Dai, Wei; Liu, Zhao; Wang, Pengyan Monotonicity and symmetry of positive solutions to fractional \(p\)-Laplacian equation. (English) Zbl 07570840 Commun. Contemp. Math. 24, No. 6, Article ID 2150005, 17 p. (2022). MSC: 35R11 35J91 35B06 35B65 PDF BibTeX XML Cite \textit{W. Dai} et al., Commun. Contemp. Math. 24, No. 6, Article ID 2150005, 17 p. (2022; Zbl 07570840) Full Text: DOI OpenURL
Liang, Jingqi; Wang, Lihe; Zhou, Chunqin Boundary Lipschitz regularity of solutions for general semilinear elliptic equations in divergence form. (English) Zbl 07564609 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 223, Article ID 113026, 20 p. (2022). MSC: 35Jxx 35Bxx 35Dxx PDF BibTeX XML Cite \textit{J. Liang} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 223, Article ID 113026, 20 p. (2022; Zbl 07564609) Full Text: DOI OpenURL
Cerda, Patricio; Clemente, Rodrigo; Ferraz, Diego; Ubilla, Pedro Elliptic systems involving sublinear and superlinear nonlinearities. (English) Zbl 07562081 J. Math. Anal. Appl. 515, No. 2, Article ID 126419, 20 p. (2022). MSC: 35Jxx 35Bxx 35Axx PDF BibTeX XML Cite \textit{P. Cerda} et al., J. Math. Anal. Appl. 515, No. 2, Article ID 126419, 20 p. (2022; Zbl 07562081) Full Text: DOI OpenURL
Chen, Yongpeng; Yang, Zhipeng Existence and asymptotical behavior of multiple solutions for the critical Choquard equation. (English) Zbl 07560210 J. Geom. Anal. 32, No. 9, Paper No. 238, 34 p. (2022). MSC: 35B25 35B33 35B40 35J20 35J61 35R09 PDF BibTeX XML Cite \textit{Y. Chen} and \textit{Z. Yang}, J. Geom. Anal. 32, No. 9, Paper No. 238, 34 p. (2022; Zbl 07560210) Full Text: DOI OpenURL
Shang, Xudong; Ma, Pei; Zhang, Jihui Multi-peak solutions to fractional nonlinear Schrödinger equation with general nonlinearity. (English) Zbl 07557619 Complex Var. Elliptic Equ. 67, No. 8, 1847-1872 (2022). MSC: 35B25 35A15 35B38 35J61 35R11 PDF BibTeX XML Cite \textit{X. Shang} et al., Complex Var. Elliptic Equ. 67, No. 8, 1847--1872 (2022; Zbl 07557619) Full Text: DOI OpenURL
Guo, Yuxia; hu, Yichen; Liu, Ting Non-radial solutions for the fractional Hénon equation with critical exponent. (English) Zbl 07556323 Calc. Var. Partial Differ. Equ. 61, No. 5, Paper No. 172, 29 p. (2022). MSC: 35B33 35J08 35J25 35J61 35R11 PDF BibTeX XML Cite \textit{Y. Guo} et al., Calc. Var. Partial Differ. Equ. 61, No. 5, Paper No. 172, 29 p. (2022; Zbl 07556323) Full Text: DOI OpenURL
Bhakta, Mousomi; Nguyen, Phuoc-Tai Semilinear fractional elliptic equations with source term and boundary measure data. (English) Zbl 07555779 Pure Appl. Funct. Anal. 7, No. 3, 863-885 (2022). MSC: 35R06 35R11 35B45 35J20 35J25 35J61 PDF BibTeX XML Cite \textit{M. Bhakta} and \textit{P.-T. Nguyen}, Pure Appl. Funct. Anal. 7, No. 3, 863--885 (2022; Zbl 07555779) Full Text: Link OpenURL
Khiddi, Mustapha Multiple solutions for the fractional Schrödinger-Poisson system with critical Sobolev exponent. (English) Zbl 07555153 Rocky Mt. J. Math. 52, No. 2, 535-545 (2022). MSC: 35R11 35B33 35B38 35J47 35J61 PDF BibTeX XML Cite \textit{M. Khiddi}, Rocky Mt. J. Math. 52, No. 2, 535--545 (2022; Zbl 07555153) Full Text: DOI Link OpenURL
Guo, Zhenyu; Deng, Yan Ground state solutions for a fractional system involving critical non-linearities. (English) Zbl 07548891 Ann. Funct. Anal. 13, No. 3, Paper No. 46, 22 p. (2022). MSC: 35R11 35A01 35A15 35B33 35J47 35J61 PDF BibTeX XML Cite \textit{Z. Guo} and \textit{Y. Deng}, Ann. Funct. Anal. 13, No. 3, Paper No. 46, 22 p. (2022; Zbl 07548891) Full Text: DOI OpenURL
Zhang, Peng; Han, Zhi-qing Existence of solutions for a nonhomogeneous sublinear fractional Schrödinger equation. (English) Zbl 07548753 Complex Var. Elliptic Equ. 67, No. 6, 1504-1523 (2022). MSC: 35A15 35J61 35R11 45G05 PDF BibTeX XML Cite \textit{P. Zhang} and \textit{Z.-q. Han}, Complex Var. Elliptic Equ. 67, No. 6, 1504--1523 (2022; Zbl 07548753) Full Text: DOI OpenURL
Chen, Xianjin; Li, Zhaoxiang; Zhou, Jianxin An improved local-min-orthogonal method for finding multiple solutions to nonlinear elliptic PDEs. (English) Zbl 07547968 J. Sci. Comput. 92, No. 1, Paper No. 1, 23 p. (2022). MSC: 35J61 35J25 65N99 PDF BibTeX XML Cite \textit{X. Chen} et al., J. Sci. Comput. 92, No. 1, Paper No. 1, 23 p. (2022; Zbl 07547968) Full Text: DOI OpenURL
Suzuki, Takashi Local and global behavior of solutions to 2D-elliptic equation with exponentially-dominated nonlinearities. (English) Zbl 07544277 Asymptotic Anal. 128, No. 4, 465-494 (2022). MSC: 35Qxx PDF BibTeX XML Cite \textit{T. Suzuki}, Asymptotic Anal. 128, No. 4, 465--494 (2022; Zbl 07544277) Full Text: DOI OpenURL
Allendes, Alejandro; Fuica, Francisco; Otárola, Enrique Error estimates for a pointwise tracking optimal control problem of a semilinear elliptic equation. (English) Zbl 07543539 SIAM J. Control Optim. 60, No. 3, 1763-1790 (2022). MSC: 35J61 35R06 49J20 65N15 65N30 PDF BibTeX XML Cite \textit{A. Allendes} et al., SIAM J. Control Optim. 60, No. 3, 1763--1790 (2022; Zbl 07543539) Full Text: DOI OpenURL
