Chen, Wenhui; Reissig, Michael Blow-up of solutions to Nakao’s problem via an iteration argument. (English) Zbl 07291355 J. Differ. Equations 275, 733-756 (2021). MSC: 35L71 35L52 35B44 PDF BibTeX XML Cite \textit{W. Chen} and \textit{M. Reissig}, J. Differ. Equations 275, 733--756 (2021; Zbl 07291355) Full Text: DOI
Zha, Dongbing; Wang, Fanshun On initial-boundary value problems for one-dimension semilinear wave equations with null conditions. (English) Zbl 07291352 J. Differ. Equations 275, 638-651 (2021). MSC: 35L15 35L53 35L71 PDF BibTeX XML Cite \textit{D. Zha} and \textit{F. Wang}, J. Differ. Equations 275, 638--651 (2021; Zbl 07291352) Full Text: DOI
Rui, Jie; Zhang, Min; Wang, Yi Kolmogorov-Arnold-Moser theorem for nonlinear beam equations with almost-periodic forcing. (English) Zbl 1451.35094 J. Math. Anal. Appl. 493, No. 2, Article ID 124529, 27 p. (2021). MSC: 35L76 35L30 35B15 37K55 74K10 PDF BibTeX XML Cite \textit{J. Rui} et al., J. Math. Anal. Appl. 493, No. 2, Article ID 124529, 27 p. (2021; Zbl 1451.35094) Full Text: DOI
Chen, Wenhui Interplay effects on blow-up of weakly coupled systems for semilinear wave equations with general nonlinear memory terms. (English) Zbl 1450.35172 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 202, Article ID 112160, 23 p. (2021). MSC: 35L71 35L52 35B44 35R09 35B33 PDF BibTeX XML Cite \textit{W. Chen}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 202, Article ID 112160, 23 p. (2021; Zbl 1450.35172) Full Text: DOI
Palmieri, Alessandro; Takamura, Hiroyuki Nonexistence of global solutions for a weakly coupled system of semilinear damped wave equations in the scattering case with mixed nonlinear terms. (English) Zbl 07296660 NoDEA, Nonlinear Differ. Equ. Appl. 27, No. 6, Paper No. 58, 38 p. (2020). MSC: 35L71 35L52 35B44 PDF BibTeX XML Cite \textit{A. Palmieri} and \textit{H. Takamura}, NoDEA, Nonlinear Differ. Equ. Appl. 27, No. 6, Paper No. 58, 38 p. (2020; Zbl 07296660) Full Text: DOI
Yang, Shuang; Li, Yangrong Forward controllability of a random attractor for the non-autonomous stochastic sine-Gordon equation on an unbounded domain. (English) Zbl 07293764 Evol. Equ. Control Theory 9, No. 3, 581-604 (2020). MSC: 35B41 35L71 35L15 35R60 37L55 60H15 93B05 PDF BibTeX XML Cite \textit{S. Yang} and \textit{Y. Li}, Evol. Equ. Control Theory 9, No. 3, 581--604 (2020; Zbl 07293764) Full Text: DOI
Muatjetjeja, Ben; Mothibi, Dimpho Millicent; Khalique, Chaudry Masood Lie group classification a generalized coupled (2+1)-dimensional hyperbolic system. (English) Zbl 07292864 Discrete Contin. Dyn. Syst., Ser. S 13, No. 10, 2803-2812 (2020). MSC: 35L51 35L71 35B06 PDF BibTeX XML Cite \textit{B. Muatjetjeja} et al., Discrete Contin. Dyn. Syst., Ser. S 13, No. 10, 2803--2812 (2020; Zbl 07292864) Full Text: DOI
Nishii, Yoshinori; Sunagawa, Hideaki On Agemi-type structural conditions for a system of semilinear wave equations. (English) Zbl 07291366 J. Hyperbolic Differ. Equ. 17, No. 3, 459-473 (2020). MSC: 35L71 35L52 35B40 PDF BibTeX XML Cite \textit{Y. Nishii} and \textit{H. Sunagawa}, J. Hyperbolic Differ. Equ. 17, No. 3, 459--473 (2020; Zbl 07291366) Full Text: DOI
Tsegaw, Birilew On the unsolvability conditions for quasilinear pseudohyperbolic equations. (English) Zbl 07288687 Appl. Appl. Math. 15, No. 2, 1381-1395 (2020). MSC: 35L82 35L52 35L71 PDF BibTeX XML Cite \textit{B. Tsegaw}, Appl. Appl. Math. 15, No. 2, 1381--1395 (2020; Zbl 07288687) Full Text: Link
Li, Kaiqiang; Xue, Rui Decay estimate and global existence of a semilinear Mindlin-Timoshenko plate system with full frictional damping in the whole space. (English) Zbl 07286645 Q. Appl. Math. 78, No. 4, 703-724 (2020). MSC: 35B40 35L52 35L71 74H40 74K10 PDF BibTeX XML Cite \textit{K. Li} and \textit{R. Xue}, Q. Appl. Math. 78, No. 4, 703--724 (2020; Zbl 07286645) Full Text: DOI
Rodriguez, Charlotte; Leugering, Günter Boundary feedback stabilization for the intrinsic geometrically exact beam model. (English) Zbl 07283565 SIAM J. Control Optim. 58, No. 6, 3533-3558 (2020). Reviewer: Kaïs Ammari (Monastir) MSC: 35L50 93D15 PDF BibTeX XML Cite \textit{C. Rodriguez} and \textit{G. Leugering}, SIAM J. Control Optim. 58, No. 6, 3533--3558 (2020; Zbl 07283565) Full Text: DOI
Chen, Yin; Geng, Jiansheng; Xue, Shuaishuai Reducible KAM tori for higher dimensional wave equations under nonlocal and forced perturbation. (English) Zbl 07277885 J. Math. Phys. 61, No. 6, 062702, 24 p. (2020). MSC: 35L71 35L20 37K55 PDF BibTeX XML Cite \textit{Y. Chen} et al., J. Math. Phys. 61, No. 6, 062702, 24 p. (2020; Zbl 07277885) Full Text: DOI
Goubet, O. Remarks on some dissipative sine-Gordon equations. (English) Zbl 1452.35041 Complex Var. Elliptic Equ. 65, No. 8, 1336-1342 (2020). MSC: 35B41 35L20 35L71 37L50 PDF BibTeX XML Cite \textit{O. Goubet}, Complex Var. Elliptic Equ. 65, No. 8, 1336--1342 (2020; Zbl 1452.35041) Full Text: DOI
