McOwen, Robert; Topalov, Peter Spatial asymptotics and equilibria of heat flow on \(\mathbb{R}^d\). (English) Zbl 1498.35537 J. Math. Anal. Appl. 518, No. 1, Article ID 126668, 31 p. (2023). MSC: 35Q79 35K05 35K15 35K58 35C20 35B40 35A01 35A02 PDF BibTeX XML Cite \textit{R. McOwen} and \textit{P. Topalov}, J. Math. Anal. Appl. 518, No. 1, Article ID 126668, 31 p. (2023; Zbl 1498.35537) Full Text: DOI arXiv OpenURL
Oanh, Nguyen Thi Ngoc A method for choosing the regularization parameter of determining the right-hand side from integral observation. (English) Zbl 07648882 Asian-Eur. J. Math. 15, No. 7, Article ID 2250132, 6 p. (2022). MSC: 35K05 35K58 49J20 PDF BibTeX XML Cite \textit{N. T. N. Oanh}, Asian-Eur. J. Math. 15, No. 7, Article ID 2250132, 6 p. (2022; Zbl 07648882) Full Text: DOI OpenURL
Benia, Yassine; Sadallah, Boubaker-Khaled New regularity results for the heat equation and application to non-homogeneous Burgers equation. (English) Zbl 07626519 Georgian Math. J. 29, No. 6, 813-821 (2022). MSC: 35B65 35K20 35K58 PDF BibTeX XML Cite \textit{Y. Benia} and \textit{B.-K. Sadallah}, Georgian Math. J. 29, No. 6, 813--821 (2022; Zbl 07626519) Full Text: DOI OpenURL
Collot, Charles; Ghoul, Tej-Eddine; Masmoudi, Nader Singularity formation for Burgers’ equation with transverse viscosity. (English. French summary) Zbl 1501.35089 Ann. Sci. Éc. Norm. Supér. (4) 55, No. 4, 1047-1133 (2022). MSC: 35B44 35A20 35B35 35M10 35L67 35K58 PDF BibTeX XML Cite \textit{C. Collot} et al., Ann. Sci. Éc. Norm. Supér. (4) 55, No. 4, 1047--1133 (2022; Zbl 1501.35089) Full Text: DOI arXiv OpenURL
Bongarti, Marcelo; Lasiecka, Irena Boundary feedback stabilization of a critical nonlinear JMGT equation with Neumann-undissipated part of the boundary. (English) Zbl 1500.35032 Discrete Contin. Dyn. Syst., Ser. S 15, No. 8, 1957-1985 (2022). MSC: 35B40 35L35 35L76 93D15 PDF BibTeX XML Cite \textit{M. Bongarti} and \textit{I. Lasiecka}, Discrete Contin. Dyn. Syst., Ser. S 15, No. 8, 1957--1985 (2022; Zbl 1500.35032) Full Text: DOI arXiv OpenURL
Castillo, Ricardo; Guzmán-Rea, Omar; Zegarra, María Existence and non-existence of global solutions for a heat equation with degenerate coefficients. (English) Zbl 1498.35006 SN Partial Differ. Equ. Appl. 3, No. 6, Paper No. 69, 16 p. (2022). MSC: 35A01 35B33 35K15 35K58 35K65 PDF BibTeX XML Cite \textit{R. Castillo} et al., SN Partial Differ. Equ. Appl. 3, No. 6, Paper No. 69, 16 p. (2022; Zbl 1498.35006) Full Text: DOI arXiv OpenURL
Aouaouda, Meriem; Ayadi, Abdelkhamid; Yashima, Hisao Fujita Convergence of approximate solutions by heat kernel for transport-diffusion equation in a half-plane. (Russian. English summary) Zbl 07600143 Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki 26, No. 2, 222-258 (2022). MSC: 35K20 35K58 35K08 PDF BibTeX XML Cite \textit{M. Aouaouda} et al., Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki 26, No. 2, 222--258 (2022; Zbl 07600143) Full Text: DOI MNR OpenURL
Hayashi, Nakao; Kaikina, Elena I.; Naumkin, Pavel I.; Ogawa, Takayoshi Nonlinear Neumann boundary value problem for semilinear heat equations with critical power nonlinearities. (English) Zbl 1498.35536 Asymptotic Anal. 130, No. 1-2, 261-295 (2022). MSC: 35Q79 35K05 35K58 35A01 35B40 PDF BibTeX XML Cite \textit{N. Hayashi} et al., Asymptotic Anal. 130, No. 1--2, 261--295 (2022; Zbl 1498.35536) Full Text: DOI OpenURL
Salins, Michael Existence and uniqueness of global solutions to the stochastic heat equation with superlinear drift on an unbounded spatial domain. (English) Zbl 1498.35643 Stoch. Dyn. 22, No. 5, Article ID 2250014, 30 p. (2022). MSC: 35R60 35K58 60H15 PDF BibTeX XML Cite \textit{M. Salins}, Stoch. Dyn. 22, No. 5, Article ID 2250014, 30 p. (2022; Zbl 1498.35643) Full Text: DOI arXiv OpenURL
López-Lázaro, Heraclio; Nascimento, Marcelo J. D.; Rubio, Obidio Finite fractal dimension of pullback attractors for semilinear heat equation with delay in some domain with moving boundary. (English) Zbl 1498.35103 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 225, Article ID 113107, 35 p. (2022). MSC: 35B41 35K20 35K58 35R10 35R37 37L30 35Q79 PDF BibTeX XML Cite \textit{H. López-Lázaro} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 225, Article ID 113107, 35 p. (2022; Zbl 1498.35103) Full Text: DOI OpenURL
Ervedoza, Sylvain; Le Balc’h, Kévin; Tucsnak, Marius Reachability results for perturbed heat equations. (English) Zbl 1498.93029 J. Funct. Anal. 283, No. 10, Article ID 109666, 61 p. (2022). MSC: 93B03 93C20 35K05 93B05 35K58 PDF BibTeX XML Cite \textit{S. Ervedoza} et al., J. Funct. Anal. 283, No. 10, Article ID 109666, 61 p. (2022; Zbl 1498.93029) Full Text: DOI OpenURL
Duong, G. K.; Ghoul, T. E.; Kavallaris, N. I.; Zaag, H. Blowup solutions for the nonlocal shadow limit model of a singular Gierer-Meinhardt system with critical parameters. (English) Zbl 1496.35102 J. Differ. Equations 336, 73-125 (2022). MSC: 35B44 35B40 35K20 35K57 35K58 35R09 PDF BibTeX XML Cite \textit{G. K. Duong} et al., J. Differ. Equations 336, 73--125 (2022; Zbl 1496.35102) Full Text: DOI OpenURL