Ledesma, César E. Torres Existence of positive solutions for a class of fractional Choquard equation in exterior domain. (English) Zbl 07535660 Discrete Contin. Dyn. Syst. 42, No. 7, 3301-3328 (2022). MSC: 35J61 35R11 35J67 35A01 35A15 PDF BibTeX XML Cite \textit{C. E. T. Ledesma}, Discrete Contin. Dyn. Syst. 42, No. 7, 3301--3328 (2022; Zbl 07535660) Full Text: DOI OpenURL
Manohar, Ram; Sinha, Rajen Kumar Elliptic reconstruction and a posteriori error estimates for fully discrete semilinear parabolic optimal control problems. (English) Zbl 07533092 J. Comput. Math. 40, No. 2, 147-176 (2022). MSC: 49J20 65J15 65N30 PDF BibTeX XML Cite \textit{R. Manohar} and \textit{R. K. Sinha}, J. Comput. Math. 40, No. 2, 147--176 (2022; Zbl 07533092) Full Text: DOI OpenURL
Djitte, Sidy M.; Jarohs, Sven Symmetry of odd solutions to equations with fractional Laplacian. (English) Zbl 07531945 J. Elliptic Parabol. Equ. 8, No. 1, 209-230 (2022). MSC: 35B06 35B50 35J25 35J61 35R11 35S15 PDF BibTeX XML Cite \textit{S. M. Djitte} and \textit{S. Jarohs}, J. Elliptic Parabol. Equ. 8, No. 1, 209--230 (2022; Zbl 07531945) Full Text: DOI OpenURL
Zhao, Shunneng; Yu, Yuanyang Sign-changing solutions for a fractional Choquard equation with power nonlinearity. (English) Zbl 07531088 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 221, Article ID 112917, 18 p. (2022). MSC: 35R11 35A15 35J61 35R09 PDF BibTeX XML Cite \textit{S. Zhao} and \textit{Y. Yu}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 221, Article ID 112917, 18 p. (2022; Zbl 07531088) Full Text: DOI OpenURL
Nguyen Van Thin Multiplicity and concentration of solutions to a fractional \(p\)-Laplace problem with exponential growth. (English) Zbl 07527817 Ann. Fenn. Math. 47, No. 2, 603-639 (2022). MSC: 35A15 35A23 35J35 35J61 35J92 35R11 35B25 PDF BibTeX XML Cite \textit{Nguyen Van Thin}, Ann. Fenn. Math. 47, No. 2, 603--639 (2022; Zbl 07527817) Full Text: DOI OpenURL
Ao, Weiwei; González, María del Mar; Hyder, Ali; Wei, Juncheng Removability of singularities and superharmonicity for some fractional Laplacian equations. (English) Zbl 07525031 Indiana Univ. Math. J. 71, No. 2, 735-766 (2022). MSC: 35R11 35A21 35D30 35J61 PDF BibTeX XML Cite \textit{W. Ao} et al., Indiana Univ. Math. J. 71, No. 2, 735--766 (2022; Zbl 07525031) Full Text: DOI OpenURL
Salort, Ariel; Vivas, Hernán Fractional eigenvalues in Orlicz spaces with no \(\Delta_2\) condition. (English) Zbl 07525012 J. Differ. Equations 327, 166-188 (2022). MSC: 35P30 35J25 35J61 35R11 46E30 PDF BibTeX XML Cite \textit{A. Salort} and \textit{H. Vivas}, J. Differ. Equations 327, 166--188 (2022; Zbl 07525012) Full Text: DOI OpenURL
Chen, Xueying; Li, Guanfeng; Bao, Sijia Symmetry and monotonicity of positive solutions for a class of general pseudo-relativistic systems. (English) Zbl 1487.35398 Commun. Pure Appl. Anal. 21, No. 5, 1755-1772 (2022). MSC: 35R11 35B06 35B09 35J47 35J61 PDF BibTeX XML Cite \textit{X. Chen} et al., Commun. Pure Appl. Anal. 21, No. 5, 1755--1772 (2022; Zbl 1487.35398) Full Text: DOI OpenURL
Guo, Yuxia; Peng, Shaolong Monotonicity and nonexistence of positive solutions for pseudo-relativistic equation with indefinite nonlinearity. (English) Zbl 1487.35402 Commun. Pure Appl. Anal. 21, No. 5, 1637-1648 (2022). MSC: 35R11 35B06 35B53 35J61 PDF BibTeX XML Cite \textit{Y. Guo} and \textit{S. Peng}, Commun. Pure Appl. Anal. 21, No. 5, 1637--1648 (2022; Zbl 1487.35402) Full Text: DOI OpenURL
Maia, Liliane; Pellacci, Benedetta; Schiera, Delia Positive bound states to nonlinear Choquard equations in the presence of nonsymmetric potentials. (English) Zbl 07523379 Minimax Theory Appl. 7, No. 2, 321-338 (2022). MSC: 35Q55 35R09 35J91 35J20 PDF BibTeX XML Cite \textit{L. Maia} et al., Minimax Theory Appl. 7, No. 2, 321--338 (2022; Zbl 07523379) Full Text: Link OpenURL
Liu, Meiqi; Zou, Wenming Normalized solutions for a system of fractional Schrödinger equations with linear coupling. (English) Zbl 1487.35412 Minimax Theory Appl. 7, No. 2, 303-320 (2022). MSC: 35R11 35B09 35B33 35J47 35J61 PDF BibTeX XML Cite \textit{M. Liu} and \textit{W. Zou}, Minimax Theory Appl. 7, No. 2, 303--320 (2022; Zbl 1487.35412) Full Text: Link OpenURL
Barboza, Eudes M.; Miyagaki, Olimpio H.; Pereira, Fábio R.; Santana, Cláudia R. Nonlocal Hénon equation with nonlinearities involving Sobolev critical and supercritical growth. (English) Zbl 07522906 Adv. Differ. Equ. 27, No. 7-8, 407-435 (2022). MSC: 35J91 35R11 35J25 35A01 PDF BibTeX XML Cite \textit{E. M. Barboza} et al., Adv. Differ. Equ. 27, No. 7--8, 407--435 (2022; Zbl 07522906) Full Text: Link OpenURL