Palmieri, Alessandro A note on a conjecture for the critical curve of a weakly coupled system of semilinear wave equations with scale-invariant lower order terms. (English) Zbl 1452.35106 Math. Methods Appl. Sci. 43, No. 11, 6702-6731 (2020). MSC: 35L71 35L52 35B44 33C90 35C06 PDF BibTeX XML Cite \textit{A. Palmieri}, Math. Methods Appl. Sci. 43, No. 11, 6702--6731 (2020; Zbl 1452.35106) Full Text: DOI
Boulaaras, Salah; Mezouar, Nadia Global existence and decay of solutions of a singular nonlocal viscoelastic system with a nonlinear source term, nonlocal boundary condition, and localized damping term. (English) Zbl 1452.35094 Math. Methods Appl. Sci. 43, No. 10, 6140-6164 (2020). MSC: 35L53 35L71 35L81 35B40 35R09 74D05 PDF BibTeX XML Cite \textit{S. Boulaaras} and \textit{N. Mezouar}, Math. Methods Appl. Sci. 43, No. 10, 6140--6164 (2020; Zbl 1452.35094) Full Text: DOI
Zhang, Hui Decay estimates for Timoshenko systems with complementary frictional damping and memory effect. (English) Zbl 1451.35028 Nonlinear Anal., Real World Appl. 55, Article ID 103119, 24 p. (2020). MSC: 35B40 35R09 35R11 35L53 35L71 PDF BibTeX XML Cite \textit{H. Zhang}, Nonlinear Anal., Real World Appl. 55, Article ID 103119, 24 p. (2020; Zbl 1451.35028) Full Text: DOI
Isayeva, S. E. Existence of solutions of nonlinear strongly dissipative wave equations with acoustic transmission conditions. (English. Russian original) Zbl 1450.35169 Comput. Math. Math. Phys. 60, No. 2, 286-301 (2020); translation from Zh. Vychisl. Mat. Mat. Fiz. 60, No. 2, 281-296 (2020). MSC: 35L53 35L71 PDF BibTeX XML Cite \textit{S. E. Isayeva}, Comput. Math. Math. Phys. 60, No. 2, 286--301 (2020; Zbl 1450.35169); translation from Zh. Vychisl. Mat. Mat. Fiz. 60, No. 2, 281--296 (2020) Full Text: DOI
Ouchenane, Djamel; Boulaaras, Salah Mahmoud; Alharbi, Asma; Cherif, Bahri Blow up of coupled nonlinear Klein-Gordon system with distributed delay, strong damping, and source terms. (English) Zbl 1450.35083 J. Funct. Spaces 2020, Article ID 5297063, 9 p. (2020). MSC: 35B44 35L53 35L71 35R09 PDF BibTeX XML Cite \textit{D. Ouchenane} et al., J. Funct. Spaces 2020, Article ID 5297063, 9 p. (2020; Zbl 1450.35083) Full Text: DOI
Boulaaras, Salah Mahmoud; Guefaifia, Rafik; Mezouar, Nadia; Alghamdi, Ahmad Mohammed Global existence and decay for a system of two singular nonlinear viscoelastic equations with general source and localized frictional damping terms. (English) Zbl 1450.35168 J. Funct. Spaces 2020, Article ID 5085101, 15 p. (2020). MSC: 35L53 35L71 35R09 74D10 35B40 PDF BibTeX XML Cite \textit{S. M. Boulaaras} et al., J. Funct. Spaces 2020, Article ID 5085101, 15 p. (2020; Zbl 1450.35168) Full Text: DOI
Bouhoufani, Oulia; Hamchi, Ilhem Coupled system of nonlinear hyperbolic equations with variable-exponents: global existence and stability. (English) Zbl 1450.35167 Mediterr. J. Math. 17, No. 5, Paper No. 166, 15 p. (2020). MSC: 35L53 35B40 35L71 93D20 PDF BibTeX XML Cite \textit{O. Bouhoufani} and \textit{I. Hamchi}, Mediterr. J. Math. 17, No. 5, Paper No. 166, 15 p. (2020; Zbl 1450.35167) Full Text: DOI
Feng, B.; Jorge Silva, M. A.; Caixeta, A. H. Long-time behavior for a class of semi-linear Viscoelastic Kirchhoff beams/plates. (English) Zbl 1447.35054 Appl. Math. Optim. 82, No. 2, 657-686 (2020). MSC: 35B40 35B41 35L35 35L76 74K10 74K20 PDF BibTeX XML Cite \textit{B. Feng} et al., Appl. Math. Optim. 82, No. 2, 657--686 (2020; Zbl 1447.35054) Full Text: DOI
Boulaaras, Salah; Ouchenane, Djamel General decay for a coupled Lamé system of nonlinear viscoelastic equations. (English) Zbl 1445.35054 Math. Methods Appl. Sci. 43, No. 4, 1717-1735 (2020). MSC: 35B40 35L71 35L53 74D10 PDF BibTeX XML Cite \textit{S. Boulaaras} and \textit{D. Ouchenane}, Math. Methods Appl. Sci. 43, No. 4, 1717--1735 (2020; Zbl 1445.35054) Full Text: DOI
Cavalcanti, M. M.; Domingos Cavalcanti, V. N.; Gonzalez Martinez, V. H.; Peralta, V. A.; Vicente, A. Stability for semilinear hyperbolic coupled system with frictional and viscoelastic localized damping. (English) Zbl 07216750 J. Differ. Equations 269, No. 10, 8212-8268 (2020). Reviewer: Jin Liang (Shanghai) MSC: 35B35 35B40 35L53 35L71 35B60 PDF BibTeX XML Cite \textit{M. M. Cavalcanti} et al., J. Differ. Equations 269, No. 10, 8212--8268 (2020; Zbl 07216750) Full Text: DOI
Yan, Long; Ji, Shuguan; Sun, Lili Asymptotic bifurcation results for coupled nonlinear wave equations with variable coefficients. (English) Zbl 1445.35043 J. Differ. Equations 269, No. 9, 7157-7170 (2020). Reviewer: In-Sook Kim (Suwon) MSC: 35B32 35L53 47H11 35L71 PDF BibTeX XML Cite \textit{L. Yan} et al., J. Differ. Equations 269, No. 9, 7157--7170 (2020; Zbl 1445.35043) Full Text: DOI