Castorina, Daniele; Catino, Giovanni; Mantegazza, Carlo A triviality result for semilinear parabolic equations. (English) Zbl 1496.35234 Math. Eng. (Springfield) 4, No. 1, Paper No. 2, 15 p. (2022). MSC: 35K58 35A02 35R01 58J35 PDF BibTeX XML Cite \textit{D. Castorina} et al., Math. Eng. (Springfield) 4, No. 1, Paper No. 2, 15 p. (2022; Zbl 1496.35234) Full Text: DOI arXiv OpenURL
Abdelhedi, Bouthaina; Zaag, Hatem Refined blow-up asymptotics for a perturbed nonlinear heat equation with a gradient and a non-local term. (English) Zbl 1494.35043 J. Math. Anal. Appl. 515, No. 2, Article ID 126447, 19 p. (2022). MSC: 35B44 35K15 35K58 35R09 PDF BibTeX XML Cite \textit{B. Abdelhedi} and \textit{H. Zaag}, J. Math. Anal. Appl. 515, No. 2, Article ID 126447, 19 p. (2022; Zbl 1494.35043) Full Text: DOI arXiv OpenURL
Slodička, Marián On a semilinear parabolic problem with non-local (Bitsadze-Samarskii type) boundary conditions in more dimensions. (English) Zbl 1491.35275 Commun. Nonlinear Sci. Numer. Simul. 113, Article ID 106575, 16 p. (2022). MSC: 35K58 35K20 65M15 PDF BibTeX XML Cite \textit{M. Slodička}, Commun. Nonlinear Sci. Numer. Simul. 113, Article ID 106575, 16 p. (2022; Zbl 1491.35275) Full Text: DOI OpenURL
Khoutaibi, Abdelaziz; Maniar, Lahcen; Oukdach, Omar Null controllability for semilinear heat equation with dynamic boundary conditions. (English) Zbl 1497.93014 Discrete Contin. Dyn. Syst., Ser. S 15, No. 6, 1525-1546 (2022). Reviewer: Yong-Kui Chang (Xi’an) MSC: 93B05 93B07 93C20 35K05 PDF BibTeX XML Cite \textit{A. Khoutaibi} et al., Discrete Contin. Dyn. Syst., Ser. S 15, No. 6, 1525--1546 (2022; Zbl 1497.93014) Full Text: DOI OpenURL
Bongarti, Marcelo; Lasiecka, Irena; Rodrigues, José H. Boundary stabilization of the linear MGT equation with partially absorbing boundary data and degenerate viscoelasticity. (English) Zbl 1491.35287 Discrete Contin. Dyn. Syst., Ser. S 15, No. 6, 1355-1376 (2022). MSC: 35L35 35L76 93D15 PDF BibTeX XML Cite \textit{M. Bongarti} et al., Discrete Contin. Dyn. Syst., Ser. S 15, No. 6, 1355--1376 (2022; Zbl 1491.35287) Full Text: DOI arXiv OpenURL
Metcalfe, Stephen; Wihler, Thomas P. Conditional a posteriori error bounds for high order discontinuous Galerkin time stepping approximations of semilinear heat models with blow-up. (English) Zbl 1490.65204 SIAM J. Sci. Comput. 44, No. 3, A1337-A1357 (2022). MSC: 65M60 65M12 65M15 65M22 65M50 PDF BibTeX XML Cite \textit{S. Metcalfe} and \textit{T. P. Wihler}, SIAM J. Sci. Comput. 44, No. 3, A1337--A1357 (2022; Zbl 1490.65204) Full Text: DOI arXiv OpenURL
Hesse, Robert; Neamţu, Alexandra Global solutions for semilinear rough partial differential equations. (English) Zbl 1491.35274 Stoch. Dyn. 22, No. 2, Article ID 2240011, 18 p. (2022). MSC: 35K58 35R60 37L55 58J35 60H15 PDF BibTeX XML Cite \textit{R. Hesse} and \textit{A. Neamţu}, Stoch. Dyn. 22, No. 2, Article ID 2240011, 18 p. (2022; Zbl 1491.35274) Full Text: DOI arXiv OpenURL
Le, Thi Oanh Square-mean inertial manifolds for stochastic differential equations. (English) Zbl 1492.60175 Random Oper. Stoch. Equ. 30, No. 2, 149-159 (2022). MSC: 60H10 60H05 PDF BibTeX XML Cite \textit{T. O. Le}, Random Oper. Stoch. Equ. 30, No. 2, 149--159 (2022; Zbl 1492.60175) Full Text: DOI OpenURL
Mahdi, Achache Non-autonomous maximal regularity for fractional evolution equations. (English) Zbl 1490.35072 J. Evol. Equ. 22, No. 2, Paper No. 48, 34 p. (2022). MSC: 35B65 35K20 35K58 35K90 35R11 PDF BibTeX XML Cite \textit{A. Mahdi}, J. Evol. Equ. 22, No. 2, Paper No. 48, 34 p. (2022; Zbl 1490.35072) Full Text: DOI OpenURL
Wu, Hui; Kong, Cuixian Differential Harnack estimate of solutions to a class of semilinear parabolic equation. (English) Zbl 1490.35204 Math. Inequal. Appl. 25, No. 2, 397-405 (2022). MSC: 35K58 35B44 35B45 35B50 35K15 58J35 PDF BibTeX XML Cite \textit{H. Wu} and \textit{C. Kong}, Math. Inequal. Appl. 25, No. 2, 397--405 (2022; Zbl 1490.35204) Full Text: DOI OpenURL
Dunlap, Alexander; Gu, Yu A forward-backward SDE from the 2D nonlinear stochastic heat equation. (English) Zbl 1487.35463 Ann. Probab. 50, No. 3, 1204-1253 (2022). MSC: 35R60 35K15 35K58 60H10 60H15 PDF BibTeX XML Cite \textit{A. Dunlap} and \textit{Y. Gu}, Ann. Probab. 50, No. 3, 1204--1253 (2022; Zbl 1487.35463) Full Text: DOI arXiv OpenURL
Fu, Xuenan; Wu, Jia-Yong Gradient estimates for a nonlinear parabolic equation with Dirichlet boundary condition. (English) Zbl 1487.35139 Kodai Math. J. 45, No. 1, 96-109 (2022). MSC: 35B53 35B45 35K20 35K58 58J35 PDF BibTeX XML Cite \textit{X. Fu} and \textit{J.-Y. Wu}, Kodai Math. J. 45, No. 1, 96--109 (2022; Zbl 1487.35139) Full Text: DOI arXiv OpenURL
Takahashi, Jin Entire solutions with moving singularities for a semilinear heat equation with a critical exponent. (English) Zbl 1487.35028 SN Partial Differ. Equ. Appl. 3, No. 2, Paper No. 29, 16 p. (2022). MSC: 35B08 35A01 35A21 35B33 35K20 35K58 PDF BibTeX XML Cite \textit{J. Takahashi}, SN Partial Differ. Equ. Appl. 3, No. 2, Paper No. 29, 16 p. (2022; Zbl 1487.35028) Full Text: DOI OpenURL