Su, Yu; Feng, Zhaosheng Ground state solutions for the fractional problems with dipole-type potential and critical exponent. (English) Zbl 1487.35051 Commun. Pure Appl. Anal. 21, No. 6, 1953-1968 (2022). MSC: 35B33 35R11 35J20 35J61 PDF BibTeX XML Cite \textit{Y. Su} and \textit{Z. Feng}, Commun. Pure Appl. Anal. 21, No. 6, 1953--1968 (2022; Zbl 1487.35051) Full Text: DOI OpenURL
Wang, Xiaoshan; Yang, Zuodong Symmetry and monotonicity of positive solutions for a Choquard equation with the fractional Laplacian. (English) Zbl 1487.35422 Complex Var. Elliptic Equ. 67, No. 5, 1211-1228 (2022). MSC: 35R11 35B06 35J20 35J25 35J61 35J70 PDF BibTeX XML Cite \textit{X. Wang} and \textit{Z. Yang}, Complex Var. Elliptic Equ. 67, No. 5, 1211--1228 (2022; Zbl 1487.35422) Full Text: DOI OpenURL
An, Xiaoming; Peng, Shuangjie Multi-peak semiclassical bound states for fractional Schrödinger equations with fast decaying potentials. (English) Zbl 1487.35032 Electron Res. Arch. 30, No. 2, 585-614 (2022). MSC: 35B25 35A15 35J61 35R11 PDF BibTeX XML Cite \textit{X. An} and \textit{S. Peng}, Electron Res. Arch. 30, No. 2, 585--614 (2022; Zbl 1487.35032) Full Text: DOI OpenURL
Casas, Eduardo; Mateos, Mariano Corrigendum to: “Critical cones for sufficient second order conditions in PDE constrained optimization”. (English) Zbl 1484.35268 SIAM J. Optim. 32, No. 1, 319-320 (2022). MSC: 35K59 49K20 35J61 49K30 49M25 PDF BibTeX XML Cite \textit{E. Casas} and \textit{M. Mateos}, SIAM J. Optim. 32, No. 1, 319--320 (2022; Zbl 1484.35268) Full Text: DOI OpenURL
Ambrosio, Vincenzo Concentration phenomena for fractional magnetic NLS equations. (English) Zbl 07506947 Proc. R. Soc. Edinb., Sect. A, Math. 152, No. 2, 479-517 (2022). Reviewer: Gaetano Siciliano (São Paulo) MSC: 35R11 35A15 35J61 35S05 58E05 PDF BibTeX XML Cite \textit{V. Ambrosio}, Proc. R. Soc. Edinb., Sect. A, Math. 152, No. 2, 479--517 (2022; Zbl 07506947) Full Text: DOI OpenURL
Mokhtari, A.; Saoudi, K.; Chung, N. T. A fractional \(p(x,\cdot)\)-Laplacian problem involving a singular term. (English) Zbl 07506494 Indian J. Pure Appl. Math. 53, No. 1, 100-111 (2022). MSC: 35J91 35R11 35A01 PDF BibTeX XML Cite \textit{A. Mokhtari} et al., Indian J. Pure Appl. Math. 53, No. 1, 100--111 (2022; Zbl 07506494) Full Text: DOI OpenURL
Zhang, Rong; Wang, Xiaoshan; Yang, ZuoDong Symmetry and nonexistence of positive solutions for an elliptic system involving the fractional Laplacian. (English) Zbl 1486.35453 Quaest. Math. 45, No. 2, 247-265 (2022). MSC: 35R11 35A10 35B06 35B07 35B09 35J47 35J61 PDF BibTeX XML Cite \textit{R. Zhang} et al., Quaest. Math. 45, No. 2, 247--265 (2022; Zbl 1486.35453) Full Text: DOI OpenURL
Guo, Yuxia; Peng, Shaolong Classification of solutions to mixed order conformally invariant systems in \({\mathbb{R}}^2\). (English) Zbl 1486.35426 J. Geom. Anal. 32, No. 6, Paper No. 178, 41 p. (2022). MSC: 35R11 35A02 35J61 53C18 PDF BibTeX XML Cite \textit{Y. Guo} and \textit{S. Peng}, J. Geom. Anal. 32, No. 6, Paper No. 178, 41 p. (2022; Zbl 1486.35426) Full Text: DOI OpenURL
Hyder, Ali; Yang, Wen Classification of stable solutions to a non-local Gelfand-Liouville equation. (English) Zbl 1486.35428 Int. Math. Res. Not. 2022, No. 7, 5219-5255 (2022). MSC: 35R11 35J61 PDF BibTeX XML Cite \textit{A. Hyder} and \textit{W. Yang}, Int. Math. Res. Not. 2022, No. 7, 5219--5255 (2022; Zbl 1486.35428) Full Text: DOI OpenURL
Hernández Santamaría, Víctor; Saldaña, Alberto Small order asymptotics for nonlinear fractional problems. (English) Zbl 1486.35053 Calc. Var. Partial Differ. Equ. 61, No. 3, Paper No. 92, 26 p. (2022). MSC: 35B40 35A15 35J25 35J61 35R11 35S15 PDF BibTeX XML Cite \textit{V. Hernández Santamaría} and \textit{A. Saldaña}, Calc. Var. Partial Differ. Equ. 61, No. 3, Paper No. 92, 26 p. (2022; Zbl 1486.35053) Full Text: DOI OpenURL
Kim, Soojung; Lee, Youngae Finite Morse index solutions of the fractional Henon-Lane-Emden equation with Hardy potential. (English) Zbl 1486.35435 Taiwanese J. Math. 26, No. 2, 251-283 (2022). MSC: 35R11 35B35 35B33 35B45 35B53 35B65 35J61 PDF BibTeX XML Cite \textit{S. Kim} and \textit{Y. Lee}, Taiwanese J. Math. 26, No. 2, 251--283 (2022; Zbl 1486.35435) Full Text: DOI OpenURL
Li, Quanqing; Zhang, Jian; Wang, Wenbo; Teng, Kaimin Existence of nontrivial solutions for fractional Choquard equations with critical or supercritical growth. (English) Zbl 1486.35195 Appl. Anal. 101, No. 3, 849-857 (2022). MSC: 35J61 35R11 35A01 35A15 PDF BibTeX XML Cite \textit{Q. Li} et al., Appl. Anal. 101, No. 3, 849--857 (2022; Zbl 1486.35195) Full Text: DOI OpenURL
Nhu, V. H.; Tuan, N. Q.; Giang, N. B.; Huong, N. T. T. Continuity regularity of optimal control solutions to distributed and boundary semilinear elliptic optimal control problems with mixed pointwise control-state constraints. (English) Zbl 1485.49029 J. Math. Anal. Appl. 512, No. 1, Article ID 126139, 33 p. (2022). MSC: 49K20 49N60 35J61 PDF BibTeX XML Cite \textit{V. H. Nhu} et al., J. Math. Anal. Appl. 512, No. 1, Article ID 126139, 33 p. (2022; Zbl 1485.49029) Full Text: DOI OpenURL