Dao, Tuan Anh Existence of global solutions for a weakly coupled system of semilinear viscoelastic damped \(\sigma\)-evolution equations. (English) Zbl 1441.35159 Rocky Mt. J. Math. 50, No. 2, 527-542 (2020). MSC: 35L56 35L30 35L71 35R11 PDF BibTeX XML Cite \textit{T. A. Dao}, Rocky Mt. J. Math. 50, No. 2, 527--542 (2020; Zbl 1441.35159) Full Text: DOI Euclid
Benaissa, Abbes; Miloudi, Mostefa; Mokhtari, Mokhtar Well-posedness and energy decay of solutions to a nonlinear Bresse system with delay terms. (English) Zbl 1441.35043 Differ. Equ. Dyn. Syst. 28, No. 2, 447-478 (2020). MSC: 35B40 35L71 35L53 PDF BibTeX XML Cite \textit{A. Benaissa} et al., Differ. Equ. Dyn. Syst. 28, No. 2, 447--478 (2020; Zbl 1441.35043) Full Text: DOI
Almeida, A. F.; Cavalcanti, M. M.; Gonzalez, R. B.; Gonzalez Martinez, V. H.; Zanchetta, J. P. Uniform decay rate estimates for the coupled semilinear wave system in inhomogeneous media with locally distributed nonlinear damping. (English) Zbl 1445.35052 Asymptotic Anal. 117, No. 1-2, 67-111 (2020). MSC: 35B40 35L71 35L52 93B07 35A27 PDF BibTeX XML Cite \textit{A. F. Almeida} et al., Asymptotic Anal. 117, No. 1--2, 67--111 (2020; Zbl 1445.35052) Full Text: DOI
Dodson, Benjamin; Lührmann, Jonas; Mendelson, Dana Almost sure scattering for the 4D energy-critical defocusing nonlinear wave equation with radial data. (English) Zbl 1440.35217 Am. J. Math. 142, No. 2, 475-504 (2020). MSC: 35L71 37L15 PDF BibTeX XML Cite \textit{B. Dodson} et al., Am. J. Math. 142, No. 2, 475--504 (2020; Zbl 1440.35217) Full Text: DOI
Aliev, A. B.; Isayeva, S. E. Attractors for semilinear wave equations with acoustic transmission conditions. (English. Russian original) Zbl 1440.35015 Differ. Equ. 56, No. 4, 447-461 (2020); translation from Differ. Uravn. 56, No. 4, 459-474 (2020). MSC: 35B41 35L71 35L53 PDF BibTeX XML Cite \textit{A. B. Aliev} and \textit{S. E. Isayeva}, Differ. Equ. 56, No. 4, 447--461 (2020; Zbl 1440.35015); translation from Differ. Uravn. 56, No. 4, 459--474 (2020) Full Text: DOI
Azmi, Behzad; Rodrigues, Sérgio S. Oblique projection local feedback stabilization of nonautonomous semilinear damped wave-like equations. (English) Zbl 1443.93102 J. Differ. Equations 269, No. 7, 6163-6192 (2020). Reviewer: Kaïs Ammari (Monastir) MSC: 93D15 93D23 93C20 35L05 35L71 PDF BibTeX XML Cite \textit{B. Azmi} and \textit{S. S. Rodrigues}, J. Differ. Equations 269, No. 7, 6163--6192 (2020; Zbl 1443.93102) Full Text: DOI
Liu, Zhuangyi; Rao, Bopeng; Zhang, Qiong Polynomial stability of the Rao-Nakra beam with a single internal viscous damping. (English) Zbl 1440.35011 J. Differ. Equations 269, No. 7, 6125-6162 (2020). MSC: 35B35 35B40 35L53 35L71 74K10 93D20 PDF BibTeX XML Cite \textit{Z. Liu} et al., J. Differ. Equations 269, No. 7, 6125--6162 (2020; Zbl 1440.35011) Full Text: DOI
Khemmoudj, Ammar; Djaidja, Imane General decay for a viscoelastic rotating Euler-Bernoulli beam. (English) Zbl 1439.35064 Commun. Pure Appl. Anal. 19, No. 7, 3531-3557 (2020). MSC: 35B40 35L53 35L71 35R09 93D15 93D20 PDF BibTeX XML Cite \textit{A. Khemmoudj} and \textit{I. Djaidja}, Commun. Pure Appl. Anal. 19, No. 7, 3531--3557 (2020; Zbl 1439.35064) Full Text: DOI
Strecker, Timm; Aamo, Ole Morten; Cantoni, Michael Output feedback boundary control of heterodirectional semilinear hyperbolic systems. (English) Zbl 1442.93017 Automatica 117, Article ID 108990, 12 p. (2020). MSC: 93C20 93B52 35L71 93B53 PDF BibTeX XML Cite \textit{T. Strecker} et al., Automatica 117, Article ID 108990, 12 p. (2020; Zbl 1442.93017) Full Text: DOI
Zhang, Hui Frictional versus viscoelastic damping in Timoshenko systems with different speeds of wave propagation. (English) Zbl 1439.35078 J. Math. Anal. Appl. 489, No. 2, Article ID 124196, 23 p. (2020). MSC: 35B40 35R09 35L53 35L71 74K10 PDF BibTeX XML Cite \textit{H. Zhang}, J. Math. Anal. Appl. 489, No. 2, Article ID 124196, 23 p. (2020; Zbl 1439.35078) Full Text: DOI
Ma, Mu; Ji, Shuguan Time periodic solutions of one-dimensional forced Kirchhoff equation with Sturm-Liouville boundary conditions. (English) Zbl 1439.35337 J. Dyn. Differ. Equations 32, No. 2, 1065-1084 (2020). MSC: 35L71 35L20 35B10 35R09 37K55 74K05 PDF BibTeX XML Cite \textit{M. Ma} and \textit{S. Ji}, J. Dyn. Differ. Equations 32, No. 2, 1065--1084 (2020; Zbl 1439.35337) Full Text: DOI
Cheng, Hongyu; Si, Wen; Si, Jianguo Whiskered tori for forced beam equations with multi-dimensional Liouvillean frequency. (English) Zbl 1446.37057 J. Dyn. Differ. Equations 32, No. 2, 705-739 (2020). MSC: 37J40 35B25 35L76 35Q56 37L10 35R25 PDF BibTeX XML Cite \textit{H. Cheng} et al., J. Dyn. Differ. Equations 32, No. 2, 705--739 (2020; Zbl 1446.37057) Full Text: DOI
Gomide, Otávio M. L.; Guardia, Marcel; Seara, Tere M. Critical velocity in kink-defect interaction models: rigorous results. (English) Zbl 1439.35334 J. Differ. Equations 269, No. 4, 3282-3346 (2020). MSC: 35L71 35B25 35R05 PDF BibTeX XML Cite \textit{O. M. L. Gomide} et al., J. Differ. Equations 269, No. 4, 3282--3346 (2020; Zbl 1439.35334) Full Text: DOI