Souplet, Philippe On refined blowup estimates for the exponential reaction-diffusion equation. (English) Zbl 1487.35128 SN Partial Differ. Equ. Appl. 3, No. 1, Paper No. 16, 9 p. (2022). MSC: 35B44 35B40 35K20 35K58 PDF BibTeX XML Cite \textit{P. Souplet}, SN Partial Differ. Equ. Appl. 3, No. 1, Paper No. 16, 9 p. (2022; Zbl 1487.35128) Full Text: DOI arXiv OpenURL
Aparcana, Aldryn; Castillo, Ricardo; Guzmán-Rea, Omar; Loayza, Miguel Local existence for evolution equations with nonlocal term in time and singular initial data. (English) Zbl 1486.35410 Z. Angew. Math. Phys. 73, No. 2, Paper No. 85, 19 p. (2022). MSC: 35R11 35B33 35K15 35K57 35K58 35R05 35R09 PDF BibTeX XML Cite \textit{A. Aparcana} et al., Z. Angew. Math. Phys. 73, No. 2, Paper No. 85, 19 p. (2022; Zbl 1486.35410) Full Text: DOI OpenURL
Castillo, Ricardo; Guzmán-Rea, Omar; Loayza, Miguel On the local existence for Hardy parabolic equations with singular initial data. (English) Zbl 1490.35209 J. Math. Anal. Appl. 510, No. 2, Article ID 126022, 29 p. (2022). Reviewer: Fatma Gamze Duzgun (Ankara) MSC: 35K67 35K20 35K58 35A02 PDF BibTeX XML Cite \textit{R. Castillo} et al., J. Math. Anal. Appl. 510, No. 2, Article ID 126022, 29 p. (2022; Zbl 1490.35209) Full Text: DOI OpenURL
Jaquette, Jonathan; Lessard, Jean-Philippe; Takayasu, Akitoshi Singularities and heteroclinic connections in complex-valued evolutionary equations with a quadratic nonlinearity. (English) Zbl 1483.35119 Commun. Nonlinear Sci. Numer. Simul. 107, Article ID 106188, 14 p. (2022). MSC: 35K58 35K20 35B44 37C29 PDF BibTeX XML Cite \textit{J. Jaquette} et al., Commun. Nonlinear Sci. Numer. Simul. 107, Article ID 106188, 14 p. (2022; Zbl 1483.35119) Full Text: DOI arXiv OpenURL
Wang, Lijuan; Zhang, Can A uniform bound on costs of controlling semilinear heat equations on a sequence of increasing domains and its application. (English) Zbl 07466629 ESAIM, Control Optim. Calc. Var. 28, Paper No. 8, 31 p. (2022). MSC: 35K20 35K58 93B07 93C20 PDF BibTeX XML Cite \textit{L. Wang} and \textit{C. Zhang}, ESAIM, Control Optim. Calc. Var. 28, Paper No. 8, 31 p. (2022; Zbl 07466629) Full Text: DOI arXiv OpenURL
Gross, Leonard The Yang-Mills heat equation with finite action in three dimensions. (English) Zbl 1482.35001 Memoirs of the American Mathematical Society 1349. Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-5053-3/pbk; 978-1-4704-7015-9/ebook). v, 111 p. (2022). Reviewer: Ahmed Lesfari (El Jadida) MSC: 35-02 35K58 35K65 70S15 35K51 58J35 81T13 PDF BibTeX XML Cite \textit{L. Gross}, The Yang-Mills heat equation with finite action in three dimensions. Providence, RI: American Mathematical Society (AMS) (2022; Zbl 1482.35001) Full Text: DOI arXiv OpenURL
Ruzhansky, Michael; Yessirkegenov, Nurgissa Existence and non-existence of global solutions for semilinear heat equations and inequalities on sub-Riemannian manifolds, and Fujita exponent on unimodular Lie groups. (English) Zbl 1479.35148 J. Differ. Equations 308, 455-473 (2022). MSC: 35B44 35K58 35R01 35R45 58J35 PDF BibTeX XML Cite \textit{M. Ruzhansky} and \textit{N. Yessirkegenov}, J. Differ. Equations 308, 455--473 (2022; Zbl 1479.35148) Full Text: DOI arXiv OpenURL
Long, Le Dinh; Binh, Ho Duy; Thi, Kim Van Ho; Nguyen, Van Thinh Well-posed results for nonlocal biparabolic equation with linear and nonlinear source terms. (English) Zbl 1494.35086 Adv. Difference Equ. 2021, Paper No. 434, 16 p. (2021). MSC: 35K05 35K58 PDF BibTeX XML Cite \textit{L. D. Long} et al., Adv. Difference Equ. 2021, Paper No. 434, 16 p. (2021; Zbl 1494.35086) Full Text: DOI OpenURL
Bayrami-Aminlouee, Masoud; Hesaaraki, Mahmoud; Karim Hamdani, Mohamed; Thanh Chung, Nguyen Nonlocal Lazer-McKenna-type problem perturbed by the Hardy’s potential and its parabolic equivalence. (English) Zbl 1486.35411 Bound. Value Probl. 2021, Paper No. 68, 42 p. (2021). MSC: 35R11 35B25 35A01 35B09 35B44 35J61 35J75 PDF BibTeX XML Cite \textit{M. Bayrami-Aminlouee} et al., Bound. Value Probl. 2021, Paper No. 68, 42 p. (2021; Zbl 1486.35411) Full Text: DOI arXiv OpenURL
Wang, Weike; He, Wuque; Shi, Binbin Suppression of blow up by mixing mechanism in semilinear heat equations. (Chinese. English summary) Zbl 1499.35358 Sci. Sin., Math. 51, No. 6, 1013-1036 (2021). MSC: 35K58 35A09 35B50 PDF BibTeX XML Cite \textit{W. Wang} et al., Sci. Sin., Math. 51, No. 6, 1013--1036 (2021; Zbl 1499.35358) Full Text: DOI OpenURL
Fasihi-Ramandi, Ghodratallah; Azami, Shahroud Harnack estimate for positive solutions to a nonlinear equation under geometric flow. (English) Zbl 1485.35083 Kyungpook Math. J. 61, No. 3, 631-644 (2021). MSC: 35B45 35A23 35K58 58J35 PDF BibTeX XML Cite \textit{G. Fasihi-Ramandi} and \textit{S. Azami}, Kyungpook Math. J. 61, No. 3, 631--644 (2021; Zbl 1485.35083) Full Text: DOI arXiv OpenURL
Li, Haixia Finite time blow-up for the heat flow of \(H\)-surface with constant mean curvature. (English) Zbl 1483.35048 Ann. Pol. Math. 127, No. 3, 233-239 (2021). MSC: 35B44 35K20 35K58 35K93 53E10 58J35 PDF BibTeX XML Cite \textit{H. Li}, Ann. Pol. Math. 127, No. 3, 233--239 (2021; Zbl 1483.35048) Full Text: DOI arXiv OpenURL