Wang, Wenqing; Zeng, Xiaoyu; Zhou, Huan-Song A constrained minimization problem related to two coupled pseudo-relativistic Hartree equations. (English) Zbl 1486.35182 J. Differ. Equations 320, 174-205 (2022). MSC: 35J50 35J61 35R11 PDF BibTeX XML Cite \textit{W. Wang} et al., J. Differ. Equations 320, 174--205 (2022; Zbl 1486.35182) Full Text: DOI OpenURL
Tortone, Giorgio The nodal set of solutions to some nonlocal sublinear problems. (English) Zbl 1486.35228 Calc. Var. Partial Differ. Equ. 61, No. 3, Paper No. 82, 52 p. (2022). MSC: 35J91 35R11 PDF BibTeX XML Cite \textit{G. Tortone}, Calc. Var. Partial Differ. Equ. 61, No. 3, Paper No. 82, 51 p. (2022; Zbl 1486.35228) Full Text: DOI OpenURL
Gu, Guangze; Yang, Zhipeng On the singularly perturbation fractional Kirchhoff equations: critical case. (English) Zbl 1485.35023 Adv. Nonlinear Anal. 11, 1097-1116 (2022). MSC: 35B25 35A15 35J61 35R09 35R11 PDF BibTeX XML Cite \textit{G. Gu} and \textit{Z. Yang}, Adv. Nonlinear Anal. 11, 1097--1116 (2022; Zbl 1485.35023) Full Text: DOI OpenURL
Duong, Anh Tuan; Nguyen, Van Hoang A Liouville-type theorem for fractional elliptic equation with exponential nonlinearity. (English) Zbl 1485.35090 Mediterr. J. Math. 19, No. 2, Paper No. 91, 16 p. (2022). MSC: 35B53 35B35 35J61 35R11 PDF BibTeX XML Cite \textit{A. T. Duong} and \textit{V. H. Nguyen}, Mediterr. J. Math. 19, No. 2, Paper No. 91, 16 p. (2022; Zbl 1485.35090) Full Text: DOI arXiv OpenURL
Li, Qi; Peng, Shuangjie; Shuai, Wei On fractional logarithmic Schrödinger equations. (English) Zbl 1485.35396 Adv. Nonlinear Stud. 22, No. 1, 41-66 (2022). MSC: 35R11 35B38 35J61 35Q55 47J30 PDF BibTeX XML Cite \textit{Q. Li} et al., Adv. Nonlinear Stud. 22, No. 1, 41--66 (2022; Zbl 1485.35396) Full Text: DOI OpenURL
Cui, Ying-Xin; Xia, Jiankang Saddle solutions for the fractional Choquard equation. (English) Zbl 1485.35378 Z. Angew. Math. Phys. 73, No. 2, Paper No. 59, 25 p. (2022). MSC: 35R11 35A15 35J20 35J61 PDF BibTeX XML Cite \textit{Y.-X. Cui} and \textit{J. Xia}, Z. Angew. Math. Phys. 73, No. 2, Paper No. 59, 25 p. (2022; Zbl 1485.35378) Full Text: DOI arXiv OpenURL
Luo, Yongming On the local in time well-posedness of an elliptic-parabolic ferroelectric phase-field model. (English) Zbl 07488945 Nonlinear Anal., Real World Appl. 65, Article ID 103462, 30 p. (2022). MSC: 35Qxx 35K61 35B65 35J47 PDF BibTeX XML Cite \textit{Y. Luo}, Nonlinear Anal., Real World Appl. 65, Article ID 103462, 30 p. (2022; Zbl 07488945) Full Text: DOI arXiv OpenURL
Jung, Tacksun; Choi, Q-Heung On the fractional elliptic problems with difference in the Orlicz-Sobolev spaces. (English) Zbl 1485.35393 Adv. Differ. Equ. 27, No. 5-6, 385-406 (2022). MSC: 35R11 35J25 35J61 46E30 46E35 PDF BibTeX XML Cite \textit{T. Jung} and \textit{Q-H. Choi}, Adv. Differ. Equ. 27, No. 5--6, 385--406 (2022; Zbl 1485.35393) Full Text: Link OpenURL
Wu, Pengcheng; Huang, Yisheng; Zhou, Yuying Existence and regularity of solutions for a class of fractional Laplacian problems. (English) Zbl 1484.35394 J. Differ. Equations 318, 480-501 (2022). MSC: 35R11 35D30 35B65 35J25 35J61 35J67 46B70 PDF BibTeX XML Cite \textit{P. Wu} et al., J. Differ. Equations 318, 480--501 (2022; Zbl 1484.35394) Full Text: DOI OpenURL
Guo, Lifeng; Sun, Yan; Shi, Guannan Ground states for fractional nonlocal equations with logarithmic nonlinearity. (English) Zbl 1485.35202 Opusc. Math. 42, No. 2, 157-178 (2022). MSC: 35J61 35R11 35A01 35A15 PDF BibTeX XML Cite \textit{L. Guo} et al., Opusc. Math. 42, No. 2, 157--178 (2022; Zbl 1485.35202) Full Text: DOI OpenURL
Cabré, Xavier; Sanz-Perela, Tomás A universal Hölder estimate up to dimension 4 for stable solutions to half-Laplacian semilinear equations. (English) Zbl 1484.35091 J. Differ. Equations 317, 153-195 (2022). MSC: 35B45 35B65 35J25 35J61 35R11 PDF BibTeX XML Cite \textit{X. Cabré} and \textit{T. Sanz-Perela}, J. Differ. Equations 317, 153--195 (2022; Zbl 1484.35091) Full Text: DOI arXiv OpenURL
Ao, Weiwei; Liu, Chao; Wang, Liping Fast and slow decay solutions for supercritical fractional elliptic problems in exterior domains. (English) Zbl 07483487 Proc. R. Soc. Edinb., Sect. A, Math. 152, No. 1, 28-53 (2022). Reviewer: Said El Manouni (Berlin) MSC: 35J61 35R11 35A01 PDF BibTeX XML Cite \textit{W. Ao} et al., Proc. R. Soc. Edinb., Sect. A, Math. 152, No. 1, 28--53 (2022; Zbl 07483487) Full Text: DOI OpenURL
Lai, Ru-Yu; Ohm, Laurel Inverse problems for the fractional Laplace equation with lower order nonlinear perturbations. (English) Zbl 1484.35411 Inverse Probl. Imaging 16, No. 2, 305-323 (2022). MSC: 35R30 35J25 35J61 35R11 PDF BibTeX XML Cite \textit{R.-Y. Lai} and \textit{L. Ohm}, Inverse Probl. Imaging 16, No. 2, 305--323 (2022; Zbl 1484.35411) Full Text: DOI arXiv OpenURL