Dus, Mathias; Ferrante, Francesco; Prieur, Christophe On \(L^\infty\) stabilization of diagonal semilinear hyperbolic systems by saturated boundary control. (English) Zbl 1441.93241 ESAIM, Control Optim. Calc. Var. 26, Paper No. 23, 34 p. (2020). MSC: 93D23 93D15 93C20 35L71 PDF BibTeX XML Cite \textit{M. Dus} et al., ESAIM, Control Optim. Calc. Var. 26, Paper No. 23, 34 p. (2020; Zbl 1441.93241) Full Text: DOI
Draifia, Alaeddin; Zarai, Abderrahmane; Boulaaras, Salah Global existence and decay of solutions of a singular nonlocal viscoelastic system. (English) Zbl 1437.35464 Rend. Circ. Mat. Palermo (2) 69, No. 1, 125-149 (2020). MSC: 35L53 35L71 35B40 35R09 35Q74 PDF BibTeX XML Cite \textit{A. Draifia} et al., Rend. Circ. Mat. Palermo (2) 69, No. 1, 125--149 (2020; Zbl 1437.35464) Full Text: DOI
Niimura, Takayuki Attractors and their stability with respect to rotational inertia for nonlocal extensible beam equations. (English) Zbl 1435.35076 Discrete Contin. Dyn. Syst. 40, No. 5, 2561-2591 (2020). MSC: 35B41 35B35 35B40 37L30 74H40 74K10 35L35 35L76 PDF BibTeX XML Cite \textit{T. Niimura}, Discrete Contin. Dyn. Syst. 40, No. 5, 2561--2591 (2020; Zbl 1435.35076) Full Text: DOI
Xu, Guangyu; Mu, Chunlai; Li, Dan Global existence and non-existence analyses to a nonlinear Klein-Gordon system with damping terms under positive initial energy. (English) Zbl 1435.35235 Commun. Pure Appl. Anal. 19, No. 5, 2491-2512 (2020). MSC: 35L52 35L71 35A01 35B06 35B40 35B44 PDF BibTeX XML Cite \textit{G. Xu} et al., Commun. Pure Appl. Anal. 19, No. 5, 2491--2512 (2020; Zbl 1435.35235) Full Text: DOI
Bernier, Joackim; Faou, Erwan; Grébert, Benoît Long time behavior of the solutions of NLW on the \(d\)-dimensional torus. (English) Zbl 1441.35169 Forum Math. Sigma 8, Paper No. e12, 26 p. (2020). MSC: 35L71 35L20 37K55 35B40 35Q55 PDF BibTeX XML Cite \textit{J. Bernier} et al., Forum Math. Sigma 8, Paper No. e12, 26 p. (2020; Zbl 1441.35169) Full Text: DOI
Feng, Baowei; Soufyane, Abdelaziz New general decay results for a von Karman plate equation with memory-type boundary conditions. (English) Zbl 1441.35049 Discrete Contin. Dyn. Syst. 40, No. 3, 1757-1774 (2020). MSC: 35B40 35L35 35L76 93D15 74K20 93D20 PDF BibTeX XML Cite \textit{B. Feng} and \textit{A. Soufyane}, Discrete Contin. Dyn. Syst. 40, No. 3, 1757--1774 (2020; Zbl 1441.35049) Full Text: DOI
Chen, Yin; Geng, Jiansheng A KAM theorem for higher dimensional wave equations under nonlocal perturbation. (English) Zbl 1439.35025 J. Dyn. Differ. Equations 32, No. 1, 419-440 (2020). MSC: 35B15 35L71 35L20 35B35 37K55 PDF BibTeX XML Cite \textit{Y. Chen} and \textit{J. Geng}, J. Dyn. Differ. Equations 32, No. 1, 419--440 (2020; Zbl 1439.35025) Full Text: DOI
Palmieri, Alessandro; Takamura, Hiroyuki Nonexistence of global solutions for a weakly coupled system of semilinear damped wave equations of derivative type in the scattering case. (English) Zbl 1439.35338 Mediterr. J. Math. 17, No. 1, Paper No. 13, 20 p. (2020). MSC: 35L71 35L52 35B44 PDF BibTeX XML Cite \textit{A. Palmieri} and \textit{H. Takamura}, Mediterr. J. Math. 17, No. 1, Paper No. 13, 20 p. (2020; Zbl 1439.35338) Full Text: DOI
Santos, M. L.; Freitas, M. M.; Ramos, A. J. A. Blow-up result and energy decay rates for binary mixtures of solids with nonlinear damping and source terms. (English) Zbl 1430.35160 Nonlinear Anal., Real World Appl. 52, Article ID 103026, 46 p. (2020). MSC: 35L71 35L53 35B44 35B40 47H05 PDF BibTeX XML Cite \textit{M. L. Santos} et al., Nonlinear Anal., Real World Appl. 52, Article ID 103026, 46 p. (2020; Zbl 1430.35160) Full Text: DOI
Ma, Yue Global solutions of nonlinear wave-Klein-Gordon system in one space dimension. (English) Zbl 1439.35319 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 191, Article ID 111641, 57 p. (2020). MSC: 35L52 35L71 PDF BibTeX XML Cite \textit{Y. Ma}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 191, Article ID 111641, 57 p. (2020; Zbl 1439.35319) Full Text: DOI
Jleli, Mohamed; Samet, Bessem; Ye, Dong Critical criteria of Fujita type for a system of inhomogeneous wave inequalities in exterior domains. (English) Zbl 1439.35043 J. Differ. Equations 268, No. 6, 3035-3056 (2020). MSC: 35B33 35B44 35L71 35L53 35R45 PDF BibTeX XML Cite \textit{M. Jleli} et al., J. Differ. Equations 268, No. 6, 3035--3056 (2020; Zbl 1439.35043) Full Text: DOI arXiv
Freitas, Mirelson M.; Costa, Alberto L. C.; Araújo, Geraldo M. Pullback dynamics of a non-autonomous mixture problem in one dimensional solids with nonlinear damping. (English) Zbl 1430.35152 Commun. Pure Appl. Anal. 19, No. 2, 785-809 (2020). MSC: 35L53 35B40 35B41 35L71 PDF BibTeX XML Cite \textit{M. M. Freitas} et al., Commun. Pure Appl. Anal. 19, No. 2, 785--809 (2020; Zbl 1430.35152) Full Text: DOI