Colli, Pierluigi; Gilardi, Gianni; Marinoschi, Gabriela Solvability and sliding mode control for the viscous Cahn-Hilliard system with a possibly singular potential. (English) Zbl 1481.35249 Math. Control Relat. Fields 11, No. 4, 905-934 (2021). MSC: 35K35 35K58 58J35 80A22 93B52 93C20 PDF BibTeX XML Cite \textit{P. Colli} et al., Math. Control Relat. Fields 11, No. 4, 905--934 (2021; Zbl 1481.35249) Full Text: DOI arXiv OpenURL
Abdelhedi, Bouthaina; Zaag, Hatem Single point blow-up and final profile for a perturbed nonlinear heat equation with a gradient and a non-local term. (English) Zbl 1479.35136 Discrete Contin. Dyn. Syst., Ser. S 14, No. 8, 2607-2623 (2021). MSC: 35B44 35K15 35K58 35R09 PDF BibTeX XML Cite \textit{B. Abdelhedi} and \textit{H. Zaag}, Discrete Contin. Dyn. Syst., Ser. S 14, No. 8, 2607--2623 (2021; Zbl 1479.35136) Full Text: DOI arXiv OpenURL
Bhimani, Divyang G.; Manna, Ramesh; Nicola, Fabio; Thangavelu, Sundaram; Trapasso, S. Ivan Phase space analysis of the Hermite semigroup and applications to nonlinear global well-posedness. (English) Zbl 1476.35297 Adv. Math. 392, Article ID 107995, 18 p. (2021). MSC: 35R11 35K15 35K58 35S05 42B35 47D06 PDF BibTeX XML Cite \textit{D. G. Bhimani} et al., Adv. Math. 392, Article ID 107995, 18 p. (2021; Zbl 1476.35297) Full Text: DOI arXiv OpenURL
Yang, Zhipeng Fujita exponent and nonexistence result for the Rockland heat equation. (English) Zbl 1475.35035 Appl. Math. Lett. 121, Article ID 107386, 6 p. (2021). MSC: 35B33 35K15 35K58 35R03 PDF BibTeX XML Cite \textit{Z. Yang}, Appl. Math. Lett. 121, Article ID 107386, 6 p. (2021; Zbl 1475.35035) Full Text: DOI OpenURL
Hernández-Santamaría, Víctor; Le Balc’h, Kévin Local null-controllability of a nonlocal semilinear heat equation. (English) Zbl 1475.35184 Appl. Math. Optim. 84, No. 2, 1435-1483 (2021). Reviewer: Kaïs Ammari (Monastir) MSC: 35K58 93B05 93B07 93C20 35K20 PDF BibTeX XML Cite \textit{V. Hernández-Santamaría} and \textit{K. Le Balc'h}, Appl. Math. Optim. 84, No. 2, 1435--1483 (2021; Zbl 1475.35184) Full Text: DOI arXiv OpenURL
Fujishima, Yohei; Ioku, Norisuke Solvability of a semilinear heat equation via a quasi scale invariance. (English) Zbl 1473.35341 Ferone, Vincenzo (ed.) et al., Geometric properties for parabolic and elliptic PDE’s. Contributions of the 6th Italian-Japanese workshop, Cortona, Italy, May 20–24, 2019. Cham: Springer. Springer INdAM Ser. 47, 79-101 (2021). MSC: 35K58 35K15 PDF BibTeX XML Cite \textit{Y. Fujishima} and \textit{N. Ioku}, Springer INdAM Ser. 47, 79--101 (2021; Zbl 1473.35341) Full Text: DOI OpenURL
Mou, Jinbao; Xiong, Hui Blow-up solution and its upper and lower bound of a parabolic equation with boundary heat source. (Chinese. English summary) Zbl 1488.35124 Math. Pract. Theory 51, No. 7, 187-194 (2021). MSC: 35B44 35K58 PDF BibTeX XML Cite \textit{J. Mou} and \textit{H. Xiong}, Math. Pract. Theory 51, No. 7, 187--194 (2021; Zbl 1488.35124) OpenURL
Ren, Kui; Zhong, Yimin Unique determination of absorption coefficients in a semilinear transport equation. (English) Zbl 1473.35657 SIAM J. Math. Anal. 53, No. 5, 5158-5184 (2021). MSC: 35R30 35Q49 78A46 80A23 85A25 92C55 PDF BibTeX XML Cite \textit{K. Ren} and \textit{Y. Zhong}, SIAM J. Math. Anal. 53, No. 5, 5158--5184 (2021; Zbl 1473.35657) Full Text: DOI arXiv OpenURL
Abolarinwa, Abimbola Differential Harnack estimates for a nonlinear evolution equation of Allen-Cahn type. (English) Zbl 1473.35074 Mediterr. J. Math. 18, No. 5, Paper No. 200, 15 p. (2021). Reviewer: Vincenzo Vespri (Firenze) MSC: 35B45 35B50 58J60 58J35 60J60 35K58 PDF BibTeX XML Cite \textit{A. Abolarinwa}, Mediterr. J. Math. 18, No. 5, Paper No. 200, 15 p. (2021; Zbl 1473.35074) Full Text: DOI OpenURL
Majdoub, Mohamed; Tayachi, Slim Global existence and decay estimates for the heat equation with exponential nonlinearity. (English) Zbl 1472.35226 Funkc. Ekvacioj, Ser. Int. 64, No. 2, 237-259 (2021). MSC: 35K58 35A01 35B40 35K15 PDF BibTeX XML Cite \textit{M. Majdoub} and \textit{S. Tayachi}, Funkc. Ekvacioj, Ser. Int. 64, No. 2, 237--259 (2021; Zbl 1472.35226) Full Text: DOI arXiv OpenURL
Wu, Yiting Blow-up for a semilinear heat equation with Fujita’s critical exponent on locally finite graphs. (English) Zbl 1472.35068 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 115, No. 3, Paper No. 133, 16 p. (2021). MSC: 35B44 35B33 35K58 35R02 58J35 PDF BibTeX XML Cite \textit{Y. Wu}, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 115, No. 3, Paper No. 133, 16 p. (2021; Zbl 1472.35068) Full Text: DOI arXiv OpenURL
Grillo, Gabriele; Muratori, Matteo; Punzo, Fabio Fast diffusion on noncompact manifolds: well-posedness theory and connections with semilinear elliptic equations. (English) Zbl 1471.35285 Trans. Am. Math. Soc. 374, No. 9, 6367-6396 (2021). MSC: 35R01 35A02 35K15 35K67 35K65 58J35 35D30 35J61 PDF BibTeX XML Cite \textit{G. Grillo} et al., Trans. Am. Math. Soc. 374, No. 9, 6367--6396 (2021; Zbl 1471.35285) Full Text: DOI arXiv OpenURL