Chhetri, Maya; Girg, Petr; Hollifield, Elliott Continuum of positive solutions of superlinear fractional Laplacian problems. (English) Zbl 1485.35191 SN Partial Differ. Equ. Appl. 3, No. 1, Paper No. 12, 11 p. (2022). MSC: 35J60 35J61 35R11 35A01 PDF BibTeX XML Cite \textit{M. Chhetri} et al., SN Partial Differ. Equ. Appl. 3, No. 1, Paper No. 12, 11 p. (2022; Zbl 1485.35191) Full Text: DOI OpenURL
Zhen, Maoding; Zhang, Binlin Normalized ground states for the critical fractional NLS equation with a perturbation. (English) Zbl 1481.35140 Rev. Mat. Complut. 35, No. 1, 89-132 (2022). MSC: 35J05 35R11 35J61 35B33 35A01 PDF BibTeX XML Cite \textit{M. Zhen} and \textit{B. Zhang}, Rev. Mat. Complut. 35, No. 1, 89--132 (2022; Zbl 1481.35140) Full Text: DOI arXiv OpenURL
Choudhuri, Debajyoti; Saoudi, Kamel Existence of multiple solutions to Schrödinger-Poisson system in a nonlocal set up in \(\mathbb{R}^3\). (English) Zbl 1481.35376 Z. Angew. Math. Phys. 73, No. 1, Paper No. 33, 17 p. (2022). MSC: 35R11 35J48 35J61 35J75 46E35 PDF BibTeX XML Cite \textit{D. Choudhuri} and \textit{K. Saoudi}, Z. Angew. Math. Phys. 73, No. 1, Paper No. 33, 17 p. (2022; Zbl 1481.35376) Full Text: DOI OpenURL
Lai, Ru-Yu; Lin, Yi-Hsuan Inverse problems for fractional semilinear elliptic equations. (English) Zbl 1481.35212 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 216, Article ID 112699, 21 p. (2022). MSC: 35J62 35R11 35R30 PDF BibTeX XML Cite \textit{R.-Y. Lai} and \textit{Y.-H. Lin}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 216, Article ID 112699, 21 p. (2022; Zbl 1481.35212) Full Text: DOI arXiv OpenURL
Alarcón, Salomón; Iturriaga, Leonelo; Ritorto, Antonella Nonnegative solutions for the fractional Laplacian involving a nonlinearity with zeros. (English) Zbl 1481.35374 Manuscr. Math. 167, No. 1-2, 345-363 (2022). MSC: 35R11 35B20 35B38 35B40 35J25 35J61 PDF BibTeX XML Cite \textit{S. Alarcón} et al., Manuscr. Math. 167, No. 1--2, 345--363 (2022; Zbl 1481.35374) Full Text: DOI arXiv OpenURL
Bartolucci, Daniele; Jevnikar, Aleks New universal estimates for free boundary problems arising in plasma physics. (English) Zbl 1486.35169 Proc. Am. Math. Soc. 150, No. 2, 673-686 (2022). Reviewer: Mohammed El Aïdi (Bogotá) MSC: 35J20 35J61 35Q99 35R35 76X05 PDF BibTeX XML Cite \textit{D. Bartolucci} and \textit{A. Jevnikar}, Proc. Am. Math. Soc. 150, No. 2, 673--686 (2022; Zbl 1486.35169) Full Text: DOI arXiv OpenURL
Ustinov, N. S. Solvability of a critical semilinear problem with the spectral Neumann fractional Laplacian. (English. Russian original) Zbl 1480.35398 St. Petersbg. Math. J. 33, No. 1, 141-153 (2022); translation from Algebra Anal. 33, No. 1, 194-212 (2021). MSC: 35R11 35J25 35J61 PDF BibTeX XML Cite \textit{N. S. Ustinov}, St. Petersbg. Math. J. 33, No. 1, 141--153 (2022; Zbl 1480.35398); translation from Algebra Anal. 33, No. 1, 194--212 (2021) Full Text: DOI OpenURL
Zhuo, Ran; Li, Congming Classification of anti-symmetric solutions to nonlinear fractional Laplace equations. (English) Zbl 1480.35402 Calc. Var. Partial Differ. Equ. 61, No. 1, Paper No. 17, 23 p. (2022). MSC: 35R11 35A01 35B09 35B50 35B53 35J61 35S05 PDF BibTeX XML Cite \textit{R. Zhuo} and \textit{C. Li}, Calc. Var. Partial Differ. Equ. 61, No. 1, Paper No. 17, 23 p. (2022; Zbl 1480.35402) Full Text: DOI OpenURL
Guo, Lun; Li, Qi Multiple high energy solutions for fractional Schrödinger equation with critical growth. (English) Zbl 1481.35144 Calc. Var. Partial Differ. Equ. 61, No. 1, Paper No. 15, 26 p. (2022). MSC: 35J10 35R11 35J61 35B33 35J20 PDF BibTeX XML Cite \textit{L. Guo} and \textit{Q. Li}, Calc. Var. Partial Differ. Equ. 61, No. 1, Paper No. 15, 26 p. (2022; Zbl 1481.35144) Full Text: DOI OpenURL
de Pablo, Arturo; Quirós, Fernando; Ritorto, Antonella Extremals in Hardy-Littlewood-Sobolev inequalities for stable processes. (English) Zbl 1480.35199 J. Math. Anal. Appl. 507, No. 1, Article ID 125742, 18 p. (2022). MSC: 35J61 35R11 PDF BibTeX XML Cite \textit{A. de Pablo} et al., J. Math. Anal. Appl. 507, No. 1, Article ID 125742, 18 p. (2022; Zbl 1480.35199) Full Text: DOI arXiv OpenURL
Correia, Jeziel N.; Oliveira, Claudionei P. Existence of a positive solution for a class of fractional elliptic problems in exterior domains involving critical growth. (English) Zbl 1475.35385 J. Math. Anal. Appl. 506, No. 1, Article ID 125543, 34 p. (2022). MSC: 35R11 35B09 35B33 35J25 35J61 PDF BibTeX XML Cite \textit{J. N. Correia} and \textit{C. P. Oliveira}, J. Math. Anal. Appl. 506, No. 1, Article ID 125543, 34 p. (2022; Zbl 1475.35385) Full Text: DOI OpenURL
Chen, Haixia; Xu, Xiaolin; Yang, Xiaolong Asymptotic behaviour of ground state solutions for the fractional Hénon equation. (English) Zbl 1479.35461 J. Math. Anal. Appl. 505, No. 1, Article ID 125456, 20 p. (2022). MSC: 35J91 35R11 35B40 PDF BibTeX XML Cite \textit{H. Chen} et al., J. Math. Anal. Appl. 505, No. 1, Article ID 125456, 20 p. (2022; Zbl 1479.35461) Full Text: DOI OpenURL