Zha, Dongbing On nonlinear elastic waves in 2-D. (English) Zbl 1437.35463 J. Differ. Equations 268, No. 3, 1250-1269 (2020). MSC: 35L52 35L71 74J30 PDF BibTeX XML Cite \textit{D. Zha}, J. Differ. Equations 268, No. 3, 1250--1269 (2020; Zbl 1437.35463) Full Text: DOI
Long, Nguyen Thanh; Ha, Hoang Hai; Ngoc, Le Thi Phuong; Triet, Nguyen Anh Existence, blow-up and exponential decay estimates for a system of nonlinear viscoelastic wave equations with nonlinear boundary conditions. (English) Zbl 1437.35468 Commun. Pure Appl. Anal. 19, No. 1, 455-492 (2020). MSC: 35L53 35L71 35B44 35B40 PDF BibTeX XML Cite \textit{N. T. Long} et al., Commun. Pure Appl. Anal. 19, No. 1, 455--492 (2020; Zbl 1437.35468) Full Text: DOI
Cavalcanti, M. M.; Domingos Cavalcanti, V. N.; Mansouri, S.; Gonzalez Martinez, V. H.; Hajjej, Z.; Astudillo Rojas, M. R. Asymptotic stability for a strongly coupled Klein-Gordon system in an inhomogeneous medium with locally distributed damping. (English) Zbl 1429.35156 J. Differ. Equations 268, No. 2, 447-489 (2020). Reviewer: Denis Borisov (Ufa) MSC: 35L53 35B40 93B07 35L71 35B35 PDF BibTeX XML Cite \textit{M. M. Cavalcanti} et al., J. Differ. Equations 268, No. 2, 447--489 (2020; Zbl 1429.35156) Full Text: DOI
Messaoudi, Salim A.; Hassan, Jamilu Hashim On the general decay for a system of viscoelastic wave equations. (English) Zbl 1439.35070 Dutta, Hemen (ed.) et al., Current trends in mathematical analysis and its interdisciplinary applications. Cham: Birkhäuser. 287-310 (2019). MSC: 35B40 35L53 35L71 35R09 PDF BibTeX XML Cite \textit{S. A. Messaoudi} and \textit{J. H. Hassan}, in: Current trends in mathematical analysis and its interdisciplinary applications. Cham: Birkhäuser. 287--310 (2019; Zbl 1439.35070) Full Text: DOI
Kosov, Aleksandr Arkad’evich; Semenov, Èduard Ivanovich; Tirskikh, Vladimir Viktorovich Multidimensional exact solutions of a system of nonlinear Boussinesq type equations. (Russian. English summary) Zbl 1435.35234 Izv. Irkutsk. Gos. Univ., Ser. Mat. 30, 114-124 (2019). MSC: 35L52 35L71 35Q35 PDF BibTeX XML Cite \textit{A. A. Kosov} et al., Izv. Irkutsk. Gos. Univ., Ser. Mat. 30, 114--124 (2019; Zbl 1435.35234) Full Text: DOI Link
Pereira, Ducival C.; Nguyen, Hoang; Raposo, Carlos A.; Maranhão, Celsa H. M. On the solutions for an extensible beam equation with internal damping and source terms. (English) Zbl 1439.35073 Differ. Equ. Appl. 11, No. 3, 367-377 (2019). MSC: 35B40 35L35 35L76 74K20 74K10 93D15 93D20 PDF BibTeX XML Cite \textit{D. C. Pereira} et al., Differ. Equ. Appl. 11, No. 3, 367--377 (2019; Zbl 1439.35073) Full Text: DOI
Pişkin, Erhan; Ekinci, Fatma Blow up of solutions for a coupled Kirchhoff-type equations with degenerate damping terms. (English) Zbl 1430.35038 Appl. Appl. Math. 14, No. 2, 942-956 (2019). MSC: 35B44 35L53 35R09 35L71 PDF BibTeX XML Cite \textit{E. Pişkin} and \textit{F. Ekinci}, Appl. Appl. Math. 14, No. 2, 942--956 (2019; Zbl 1430.35038) Full Text: Link
Ma, Mu; Ji, Shuguan Time periodic solutions of one-dimensional forced Kirchhoff equations with \(x\)-dependent coefficients under spatial periodic conditions. (English) Zbl 1439.35023 Anal. Math. Phys. 9, No. 4, 2345-2366 (2019). MSC: 35B10 35L71 35L20 35R09 37K55 PDF BibTeX XML Cite \textit{M. Ma} and \textit{S. Ji}, Anal. Math. Phys. 9, No. 4, 2345--2366 (2019; Zbl 1439.35023) Full Text: DOI
Ikeda, Masahiro; Sobajima, Motohiro; Wakasa, Kyouhei Blow-up phenomena of semilinear wave equations and their weakly coupled systems. (English) Zbl 07151382 J. Differ. Equations 267, No. 9, 5165-5201 (2019). Reviewer: Satyanad Kichenassamy (Reims) MSC: 35B44 35L71 35L52 35L15 PDF BibTeX XML Cite \textit{M. Ikeda} et al., J. Differ. Equations 267, No. 9, 5165--5201 (2019; Zbl 07151382) Full Text: DOI
Chen, Gui-Qiang G.; Pang, Peter H. C. Invariant measures for nonlinear conservation laws driven by stochastic forcing. (English) Zbl 1439.35055 Chin. Ann. Math., Ser. B 40, No. 6, 967-1004 (2019). MSC: 35B40 35K65 35K58 35L65 35R60 37A50 37C40 60H15 60G51 60J65 PDF BibTeX XML Cite \textit{G.-Q. G. Chen} and \textit{P. H. C. Pang}, Chin. Ann. Math., Ser. B 40, No. 6, 967--1004 (2019; Zbl 1439.35055) Full Text: DOI
Zhang, Bei; Xia, Yonghui; Zhu, Wenjing; Bai, Yuzhen Explicit exact traveling wave solutions and bifurcations of the generalized combined double \(\sinh\)-\(\cosh\)-Gordon equation. (English) Zbl 1433.35348 Appl. Math. Comput. 363, Article ID 124576, 26 p. (2019). MSC: 35Q53 35L71 35B10 35C07 35C08 37K40 PDF BibTeX XML Cite \textit{B. Zhang} et al., Appl. Math. Comput. 363, Article ID 124576, 26 p. (2019; Zbl 1433.35348) Full Text: DOI
Khochemane, Houssem Eddine; Bouzettouta, Lamine; Zitouni, Salah General decay of a nonlinear damping porous-elastic system with past history. (English) Zbl 1429.35157 Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 65, No. 2, 249-275 (2019). MSC: 35L53 35R09 35L71 PDF BibTeX XML Cite \textit{H. E. Khochemane} et al., Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 65, No. 2, 249--275 (2019; Zbl 1429.35157) Full Text: DOI