Liu, Xiangao; Liu, Zixuan; Wang, Kui Interior estimates of harmonic heat flow. (English) Zbl 1468.35030 Int. J. Math. 32, No. 7, Article ID 2150039, 14 p. (2021). MSC: 35B65 35B45 35K58 35R01 58J35 PDF BibTeX XML Cite \textit{X. Liu} et al., Int. J. Math. 32, No. 7, Article ID 2150039, 14 p. (2021; Zbl 1468.35030) Full Text: DOI OpenURL
Zouraris, Georgios E. Error estimation of the Besse relaxation scheme for a semilinear heat equation. (English) Zbl 1491.65080 ESAIM, Math. Model. Numer. Anal. 55, No. 1, 301-328 (2021). MSC: 65M06 65N06 65M12 65M15 35K05 PDF BibTeX XML Cite \textit{G. E. Zouraris}, ESAIM, Math. Model. Numer. Anal. 55, No. 1, 301--328 (2021; Zbl 1491.65080) Full Text: DOI arXiv OpenURL
Otsmane, Sarah Asymptotically self-similar global solutions for a complex-valued quadratic heat equation with a generalized kernel. (English) Zbl 1470.35108 Bol. Soc. Mat. Mex., III. Ser. 27, No. 2, Paper No. 46, 53 p. (2021). MSC: 35C06 35B40 35K08 35K45 35K58 35K65 PDF BibTeX XML Cite \textit{S. Otsmane}, Bol. Soc. Mat. Mex., III. Ser. 27, No. 2, Paper No. 46, 53 p. (2021; Zbl 1470.35108) Full Text: DOI OpenURL
Jiang, Gui-Chun; Wang, Ruo-Yi; Wang, Yu-Xuan; Zheng, Gao-Feng Type II blow-up for a semilinear heat equation with potential. (English) Zbl 1469.35059 Monatsh. Math. 195, No. 4, 659-673 (2021). MSC: 35B44 35K20 35K58 35B65 PDF BibTeX XML Cite \textit{G.-C. Jiang} et al., Monatsh. Math. 195, No. 4, 659--673 (2021; Zbl 1469.35059) Full Text: DOI OpenURL
Oh, Tadahiro; Okamoto, Mamoru Comparing the stochastic nonlinear wave and heat equations: a case study. (English) Zbl 1469.35270 Electron. J. Probab. 26, Paper No. 9, 44 p. (2021). MSC: 35R60 35K15 35K58 35L15 35L71 60H15 PDF BibTeX XML Cite \textit{T. Oh} and \textit{M. Okamoto}, Electron. J. Probab. 26, Paper No. 9, 44 p. (2021; Zbl 1469.35270) Full Text: DOI arXiv OpenURL
Casas, Eduardo; Tröltzsch, Fredi Sparse optimal control for a semilinear heat equation with mixed control-state constraints – regularity of Lagrange multipliers. (English) Zbl 1467.49016 ESAIM, Control Optim. Calc. Var. 27, Paper No. 2, 26 p. (2021). MSC: 49K20 49N10 90C05 90C46 35K58 PDF BibTeX XML Cite \textit{E. Casas} and \textit{F. Tröltzsch}, ESAIM, Control Optim. Calc. Var. 27, Paper No. 2, 26 p. (2021; Zbl 1467.49016) Full Text: DOI Link OpenURL
Zhu, Chaona Quantization for an evolution equation with critical exponential growth on a closed Riemann surface. (English) Zbl 1462.35178 Sci. China, Math. 64, No. 3, 589-622 (2021). MSC: 35K58 35B44 35R01 58J35 PDF BibTeX XML Cite \textit{C. Zhu}, Sci. China, Math. 64, No. 3, 589--622 (2021; Zbl 1462.35178) Full Text: DOI OpenURL
Walker, Christoph Strong solutions to a nonlocal-in-time semilinear heat equation. (English) Zbl 1461.35131 Q. Appl. Math. 79, No. 2, 265-272 (2021). MSC: 35K58 35K20 35R09 PDF BibTeX XML Cite \textit{C. Walker}, Q. Appl. Math. 79, No. 2, 265--272 (2021; Zbl 1461.35131) Full Text: DOI arXiv OpenURL
D’Abbicco, Marcello A new critical exponent for the heat and damped wave equations with nonlinear memory and not integrable data. (English) Zbl 1461.35037 Cicognani, Massimo (ed.) et al., Anomalies in partial differential equations. Based on talks given at the INDAM workshop, University of Rome “La Sapienza”, Rome, Italy, September 9–13, 2019. Cham: Springer. Springer INdAM Ser. 43, 191-211 (2021). MSC: 35B33 35B40 35K15 35K58 35L15 35L71 35R09 PDF BibTeX XML Cite \textit{M. D'Abbicco}, Springer INdAM Ser. 43, 191--211 (2021; Zbl 1461.35037) Full Text: DOI OpenURL
Punzo, Fabio Global solutions of semilinear parabolic equations on negatively curved Riemannian manifolds. (English) Zbl 1461.35130 J. Geom. Anal. 31, No. 1, 543-559 (2021). MSC: 35K58 35B51 35B44 35K08 35R01 58J35 PDF BibTeX XML Cite \textit{F. Punzo}, J. Geom. Anal. 31, No. 1, 543--559 (2021; Zbl 1461.35130) Full Text: DOI arXiv OpenURL
Umakoshi, Haruki A semilinear heat equation with initial data in negative Sobolev spaces. (English) Zbl 1458.35229 Discrete Contin. Dyn. Syst., Ser. S 14, No. 2, 745-767 (2021). MSC: 35K58 35K91 35K20 35A01 35A02 35B65 35D30 PDF BibTeX XML Cite \textit{H. Umakoshi}, Discrete Contin. Dyn. Syst., Ser. S 14, No. 2, 745--767 (2021; Zbl 1458.35229) Full Text: DOI OpenURL
Poláčik, Peter; Quittner, Pavol Entire and ancient solutions of a supercritical semilinear heat equation. (English) Zbl 1458.35228 Discrete Contin. Dyn. Syst. 41, No. 1, 413-438 (2021). MSC: 35K58 35B08 35B44 35B05 35B53 PDF BibTeX XML Cite \textit{P. Poláčik} and \textit{P. Quittner}, Discrete Contin. Dyn. Syst. 41, No. 1, 413--438 (2021; Zbl 1458.35228) Full Text: DOI arXiv OpenURL
Castorina, Daniele; Mantegazza, Carlo Ancient solutions of superlinear heat equations on Riemannian manifolds. (English) Zbl 1458.35226 Commun. Contemp. Math. 23, No. 3, Article ID 2050033, 16 p. (2021). MSC: 35K58 35R01 35B53 58J35 PDF BibTeX XML Cite \textit{D. Castorina} and \textit{C. Mantegazza}, Commun. Contemp. Math. 23, No. 3, Article ID 2050033, 16 p. (2021; Zbl 1458.35226) Full Text: DOI OpenURL