Wang, Jun Qualitative analysis for the nonlinear fractional Hartree type system with nonlocal interaction. (English) Zbl 1475.35157 Adv. Nonlinear Anal. 11, 385-416 (2022). MSC: 35J61 35J47 35R11 35A01 35A15 PDF BibTeX XML Cite \textit{J. Wang}, Adv. Nonlinear Anal. 11, 385--416 (2022; Zbl 1475.35157) Full Text: DOI OpenURL
Bu, Weichun; An, Tianqing; Ye, Guoju; Guo, Yating Nonlocal fractional \(p(\cdot)\)-Kirchhoff systems with variable-order: two and three solutions. (English) Zbl 07533517 AIMS Math. 6, No. 12, 13797-13823 (2021). MSC: 35J91 35A15 35R11 35J67 PDF BibTeX XML Cite \textit{W. Bu} et al., AIMS Math. 6, No. 12, 13797--13823 (2021; Zbl 07533517) Full Text: DOI OpenURL
Liu, Yaqiong; Li, Yunting; Liao, Qiuping; Yi, Yunhui Classification of nonnegative solutions to fractional Schrödinger-Hatree-Maxwell type system. (English) Zbl 07533510 AIMS Math. 6, No. 12, 13665-13688 (2021). MSC: 35B08 35B50 35J61 35R11 PDF BibTeX XML Cite \textit{Y. Liu} et al., AIMS Math. 6, No. 12, 13665--13688 (2021; Zbl 07533510) Full Text: DOI OpenURL
Yu, Shengbin; Chen, Jianqing On a fractional Schrödinger-Poisson system with strong singularity. (English) Zbl 1487.35429 Open Math. 19, 1538-1553 (2021). MSC: 35R11 35A15 35B40 35B09 35J47 35J61 35J75 PDF BibTeX XML Cite \textit{S. Yu} and \textit{J. Chen}, Open Math. 19, 1538--1553 (2021; Zbl 1487.35429) Full Text: DOI OpenURL
Heid, Pascal; Stamm, Benjamin; Wihler, Thomas P. Gradient flow finite element discretizations with energy-based adaptivity for the Gross-Pitaevskii equation. (English) Zbl 07513837 J. Comput. Phys. 436, Article ID 110165, 15 p. (2021). MSC: 65Nxx 35Qxx 65Mxx PDF BibTeX XML Cite \textit{P. Heid} et al., J. Comput. Phys. 436, Article ID 110165, 15 p. (2021; Zbl 07513837) Full Text: DOI OpenURL
Wang, Jian; Du, Zhuoran Multiple entire solutions of fractional Laplacian Schrödinger equations. (English) Zbl 1485.35206 AIMS Math. 6, No. 8, 8509-8524 (2021). MSC: 35J61 35R11 35A01 35B08 PDF BibTeX XML Cite \textit{J. Wang} and \textit{Z. Du}, AIMS Math. 6, No. 8, 8509--8524 (2021; Zbl 1485.35206) Full Text: DOI OpenURL
Yu, Shengbin; Chen, Jianqing Asymptotic behavior of the unique solution for a fractional Kirchhoff problem with singularity. (English) Zbl 1484.35398 AIMS Math. 6, No. 7, 7187-7198 (2021). MSC: 35R11 35R09 35A15 35B40 35J61 PDF BibTeX XML Cite \textit{S. Yu} and \textit{J. Chen}, AIMS Math. 6, No. 7, 7187--7198 (2021; Zbl 1484.35398) Full Text: DOI OpenURL
Choi, Q-Heung; Jung, Tacksun Fractional N-Laplacian boundary value problems with jumping nonlinearities in the fractional Orlicz-Sobolev spaces. (English) Zbl 1486.35417 Bound. Value Probl. 2021, Paper No. 100, 27 p. (2021). MSC: 35R11 35A01 35A16 35J25 35J61 PDF BibTeX XML Cite \textit{Q-H. Choi} and \textit{T. Jung}, Bound. Value Probl. 2021, Paper No. 100, 27 p. (2021; Zbl 1486.35417) Full Text: DOI OpenURL
Li, Yunting; Liu, Yaqiong; Yi, Yunhui Classification of nonnegative solutions to static Schrödinger-Hartree-Maxwell system involving the fractional Laplacian. (English) Zbl 1486.35439 Bound. Value Probl. 2021, Paper No. 91, 23 p. (2021). MSC: 35R11 35B08 35B50 35J61 35R09 PDF BibTeX XML Cite \textit{Y. Li} et al., Bound. Value Probl. 2021, Paper No. 91, 23 p. (2021; Zbl 1486.35439) Full Text: DOI OpenURL
Choudhuri, Debajyoti; Repovš, Dušan D. Elliptic problem driven by different types of nonlinearities. (English) Zbl 1486.35418 Bound. Value Probl. 2021, Paper No. 85, 19 p. (2021). MSC: 35R11 35J61 35J75 35R09 46E35 PDF BibTeX XML Cite \textit{D. Choudhuri} and \textit{D. D. Repovš}, Bound. Value Probl. 2021, Paper No. 85, 19 p. (2021; Zbl 1486.35418) Full Text: DOI OpenURL
Bayrami-Aminlouee, Masoud; Hesaaraki, Mahmoud; Karim Hamdani, Mohamed; Thanh Chung, Nguyen Nonlocal Lazer-McKenna-type problem perturbed by the Hardy’s potential and its parabolic equivalence. (English) Zbl 1486.35411 Bound. Value Probl. 2021, Paper No. 68, 42 p. (2021). MSC: 35R11 35B25 35A01 35B09 35B44 35J61 35J75 PDF BibTeX XML Cite \textit{M. Bayrami-Aminlouee} et al., Bound. Value Probl. 2021, Paper No. 68, 42 p. (2021; Zbl 1486.35411) Full Text: DOI OpenURL
Lin, Yuan; Liu, Weiming Construct new type solutions for the fractional Schrödinger equation. (English) Zbl 1487.35411 Bound. Value Probl. 2021, Paper No. 58, 20 p. (2021). MSC: 35R11 35B09 35J10 35J61 47J30 PDF BibTeX XML Cite \textit{Y. Lin} and \textit{W. Liu}, Bound. Value Probl. 2021, Paper No. 58, 20 p. (2021; Zbl 1487.35411) Full Text: DOI OpenURL
Dob, S.; Lakhal, H.; Maouni, M. Existence and uniqueness of solutions for a nonlinear fractional elliptic system. (English) Zbl 1485.35379 Malays. J. Math. Sci. 15, No. 3, 347-356 (2021). MSC: 35R11 35D30 35J57 35J61 PDF BibTeX XML Cite \textit{S. Dob} et al., Malays. J. Math. Sci. 15, No. 3, 347--356 (2021; Zbl 1485.35379) Full Text: Link OpenURL