Achouri, Talha Conservative finite difference scheme for the nonlinear fourth-order wave equation. (English) Zbl 1429.65177 Appl. Math. Comput. 359, 121-131 (2019). MSC: 65M06 65P10 35L35 35L76 65M12 PDF BibTeX XML Cite \textit{T. Achouri}, Appl. Math. Comput. 359, 121--131 (2019; Zbl 1429.65177) Full Text: DOI
Zhang, Zhifei; Guo, Dandan Uniform stabilization of semilinear wave equations with localized internal damping and dynamic Wentzell boundary conditions with a memory term. (English) Zbl 1437.35097 Z. Angew. Math. Phys. 70, No. 6, Paper No. 160, 17 p. (2019). Reviewer: Kaïs Ammari (Monastir) MSC: 35B40 35B35 35L71 35L20 93D15 PDF BibTeX XML Cite \textit{Z. Zhang} and \textit{D. Guo}, Z. Angew. Math. Phys. 70, No. 6, Paper No. 160, 17 p. (2019; Zbl 1437.35097) Full Text: DOI
Ascanelli, Alessia; Coriasco, Sandro; Süß, André Solution theory to semilinear hyperbolic stochastic partial differential equations with polynomially bounded coefficients. (English) Zbl 1427.35376 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 189, Article ID 111574, 34 p. (2019). MSC: 35R60 35S30 35L10 60H15 35L40 PDF BibTeX XML Cite \textit{A. Ascanelli} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 189, Article ID 111574, 34 p. (2019; Zbl 1427.35376) Full Text: DOI arXiv
Wang, Xingchang; Chen, Yuxuan; Yang, Yanbing; Li, Jiaheng; Xu, Runzhang Kirchhoff-type system with linear weak damping and logarithmic nonlinearities. (English) Zbl 1437.35471 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 188, 475-499 (2019). MSC: 35L53 35L71 35B40 PDF BibTeX XML Cite \textit{X. Wang} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 188, 475--499 (2019; Zbl 1437.35471) Full Text: DOI
Amadori, Debora; Aqel, Fatima Al-Zahra’; Dal Santo, Edda Decay of approximate solutions for the damped semilinear wave equation on a bounded 1d domain. (English. French summary) Zbl 1437.35062 J. Math. Pures Appl. (9) 132, 166-206 (2019). MSC: 35B40 35L50 35L60 35L71 PDF BibTeX XML Cite \textit{D. Amadori} et al., J. Math. Pures Appl. (9) 132, 166--206 (2019; Zbl 1437.35062) Full Text: DOI arXiv
Yuan, Xu On multi-solitons for the energy-critical wave equation in dimension 5. (English) Zbl 1425.35171 Nonlinearity 32, No. 12, 5017-5048 (2019). MSC: 35Q51 35L71 35B40 37K40 PDF BibTeX XML Cite \textit{X. Yuan}, Nonlinearity 32, No. 12, 5017--5048 (2019; Zbl 1425.35171) Full Text: DOI
Brooks, Jacob; Derks, Gianne; Lloyd, David J. B. Existence of stationary fronts in a system of two coupled wave equations with spatial inhomogeneity. (English) Zbl 1433.37069 Nonlinearity 32, No. 11, 4147-4187 (2019). Reviewer: Jesús Hernández (Madrid) MSC: 37K50 35B25 35B32 35L71 PDF BibTeX XML Cite \textit{J. Brooks} et al., Nonlinearity 32, No. 11, 4147--4187 (2019; Zbl 1433.37069) Full Text: DOI
Shi, Qihong; Zhang, Xiao-Bing; Wang, Changyou; Wang, Shu Finite time blowup for Klein-Gordon-Schrödinger system. (English) Zbl 1428.35057 Math. Methods Appl. Sci. 42, No. 11, 3929-3941 (2019). MSC: 35B44 35Q55 35L71 35L52 PDF BibTeX XML Cite \textit{Q. Shi} et al., Math. Methods Appl. Sci. 42, No. 11, 3929--3941 (2019; Zbl 1428.35057) Full Text: DOI
Aliev, Akbar B.; Shafiyeva, Gulshan Kh. On potential wells and global solvability of the Cauchy problem for system of semi-linear Klein-Gordon equations with dissipation. (English) Zbl 1428.35222 Proc. Inst. Math. Mech., Natl. Acad. Sci. Azerb. 45, No. 1, 119-136 (2019). MSC: 35L71 35L52 35B44 PDF BibTeX XML Cite \textit{A. B. Aliev} and \textit{G. Kh. Shafiyeva}, Proc. Inst. Math. Mech., Natl. Acad. Sci. Azerb. 45, No. 1, 119--136 (2019; Zbl 1428.35222)
Djaouti, Abdelhamid Mohammed; Reissig, Michael Weakly coupled systems of semilinear effectively damped waves with different time-dependent coefficients in the dissipation terms and different power nonlinearities. (English) Zbl 1428.35207 D’Abbicco, Marcello (ed.) et al., New tools for nonlinear PDEs and application. Proceedings of the 11th ISAAC congress, Växjö, Sweden, August 14–18, 2017. Cham: Birkhäuser. Trends Math., 97-128 (2019). MSC: 35L52 35L71 PDF BibTeX XML Cite \textit{A. M. Djaouti} and \textit{M. Reissig}, in: New tools for nonlinear PDEs and application. Proceedings of the 11th ISAAC congress, Växjö, Sweden, August 14--18, 2017. Cham: Birkhäuser. 97--128 (2019; Zbl 1428.35207) Full Text: DOI
Khoa, Vo Anh; Ngoc, Le Thi Phuong; Long, Nguyen Thanh Existence, blow-up and exponential decay of solutions for a porous-elastic system with damping and source terms. (English) Zbl 1426.35149 Evol. Equ. Control Theory 8, No. 2, 359-395 (2019). MSC: 35L53 35L71 35B40 35B44 PDF BibTeX XML Cite \textit{V. A. Khoa} et al., Evol. Equ. Control Theory 8, No. 2, 359--395 (2019; Zbl 1426.35149) Full Text: DOI arXiv
