1454.35377) Full Text: DOI
Díaz, Jesús Ildefonso; Hernández, Jesús Positive and nodal solutions bifurcating from the infinity for a semilinear equation: solutions with compact support. (English) Zbl 1342.35111 Port. Math. (N.S.) 72, No. 2-3, 145-160 (2015). MSC: 35J61 35R35 34B15 34C23 47H11 35Q40 81Q05 PDF BibTeX XML Cite \textit{J. I. Díaz} and \textit{J. Hernández}, Port. Math. (N.S.) 72, No. 2--3, 145--160 (2015; Zbl 1342.35111) Full Text: DOI