Guo, Z.; Deng, Y. Multiplicity of solutions for a fractional Laplacian equation involving a perturbation. (English) Zbl 1485.35386 J. Contemp. Math. Anal., Armen. Acad. Sci. 56, No. 6, 375-385 (2021) and Izv. Nats. Akad. Nauk Armen., Mat. 56, No. 6, 39-50 (2021). MSC: 35R11 35J25 35J61 47J30 PDF BibTeX XML Cite \textit{Z. Guo} and \textit{Y. Deng}, J. Contemp. Math. Anal., Armen. Acad. Sci. 56, No. 6, 375--385 (2021; Zbl 1485.35386) Full Text: DOI OpenURL
Akahori, Takafumi; Ibrahim, Slim; Kikuchi, Hiroaki; Nawa, Hayato Global dynamics above the ground state energy for the combined power-type nonlinear Schrödinger equations with energy-critical growth at low frequencies. (English) Zbl 07492801 Memoirs of the American Mathematical Society 1331. Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-4872-1/pbk; 978-1-4704-6747-0/ebook). v, 130 p. (2021). Reviewer: Ivan Naumkin (Nice) MSC: 35-02 35Q55 35B35 35B44 35J20 35J61 PDF BibTeX XML Cite \textit{T. Akahori} et al., Global dynamics above the ground state energy for the combined power-type nonlinear Schrödinger equations with energy-critical growth at low frequencies. Providence, RI: American Mathematical Society (AMS) (2021; Zbl 07492801) Full Text: DOI arXiv OpenURL
Van Thin, Nguyen On the variable-order fractional Laplacian equation with variable growth on \(\mathbb{R}^N\). (English) Zbl 1485.35205 Taiwanese J. Math. 25, No. 6, 1187-1223 (2021). MSC: 35J61 35R11 35A01 PDF BibTeX XML Cite \textit{N. Van Thin}, Taiwanese J. Math. 25, No. 6, 1187--1223 (2021; Zbl 1485.35205) Full Text: DOI OpenURL
Cao, Linfen; Wang, Xiaoshan Radial symmetry of positive solutions to a class of fractional Laplacian with a singular nonlinearity. (English) Zbl 1483.35011 J. Korean Math. Soc. 58, No. 6, 1449-1460 (2021). MSC: 35B06 35J61 35J75 35R11 PDF BibTeX XML Cite \textit{L. Cao} and \textit{X. Wang}, J. Korean Math. Soc. 58, No. 6, 1449--1460 (2021; Zbl 1483.35011) Full Text: DOI OpenURL
Allendes, Alejandro; Fuica, Francisco; Otárola, Enrique; Quero, Daniel A posteriori error estimates for semilinear optimal control problems. (English) Zbl 1485.35200 ESAIM, Math. Model. Numer. Anal. 55, No. 5, 2293-2322 (2021). MSC: 35J61 49J20 49M25 65N15 65N30 PDF BibTeX XML Cite \textit{A. Allendes} et al., ESAIM, Math. Model. Numer. Anal. 55, No. 5, 2293--2322 (2021; Zbl 1485.35200) Full Text: DOI arXiv OpenURL
Abdelhedi, Wael; Hajaiej, Hichem; Mhamdi, Zeinab A Morse lemma at infinity for nonlinear elliptic fractional equations. (English) Zbl 1484.35211 Rend. Semin. Mat. Univ. Padova 146, 1-42 (2021). MSC: 35J61 35R11 35J67 PDF BibTeX XML Cite \textit{W. Abdelhedi} et al., Rend. Semin. Mat. Univ. Padova 146, 1--42 (2021; Zbl 1484.35211) Full Text: DOI OpenURL
Wang, Chunhua; Yang, Jing; Zhou, Jing Solutions for a nonlocal problem involving a Hardy potential and critical growth. (English) Zbl 1481.35200 J. Anal. Math. 144, No. 1, 261-303 (2021). MSC: 35J61 35R11 35J67 35A01 PDF BibTeX XML Cite \textit{C. Wang} et al., J. Anal. Math. 144, No. 1, 261--303 (2021; Zbl 1481.35200) Full Text: DOI OpenURL
de Borbón, María Laura; Ochoa, Pablo A capacity-based condition for existence of solutions to fractional elliptic equations with first-order terms and measures. (English) Zbl 1481.35379 Potential Anal. 55, No. 4, 677-698 (2021). MSC: 35R11 31A15 35J61 35R06 PDF BibTeX XML Cite \textit{M. L. de Borbón} and \textit{P. Ochoa}, Potential Anal. 55, No. 4, 677--698 (2021; Zbl 1481.35379) Full Text: DOI arXiv OpenURL
Panda, Akasmika; Choudhuri, Debajyoti; Saoudi, Kamel A critical fractional Choquard problem involving a singular nonlinearity and a Radon measure. (English) Zbl 1481.35199 J. Pseudo-Differ. Oper. Appl. 12, No. 1, Paper No. 22, 19 p. (2021). MSC: 35J61 35R11 35A01 35A15 PDF BibTeX XML Cite \textit{A. Panda} et al., J. Pseudo-Differ. Oper. Appl. 12, No. 1, Paper No. 22, 19 p. (2021; Zbl 1481.35199) Full Text: DOI OpenURL
Le, Phuong; Duong, Anh Tuan; Nguyen, Nhu Thang Liouville-type theorems for sub-elliptic systems involving \(\Delta_{\lambda}\)-Laplacian. (English) Zbl 1481.35098 Complex Var. Elliptic Equ. 66, No. 12, 2131-2140 (2021). MSC: 35B53 35B35 35H20 35J61 35J70 35R45 PDF BibTeX XML Cite \textit{P. Le} et al., Complex Var. Elliptic Equ. 66, No. 12, 2131--2140 (2021; Zbl 1481.35098) Full Text: DOI OpenURL
Lucia, Marcello; Sweers, Guido Nondegeneracy of solutions for a class of cooperative systems on \(\mathbb{R}^n\). (English) Zbl 1481.35173 Commun. Pure Appl. Anal. 20, No. 12, 4177-4193 (2021). MSC: 35J47 35J61 35P99 PDF BibTeX XML Cite \textit{M. Lucia} and \textit{G. Sweers}, Commun. Pure Appl. Anal. 20, No. 12, 4177--4193 (2021; Zbl 1481.35173) Full Text: DOI OpenURL