Folino, Raffaele Slow motion for one-dimensional nonlinear damped hyperbolic Allen-Cahn systems. (English) Zbl 1426.35148 Electron. J. Differ. Equ. 2019, Paper No. 113, 21 p. (2019). MSC: 35L53 35B25 35K57 35L71 PDF BibTeX XML Cite \textit{R. Folino}, Electron. J. Differ. Equ. 2019, Paper No. 113, 21 p. (2019; Zbl 1426.35148) Full Text: Link arXiv
Fu, Xiaoyu; Lü, Qi; Zhang, Xu Carleman estimates for second order partial differential operators and applications. A unified approach. (English) Zbl 1445.35006 SpringerBriefs in Mathematics. Cham: Springer (ISBN 978-3-030-29529-5/pbk; 978-3-030-29530-1/ebook). xi, 127 p. (2019). Reviewer: Vyacheslav I. Maksimov (Yekaterinburg) MSC: 35-02 35Kxx 35Lxx 35Jxx 35Q93 35B60 35R30 93B05 PDF BibTeX XML Cite \textit{X. Fu} et al., Carleman estimates for second order partial differential operators and applications. A unified approach. Cham: Springer (2019; Zbl 1445.35006) Full Text: DOI
Marras, M.; Vernier Piro, S. Lifespan for solutions to 4-th order hyperbolic systems with time dependent coefficients. (English) Zbl 1437.35470 J. Math. Anal. Appl. 480, No. 1, Article ID 123387, 14 p. (2019). MSC: 35L53 35L57 35L71 35L76 35B44 PDF BibTeX XML Cite \textit{M. Marras} and \textit{S. Vernier Piro}, J. Math. Anal. Appl. 480, No. 1, Article ID 123387, 14 p. (2019; Zbl 1437.35470) Full Text: DOI
Palmieri, Alessandro; Takamura, Hiroyuki Blow-up for a weakly coupled system of semilinear damped wave equations in the scattering case with power nonlinearities. (English) Zbl 1437.35462 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 187, 467-492 (2019). MSC: 35L52 35L71 35B44 PDF BibTeX XML Cite \textit{A. Palmieri} and \textit{H. Takamura}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 187, 467--492 (2019; Zbl 1437.35462) Full Text: DOI
Waters, Alden Unique determination of sound speeds for coupled systems of semi-linear wave equations. (English) Zbl 1421.35207 Indag. Math., New Ser. 30, No. 5, 904-919 (2019). MSC: 35L52 35L71 35R30 35A02 PDF BibTeX XML Cite \textit{A. Waters}, Indag. Math., New Ser. 30, No. 5, 904--919 (2019; Zbl 1421.35207) Full Text: DOI arXiv
Verhulst, Ferdinand Recurrence and resonance in the cubic Klein-Gordon equation. (English) Zbl 1432.37087 Acta Appl. Math. 162, No. 1, 145-164 (2019). MSC: 37J40 35C10 35L71 70H07 70H12 PDF BibTeX XML Cite \textit{F. Verhulst}, Acta Appl. Math. 162, No. 1, 145--164 (2019; Zbl 1432.37087) Full Text: DOI
García-Azpeitia, Carlos; Krawcewicz, Wieslaw; Lv, Yanli Solutions of fixed period in the nonlinear wave equation on networks. (English) Zbl 1423.35375 NoDEA, Nonlinear Differ. Equ. Appl. 26, No. 4, Paper No. 23, 27 p. (2019). MSC: 35R02 37C80 35L71 47H11 55M25 PDF BibTeX XML Cite \textit{C. García-Azpeitia} et al., NoDEA, Nonlinear Differ. Equ. Appl. 26, No. 4, Paper No. 23, 27 p. (2019; Zbl 1423.35375) Full Text: DOI arXiv
Liu, Chunyong; Liu, Huayong; Zhao, Rong A Nekhoroshev type theorem for the nonlinear wave equation in Gevrey space. (English) Zbl 1437.35446 Chin. Ann. Math., Ser. B 40, No. 3, 389-410 (2019). MSC: 35L20 35L71 35B40 35Q55 37K55 PDF BibTeX XML Cite \textit{C. Liu} et al., Chin. Ann. Math., Ser. B 40, No. 3, 389--410 (2019; Zbl 1437.35446) Full Text: DOI
Luo, Xiuwen Blow up for systems of wave equations in exterior domain. (English) Zbl 1437.35469 Chin. Ann. Math., Ser. B 40, No. 3, 339-348 (2019). MSC: 35L53 35L71 35B44 PDF BibTeX XML Cite \textit{X. Luo}, Chin. Ann. Math., Ser. B 40, No. 3, 339--348 (2019; Zbl 1437.35469) Full Text: DOI
Gutlyanskiĭ, V. Ya.; Ryazanov, V. I.; Yakubov, E.; Yefimushkin, A. S. On the Hilbert problem for analytic functions in quasihyperbolic domains. (English) Zbl 1424.30134 Dopov. Nats. Akad. Nauk Ukr., Mat. Pryr. Tekh. Nauky 2019, No. 2, 23-30 (2019). MSC: 30E25 35J61 35J67 30C65 PDF BibTeX XML Cite \textit{V. Ya. Gutlyanskiĭ} et al., Dopov. Nats. Akad. Nauk Ukr., Mat. Pryr. Tekh. Nauky 2019, No. 2, 23--30 (2019; Zbl 1424.30134) Full Text: DOI
Chen, Wenhui; Palmieri, Alessandro Weakly coupled system of semilinear wave equations with distinct scale-invariant terms in the linear part. (English) Zbl 1437.35495 Z. Angew. Math. Phys. 70, No. 2, Paper No. 67, 21 p. (2019). MSC: 35L71 35L52 35B33 35B44 PDF BibTeX XML Cite \textit{W. Chen} and \textit{A. Palmieri}, Z. Angew. Math. Phys. 70, No. 2, Paper No. 67, 21 p. (2019; Zbl 1437.35495) Full Text: DOI
Hao, Jianghao; He, Wenhua Energy decay of variable-coefficient wave equation with nonlinear acoustic boundary conditions and source term. (English) Zbl 1437.35072 Math. Methods Appl. Sci. 42, No. 6, 2109-2123 (2019). MSC: 35B40 35L20 35L71 74D05 93D15 PDF BibTeX XML Cite \textit{J. Hao} and \textit{W. He}, Math. Methods Appl. Sci. 42, No. 6, 2109--2123 (2019; Zbl 1437.35072) Full Text: DOI
da Silva Aragão, Gleiciane; Morais Bezerra, Flank David Continuity of the set of equilibria for non-autonomous damped wave equations with terms concentrating on the boundary. (English) Zbl 1415.35014 Electron. J. Differ. Equ. 2019, Paper No. 70, 19 p. (2019). MSC: 35B25 35J61 70K42 37B55 35L20 PDF BibTeX XML Cite \textit{G. da Silva Aragão} and \textit{F. D. Morais Bezerra}, Electron. J. Differ. Equ. 2019, Paper No. 70, 19 p. (2019; Zbl 1415.35014) Full Text: Link