Engu, Satyanarayana; Sahoo, Manas R.; Berke, Venkatramana P. Solutions to viscous Burgers equations with time dependent source term. (English) Zbl 1456.35077 Electron. J. Differ. Equ. 2021, Paper No. 02, 16 p. (2021). MSC: 35C15 35K20 35K58 35B09 35B40 PDF BibTeX XML Cite \textit{S. Engu} et al., Electron. J. Differ. Equ. 2021, Paper No. 02, 16 p. (2021; Zbl 1456.35077) Full Text: Link OpenURL
Gokieli, Maria; Kenmochi, Nobuyuki; Niezgódka, Marek Parabolic quasi-variational inequalities. II: Remarks on continuity of solutions. (English) Zbl 1470.35210 Adv. Math. Sci. Appl. 29, No. 2, 403-418 (2020). MSC: 35K86 35K51 35K57 35K59 PDF BibTeX XML Cite \textit{M. Gokieli} et al., Adv. Math. Sci. Appl. 29, No. 2, 403--418 (2020; Zbl 1470.35210) OpenURL
Leiva, Hugo; Narvaez, Miguel; Sivoli, Zoraida Controllability of impulsive semilinear stochastic heat equation with delay. (English) Zbl 1468.35201 Int. J. Differ. Equ. 2020, Article ID 2515160, 10 p. (2020). MSC: 35Q79 35K05 35K58 93B05 93C20 35R07 35R60 PDF BibTeX XML Cite \textit{H. Leiva} et al., Int. J. Differ. Equ. 2020, Article ID 2515160, 10 p. (2020; Zbl 1468.35201) Full Text: DOI OpenURL
Hou, Songbo Gradient estimates for the nonlinear parabolic equation with two exponents on Riemannian manifolds. (English) Zbl 1461.35075 Taiwanese J. Math. 24, No. 6, 1439-1448 (2020). MSC: 35B45 35B53 35K58 58J35 PDF BibTeX XML Cite \textit{S. Hou}, Taiwanese J. Math. 24, No. 6, 1439--1448 (2020; Zbl 1461.35075) Full Text: DOI arXiv Euclid OpenURL
Véron, Laurent Nonlinear boundary value problems relative to the one-dimensional heat equation. (English) Zbl 1459.35258 Rend. Ist. Mat. Univ. Trieste 52, 243-256 (2020). MSC: 35K60 35K05 35J65 35L71 35R06 35C06 PDF BibTeX XML Cite \textit{L. Véron}, Rend. Ist. Mat. Univ. Trieste 52, 243--256 (2020; Zbl 1459.35258) Full Text: DOI arXiv Link OpenURL
Kyza, Irene; Metcalfe, Stephen Pointwise a posteriori error bounds for blow-up in the semilinear heat equation. (English) Zbl 1473.65202 SIAM J. Numer. Anal. 58, No. 5, 2609-2631 (2020). Reviewer: Daniel Arndt (Oak Ridge) MSC: 65M60 65M06 65N30 65M15 35B44 35K05 35K55 35K58 PDF BibTeX XML Cite \textit{I. Kyza} and \textit{S. Metcalfe}, SIAM J. Numer. Anal. 58, No. 5, 2609--2631 (2020; Zbl 1473.65202) Full Text: DOI arXiv OpenURL
Laurent, Camille; Rosier, Lionel Exact controllability of semilinear heat equations in spaces of analytic functions. (English) Zbl 1448.93030 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 37, No. 4, 1047-1073 (2020). MSC: 93B05 35K20 35K59 93C20 PDF BibTeX XML Cite \textit{C. Laurent} and \textit{L. Rosier}, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 37, No. 4, 1047--1073 (2020; Zbl 1448.93030) Full Text: DOI arXiv HAL OpenURL
Laister, Robert; Sierżęga, M. Well-posedness of semilinear heat equations in \(L^1\). (English) Zbl 1442.35220 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 37, No. 3, 709-725 (2020). MSC: 35K58 35K91 35B30 PDF BibTeX XML Cite \textit{R. Laister} and \textit{M. Sierżęga}, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 37, No. 3, 709--725 (2020; Zbl 1442.35220) Full Text: DOI arXiv OpenURL
Mouajria, Hattab; Tayachi, Slim; Weissler, Fred B. Large time behavior of solutions to the nonlinear heat equation with absorption with highly singular antisymmetric initial values. (English) Zbl 1442.35238 Adv. Nonlinear Stud. 20, No. 2, 311-337 (2020). MSC: 35K91 35K55 35B30 35B40 35C06 47A20 PDF BibTeX XML Cite \textit{H. Mouajria} et al., Adv. Nonlinear Stud. 20, No. 2, 311--337 (2020; Zbl 1442.35238) Full Text: DOI arXiv OpenURL
Anderson, Jeffrey R.; Deng, Keng Global solvability for a diffusion model with absorption and memory-driven flux at the boundary. (English) Zbl 1446.35065 Z. Angew. Math. Phys. 71, No. 2, Paper No. 50, 15 p. (2020). MSC: 35K91 35A01 35B44 35K20 35K05 PDF BibTeX XML Cite \textit{J. R. Anderson} and \textit{K. Deng}, Z. Angew. Math. Phys. 71, No. 2, Paper No. 50, 15 p. (2020; Zbl 1446.35065) Full Text: DOI OpenURL
Clarke, Jorge; Olivera, Christian Local \(L^p\)-solution for semilinear heat equation with fractional noise. (English) Zbl 1437.60036 Ann. Acad. Sci. Fenn., Math. 45, No. 1, 305-312 (2020). MSC: 60H15 60H30 35R60 35K05 35K10 35K58 PDF BibTeX XML Cite \textit{J. Clarke} and \textit{C. Olivera}, Ann. Acad. Sci. Fenn., Math. 45, No. 1, 305--312 (2020; Zbl 1437.60036) Full Text: DOI arXiv OpenURL
Ma, He; Meng, Fanmo; Wang, Xingchang High initial energy finite time blowup with upper bound of blowup time of solution to semilinear parabolic equations. (English) Zbl 1439.35184 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 196, Article ID 111810, 8 p. (2020). Reviewer: Vicenţiu D. Rădulescu (Craiova) MSC: 35K05 35B44 PDF BibTeX XML Cite \textit{H. Ma} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 196, Article ID 111810, 8 p. (2020; Zbl 1439.35184) Full Text: DOI OpenURL