Dhanya, R.; Tiwari, Sweta A multiparameter fractional Laplace problem with semipositone nonlinearity. (English) Zbl 1480.35390 Commun. Pure Appl. Anal. 20, No. 12, 4043-4061 (2021). MSC: 35R11 35A15 35B33 35J20 35J25 35J61 PDF BibTeX XML Cite \textit{R. Dhanya} and \textit{S. Tiwari}, Commun. Pure Appl. Anal. 20, No. 12, 4043--4061 (2021; Zbl 1480.35390) Full Text: DOI OpenURL
Gallo, Marco Multiplicity and concentration results for local and fractional NLS equations with critical growth. (English) Zbl 1487.35034 Adv. Differ. Equ. 26, No. 9-10, 397-424 (2021). Reviewer: Christos Sourdis (Athína) MSC: 35B25 35B33 35B40 35J61 35R11 47J30 58E05 PDF BibTeX XML Cite \textit{M. Gallo}, Adv. Differ. Equ. 26, No. 9--10, 397--424 (2021; Zbl 1487.35034) Full Text: arXiv Euclid OpenURL
Xiang, Mingqi; Zhang, Binlin Combined effects of logarithmic and critical nonlinearities in fractional Laplacian problems. (English) Zbl 1480.35400 Adv. Differ. Equ. 26, No. 7-8, 363-396 (2021). MSC: 35R11 35J25 35J61 47G20 PDF BibTeX XML Cite \textit{M. Xiang} and \textit{B. Zhang}, Adv. Differ. Equ. 26, No. 7--8, 363--396 (2021; Zbl 1480.35400) Full Text: Euclid OpenURL
Boudjeriou, Tahir On a class of \(N/s\)-fractional Hardy-Schrödinger equations with singular exponential nonlinearity in \(\mathbb{R}^N\). (English) Zbl 1479.35915 J. Elliptic Parabol. Equ. 7, No. 2, 705-726 (2021). MSC: 35R11 35A15 35J61 47G20 PDF BibTeX XML Cite \textit{T. Boudjeriou}, J. Elliptic Parabol. Equ. 7, No. 2, 705--726 (2021; Zbl 1479.35915) Full Text: DOI OpenURL
Lamacz-Keymling, Agnes; Yousept, Irwin High-order homogenization in optimal control by the Bloch wave method. (English) Zbl 1479.35060 ESAIM, Control Optim. Calc. Var. 27, Paper No. 100, 28 p. (2021). MSC: 35B27 35J20 35J61 35P05 49J20 PDF BibTeX XML Cite \textit{A. Lamacz-Keymling} and \textit{I. Yousept}, ESAIM, Control Optim. Calc. Var. 27, Paper No. 100, 28 p. (2021; Zbl 1479.35060) Full Text: DOI arXiv OpenURL
Yang, Tao On doubly critical coupled systems involving fractional Laplacian with partial singular weight. (English) Zbl 1479.35931 Math. Methods Appl. Sci. 44, No. 17, 13448-13467 (2021). MSC: 35R11 35A23 35B33 35J50 35J61 PDF BibTeX XML Cite \textit{T. Yang}, Math. Methods Appl. Sci. 44, No. 17, 13448--13467 (2021; Zbl 1479.35931) Full Text: DOI arXiv OpenURL
Rawat, Sushmita; Sreenadh, Konijeti Multiple positive solutions for degenerate Kirchhoff equations with singular and Choquard nonlinearity. (English) Zbl 1479.35926 Math. Methods Appl. Sci. 44, No. 18, 13812-13832 (2021). MSC: 35R11 35J20 35J25 35J61 35R09 PDF BibTeX XML Cite \textit{S. Rawat} and \textit{K. Sreenadh}, Math. Methods Appl. Sci. 44, No. 18, 13812--13832 (2021; Zbl 1479.35926) Full Text: DOI arXiv OpenURL
Yin, Xin; Zou, Wenming Positive least energy solutions for \(k\)-coupled critical systems involving fractional Laplacian. (English) Zbl 1480.35201 Discrete Contin. Dyn. Syst., Ser. S 14, No. 6, 1995-2023 (2021). MSC: 35J61 35R11 35A01 35J50 PDF BibTeX XML Cite \textit{X. Yin} and \textit{W. Zou}, Discrete Contin. Dyn. Syst., Ser. S 14, No. 6, 1995--2023 (2021; Zbl 1480.35201) Full Text: DOI OpenURL
Hu, Hangzhou; Li, Yuan; Zhao, Dun Ground state for fractional Schrödinger-Poisson equation in Coulomb-Sobolev space. (English) Zbl 1479.35014 Discrete Contin. Dyn. Syst., Ser. S 14, No. 6, 1899-1916 (2021). MSC: 35A15 35J61 35Q55 35R11 PDF BibTeX XML Cite \textit{H. Hu} et al., Discrete Contin. Dyn. Syst., Ser. S 14, No. 6, 1899--1916 (2021; Zbl 1479.35014) Full Text: DOI OpenURL
Chen, Yutong; Su, Jiabao Nontrivial solutions for the fractional Laplacian problems without asymptotic limits near both infinity and zero. (English) Zbl 1479.35917 Discrete Contin. Dyn. Syst., Ser. S 14, No. 6, 1837-1855 (2021). MSC: 35R11 35A15 35A16 35J25 35J61 35R09 58E05 PDF BibTeX XML Cite \textit{Y. Chen} and \textit{J. Su}, Discrete Contin. Dyn. Syst., Ser. S 14, No. 6, 1837--1855 (2021; Zbl 1479.35917) Full Text: DOI OpenURL
Chen, Mengyao; Li, Qi; Peng, Shuangjie Bound states for fractional Schrödinger-Poisson system with critical exponent. (English) Zbl 1480.35198 Discrete Contin. Dyn. Syst., Ser. S 14, No. 6, 1819-1835 (2021). MSC: 35J61 35R11 35J50 PDF BibTeX XML Cite \textit{M. Chen} et al., Discrete Contin. Dyn. Syst., Ser. S 14, No. 6, 1819--1835 (2021; Zbl 1480.35198) Full Text: DOI OpenURL
Yan, Shusen; Yu, Weilin Planar vortices in a bounded domain with a hole. (English) Zbl 1478.49004 Electron Res. Arch. 29, No. 6, 4229-4241 (2021). MSC: 49J20 49S05 76B47 35J61 PDF BibTeX XML Cite \textit{S. Yan} and \textit{W. Yu}, Electron Res. Arch. 29, No. 6, 4229--4241 (2021; Zbl 1478.49004) Full Text: DOI OpenURL
Duong, Anh Tuan; Nguyen, Van Hoang; Nguyen, Thi Quynh Uniform lower bound and Liouville type theorem for fractional Lichnerowicz equations. (English) Zbl 1479.35918 Bull. Aust. Math. Soc. 104, No. 3, 484-492 (2021). MSC: 35R11 35B53 35B35 35J61 PDF BibTeX XML Cite \textit{A. T. Duong} et al., Bull. Aust. Math. Soc. 104, No. 3, 484--492 (2021; Zbl 1479.35918) Full Text: DOI OpenURL