Del Pino, Manuel; Musso, Monica; Wei, Juncheng; Zhou, Yifu Type II finite time blow-up for the energy critical heat equation in \(\mathbb{R}^4\). (English) Zbl 1439.35284 Discrete Contin. Dyn. Syst. 40, No. 6, 3327-3355 (2020). MSC: 35K58 35B40 PDF BibTeX XML Cite \textit{M. Del Pino} et al., Discrete Contin. Dyn. Syst. 40, No. 6, 3327--3355 (2020; Zbl 1439.35284) Full Text: DOI OpenURL
Naito, Yūki Asymptotically self-similar behaviour of global solutions for semilinear heat equations with algebraically decaying initial data. (English) Zbl 1439.35305 Proc. R. Soc. Edinb., Sect. A, Math. 150, No. 2, 789-811 (2020). MSC: 35K91 35C06 35K15 35K58 35B40 PDF BibTeX XML Cite \textit{Y. Naito}, Proc. R. Soc. Edinb., Sect. A, Math. 150, No. 2, 789--811 (2020; Zbl 1439.35305) Full Text: DOI OpenURL
Harada, Junichi A higher speed type II blowup for the five dimensional energy critical heat equation. (English) Zbl 1433.35007 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 37, No. 2, 309-341 (2020). MSC: 35B44 35K58 35K15 PDF BibTeX XML Cite \textit{J. Harada}, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 37, No. 2, 309--341 (2020; Zbl 1433.35007) Full Text: DOI arXiv OpenURL
Collot, Charles; Merle, Frank; Raphaël, Pierre Strongly anisotropic type II blow up at an isolated point. (English) Zbl 1436.35253 J. Am. Math. Soc. 33, No. 2, 527-607 (2020). Reviewer: Joseph Shomberg (Providence) MSC: 35K91 35K58 35B44 35K15 PDF BibTeX XML Cite \textit{C. Collot} et al., J. Am. Math. Soc. 33, No. 2, 527--607 (2020; Zbl 1436.35253) Full Text: DOI arXiv Link OpenURL
Duan, Yueliang; Wang, Lijuan Minimal norm control problem governed by semilinear heat equation with impulse control. (English) Zbl 1434.49029 J. Optim. Theory Appl. 184, No. 2, 400-418 (2020). Reviewer: Wei Gong (Beijing) MSC: 49N25 49K15 49K20 49J20 93C20 PDF BibTeX XML Cite \textit{Y. Duan} and \textit{L. Wang}, J. Optim. Theory Appl. 184, No. 2, 400--418 (2020; Zbl 1434.49029) Full Text: DOI OpenURL
Le Balc’h, Kévin Global null-controllability and nonnegative-controllability of slightly superlinear heat equations. (English. French summary) Zbl 1436.93065 J. Math. Pures Appl. (9) 135, 103-139 (2020). Reviewer: Juan Ramon Torregrosa Sanchez (Valencia) MSC: 93C20 93B05 93B07 35K05 PDF BibTeX XML Cite \textit{K. Le Balc'h}, J. Math. Pures Appl. (9) 135, 103--139 (2020; Zbl 1436.93065) Full Text: DOI arXiv HAL OpenURL
Merle, Frank; Raphaël, Pierre; Szeftel, Jeremie On strongly anisotropic type I blowup. (English) Zbl 1432.35124 Int. Math. Res. Not. 2020, No. 2, 541-606 (2020). Reviewer: Joseph Shomberg (Providence) MSC: 35K58 35B44 PDF BibTeX XML Cite \textit{F. Merle} et al., Int. Math. Res. Not. 2020, No. 2, 541--606 (2020; Zbl 1432.35124) Full Text: DOI arXiv OpenURL
Harada, Junichi Boundary behavior of blowup solutions for a heat equation with a nonlinear boundary condition. (English) Zbl 1440.35199 NoDEA, Nonlinear Differ. Equ. Appl. 27, No. 1, Paper No. 6, 26 p. (2020). Reviewer: Dian K. Palagachev (Bari) MSC: 35K58 35B44 PDF BibTeX XML Cite \textit{J. Harada}, NoDEA, Nonlinear Differ. Equ. Appl. 27, No. 1, Paper No. 6, 26 p. (2020; Zbl 1440.35199) Full Text: DOI OpenURL
Poláčik, P.; Quittner, P. On the multiplicity of self-similar solutions of the semilinear heat equation. (English) Zbl 1428.35170 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 191, Article ID 111639, 23 p. (2020). MSC: 35K57 35C06 35B44 35J61 PDF BibTeX XML Cite \textit{P. Poláčik} and \textit{P. Quittner}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 191, Article ID 111639, 23 p. (2020; Zbl 1428.35170) Full Text: DOI arXiv OpenURL
Nguyen Huy Tuan; Lesnic, Daniel; Tran Quoc Viet; Vo Van Au Regularization of the semilinear sideways heat equation. (English) Zbl 1471.80004 IMA J. Appl. Math. 84, No. 2, 258-291 (2019). MSC: 80A23 35B65 35B45 35K05 35K20 35K91 65M32 35R25 35R30 PDF BibTeX XML Cite \textit{Nguyen Huy Tuan} et al., IMA J. Appl. Math. 84, No. 2, 258--291 (2019; Zbl 1471.80004) Full Text: DOI OpenURL
Liu, Luyan; Du, Guangwei; Li, Fushan Blow-up phenomena for parabolic equation with variable frequency heat source. (English) Zbl 1449.35120 J. Qufu Norm. Univ., Nat. Sci. 45, No. 4, 1-7 (2019). MSC: 35B44 35K05 35K58 PDF BibTeX XML Cite \textit{L. Liu} et al., J. Qufu Norm. Univ., Nat. Sci. 45, No. 4, 1--7 (2019; Zbl 1449.35120) OpenURL
Frittelli, Massimo; Madzvamuse, Anotida; Sgura, Ivonne; Venkataraman, Chandrasekhar Preserving invariance properties of reaction-diffusion systems on stationary surfaces. (English) Zbl 1483.65155 IMA J. Numer. Anal. 39, No. 1, 235-270 (2019). MSC: 65M60 35K45 35K58 58J65 65M12 PDF BibTeX XML Cite \textit{M. Frittelli} et al., IMA J. Numer. Anal. 39, No. 1, 235--270 (2019; Zbl 1483.65155) Full Text: DOI OpenURL
Lissy, Pierre; Privat, Yannick; Simporé, Yacouba Insensitizing control for linear and semi-linear heat equations with partially unknown domain. (English) Zbl 1442.93009 ESAIM, Control Optim. Calc. Var. 25, Paper No. 50, 21 p. (2019). MSC: 93B05 35K20 35K91 49K20 93C20 PDF BibTeX XML Cite \textit{P. Lissy} et al., ESAIM, Control Optim. Calc. Var. 25, Paper No. 50, 21 p. (2019; Zbl 1442.93009) Full Text: DOI HAL OpenURL
Slimene, Byrame Ben Asymptotically self-similar global solutions for Hardy-Hénon parabolic systems. (English) Zbl 1435.35066 Differ. Equ. Appl. 11, No. 4, 439-462 (2019). MSC: 35B40 35C06 35B30 35K58 35K67 35K57 35B33 35K45 PDF BibTeX XML Cite \textit{B. B. Slimene}, Differ. Equ. Appl. 11, No. 4, 439--462 (2019; Zbl 1435.35066) Full Text: DOI OpenURL
Duong, Giao Ky A blowup solution of a complex semi-linear heat equation with an irrational power. (English) Zbl 1428.35143 J. Differ. Equations 267, No. 9, 4975-5048 (2019). MSC: 35K05 35B40 35B44 35K55 35K57 35B09 PDF BibTeX XML Cite \textit{G. K. Duong}, J. Differ. Equations 267, No. 9, 4975--5048 (2019; Zbl 1428.35143) Full Text: DOI arXiv OpenURL
Mi, Yongsheng; Mu, Chunlai Blow-up phenomena for some nonlinear parabolic problems under nonlinear boundary conditions. (English) Zbl 1427.35098 Appl. Comput. Math. 18, No. 1, 41-49 (2019). MSC: 35K20 35K55 35K60 PDF BibTeX XML Cite \textit{Y. Mi} and \textit{C. Mu}, Appl. Comput. Math. 18, No. 1, 41--49 (2019; Zbl 1427.35098) Full Text: Link OpenURL
Duong, Giao Ky; Zaag, Hatem Profile of a touch-down solution to a nonlocal MEMS model. (English) Zbl 1425.35116 Math. Models Methods Appl. Sci. 29, No. 7, 1279-1348 (2019). MSC: 35K91 35B40 35K20 35K57 35B44 PDF BibTeX XML Cite \textit{G. K. Duong} and \textit{H. Zaag}, Math. Models Methods Appl. Sci. 29, No. 7, 1279--1348 (2019; Zbl 1425.35116) Full Text: DOI arXiv OpenURL
Huang, Haochuan; Yin, Jingxue; Jin, Chunhua A note on the existence of time periodic solution of a superlinear heat equation. (English) Zbl 1423.35217 Appl. Anal. 98, No. 13, 2454-2463 (2019). MSC: 35K58 35B10 35B33 35K20 PDF BibTeX XML Cite \textit{H. Huang} et al., Appl. Anal. 98, No. 13, 2454--2463 (2019; Zbl 1423.35217) Full Text: DOI OpenURL
Mizoguchi, Noriko; Souplet, Philippe Optimal condition for blow-up of the critical \(L^q\) norm for the semilinear heat equation. (English) Zbl 1420.35139 Adv. Math. 355, Article ID 106763, 24 p. (2019). MSC: 35K58 35B40 35B44 35B33 PDF BibTeX XML Cite \textit{N. Mizoguchi} and \textit{P. Souplet}, Adv. Math. 355, Article ID 106763, 24 p. (2019; Zbl 1420.35139) Full Text: DOI arXiv OpenURL
Biccari, Umberto; Hernández-Santamaría, Víctor Null controllability of Linear and semilinear nonlocal heat equations with an additive integral kernel. (English) Zbl 1420.35137 SIAM J. Control Optim. 57, No. 4, 2924-2938 (2019). MSC: 35K58 93B05 93B07 93C20 PDF BibTeX XML Cite \textit{U. Biccari} and \textit{V. Hernández-Santamaría}, SIAM J. Control Optim. 57, No. 4, 2924--2938 (2019; Zbl 1420.35137) Full Text: DOI arXiv OpenURL
Collot, Charles; Raphaël, Pierre; Szeftel, Jeremie On the stability of type I blow up for the energy super critical heat equation. (English) Zbl 1430.35138 Memoirs of the American Mathematical Society 1255. Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-3626-1/pbk; 978-1-4704-5334-3/ebook). v, 97 p. (2019). Reviewer: Joseph Shomberg (Providence) MSC: 35K58 35-02 35B32 35B35 35B44 35J61 PDF BibTeX XML Cite \textit{C. Collot} et al., On the stability of type I blow up for the energy super critical heat equation. Providence, RI: American Mathematical Society (AMS) (2019; Zbl 1430.35138) Full Text: DOI arXiv OpenURL
Duong, Giao Ky Profile for the imaginary part of a blowup solution for a complex-valued semilinear heat equation. (English) Zbl 1417.35064 J. Funct. Anal. 277, No. 5, 1531-1579 (2019). MSC: 35K55 35K57 35B44 35B40 PDF BibTeX XML Cite \textit{G. K. Duong}, J. Funct. Anal. 277, No. 5, 1531--1579 (2019; Zbl 1417.35064) Full Text: DOI arXiv OpenURL
Zerrik, El Hassan; El Boukhari, Nihale Regional optimal control for a class of semilinear systems with distributed controls. (English) Zbl 1417.49026 Int. J. Control 92, No. 4, 896-907 (2019). MSC: 49K20 PDF BibTeX XML Cite \textit{E. H. Zerrik} and \textit{N. El Boukhari}, Int. J. Control 92, No. 4, 896--907 (2019; Zbl 1417.49026) Full Text: DOI OpenURL
Castillo, Ricardo; Loayza, Miguel Global existence and blowup for a coupled parabolic system with time-weighted sources on a general domain. (English) Zbl 1415.35168 Z. Angew. Math. Phys. 70, No. 2, Paper No. 57, 16 p. (2019). MSC: 35K58 35B44 35K05 47D03 PDF BibTeX XML Cite \textit{R. Castillo} and \textit{M. Loayza}, Z. Angew. Math. Phys. 70, No. 2, Paper No. 57, 16 p. (2019; Zbl 1415.35168) Full Text: DOI OpenURL
Han, Yuzhu Blow-up at infinity of solutions to a semilinear heat equation with logarithmic nonlinearity. (English) Zbl 1483.35118 J. Math. Anal. Appl. 474, No. 1, 513-517 (2019). MSC: 35K58 35B44 35A01 35K91 PDF BibTeX XML Cite \textit{Y. Han}, J. Math. Anal. Appl. 474, No. 1, 513--517 (2019; Zbl 1483.35118) Full Text: DOI OpenURL
Högele, Michael Anton The first exit problem of reaction-diffusion equations for small multiplicative Lévy noise. (English) Zbl 1423.60100 ALEA, Lat. Am. J. Probab. Math. Stat. 16, No. 1, 665-709 (2019). MSC: 60H15 60G51 60G52 60G55 35K05 35K91 PDF BibTeX XML Cite \textit{M. A. Högele}, ALEA, Lat. Am. J. Probab. Math. Stat. 16, No. 1, 665--709 (2019; Zbl 1423.60100) Full Text: arXiv Link OpenURL