Kato, Masakazu; Sakuraba, Miku Global existence and blow-up for semilinear damped wave equations in three space dimensions. (English) Zbl 1418.35271 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 182, 209-225 (2019). Reviewer: Claudia Simionescu-Badea (Wien) MSC: 35L71 35E15 35A01 35B44 35L15 PDF BibTeX XML Cite \textit{M. Kato} and \textit{M. Sakuraba}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 182, 209--225 (2019; Zbl 1418.35271) Full Text: DOI arXiv
Yao, Xiaobin; Ma, Qiaozhen; Liu, Tingting Asymptotic behavior for stochastic plate equations with rotational inertia and Kelvin-Voigt dissipative term on unbounded domains. (English) Zbl 1414.35036 Discrete Contin. Dyn. Syst., Ser. B 24, No. 4, 1889-1917 (2019). MSC: 35B41 37L30 45K05 74K20 35L76 35L30 PDF BibTeX XML Cite \textit{X. Yao} et al., Discrete Contin. Dyn. Syst., Ser. B 24, No. 4, 1889--1917 (2019; Zbl 1414.35036) Full Text: DOI
Chen, Bochao; Li, Yong; Yang, Xue Periodic solutions to nonlinear wave equation with \(X\)-dependent coefficients under the general boundary conditions. (English) Zbl 1418.35269 J. Dyn. Differ. Equations 31, No. 1, 321-368 (2019). MSC: 35L71 35L20 35B10 37K55 PDF BibTeX XML Cite \textit{B. Chen} et al., J. Dyn. Differ. Equations 31, No. 1, 321--368 (2019; Zbl 1418.35269) Full Text: DOI arXiv
Mohamad, Haidar; Oliver, Marcel A direct construction of a slow manifold for a semilinear wave equation of Klein-Gordon type. (English) Zbl 1415.35206 J. Differ. Equations 267, No. 1, 1-14 (2019). Reviewer: Denis Borisov (Ufa) MSC: 35L71 81Q05 35B25 35Q55 37L25 35B42 PDF BibTeX XML Cite \textit{H. Mohamad} and \textit{M. Oliver}, J. Differ. Equations 267, No. 1, 1--14 (2019; Zbl 1415.35206) Full Text: DOI
Kumar, Surendra; Rastogi, Shard The solvability and controllability of semilinear coupled wave equation. (English) Zbl 1415.35202 Int. J. Appl. Comput. Math. 5, No. 2, Paper No. 30, 12 p. (2019). MSC: 35L71 35L53 93B05 PDF BibTeX XML Cite \textit{S. Kumar} and \textit{S. Rastogi}, Int. J. Appl. Comput. Math. 5, No. 2, Paper No. 30, 12 p. (2019; Zbl 1415.35202) Full Text: DOI
Chen, Wenhui; Reissig, Michael Weakly coupled systems of semilinear elastic waves with different damping mechanisms in 3D. (English) Zbl 1414.35126 Math. Methods Appl. Sci. 42, No. 2, 667-709 (2019). MSC: 35L71 35L52 PDF BibTeX XML Cite \textit{W. Chen} and \textit{M. Reissig}, Math. Methods Appl. Sci. 42, No. 2, 667--709 (2019; Zbl 1414.35126) Full Text: DOI
Ikeda, Masahiro; Inui, Takahisa The sharp estimate of the lifespan for semilinear wave equation with time-dependent damping. (English) Zbl 1424.35253 Differ. Integral Equ. 32, No. 1-2, 1-36 (2019). Reviewer: Chengbo Wang (Hangzhou) MSC: 35L71 35B44 35L05 35Q55 37D10 37K40 37K45 PDF BibTeX XML Cite \textit{M. Ikeda} and \textit{T. Inui}, Differ. Integral Equ. 32, No. 1--2, 1--36 (2019; Zbl 1424.35253)
Feng, Baowei; Liu, Gongwei Well-posedness and stability of two classes of plate equations with memory and strong time-dependent delay. (English) Zbl 1415.35210 Taiwanese J. Math. 23, No. 1, 159-192 (2019). MSC: 35L76 35B40 93D15 93D20 74K20 35L35 35R09 PDF BibTeX XML Cite \textit{B. Feng} and \textit{G. Liu}, Taiwanese J. Math. 23, No. 1, 159--192 (2019; Zbl 1415.35210) Full Text: DOI Euclid
Li, Fushan; Du, Guangwei General energy decay for a degenerate viscoelastic petrovsky-type plate equation with boundary feedback. (English) Zbl 07303040 J. Appl. Anal. Comput. 8, No. 1, 390-401 (2018). MSC: 35B40 35L35 35L76 35R09 74K20 93D15 PDF BibTeX XML Cite \textit{F. Li} and \textit{G. Du}, J. Appl. Anal. Comput. 8, No. 1, 390--401 (2018; Zbl 07303040) Full Text: DOI
Martel, Yvan Interaction of solitons from the PDE point of view. (English) Zbl 1447.35007 Sirakov, Boyan (ed.) et al., Proceedings of the international congress of mathematicians 2018, ICM 2018, Rio de Janeiro, Brazil, August 1–9, 2018. Volume III. Invited lectures. Hackensack, NJ: World Scientific; Rio de Janeiro: Sociedade Brasileira de Matemática (SBM). 2439-2466 (2018). MSC: 35-02 35C08 35B40 37K40 35Q51 35Q53 35Q55 35L71 PDF BibTeX XML Cite \textit{Y. Martel}, in: Proceedings of the international congress of mathematicians 2018, ICM 2018, Rio de Janeiro, Brazil, August 1--9, 2018. Volume III. Invited lectures. Hackensack, NJ: World Scientific; Rio de Janeiro: Sociedade Brasileira de Matemática (SBM). 2439--2466 (2018; Zbl 1447.35007) Full Text: DOI
Wang, Yongda Existence result for a nonlinear nonlocal system modeling suspension bridges. (English) Zbl 1437.35472 AIMS Math. 3, No. 4, 608-624 (2018). MSC: 35L57 35L76 74B20 35R09 PDF BibTeX XML Cite \textit{Y. Wang}, AIMS Math. 3, No. 4, 608--624 (2018; Zbl 1437.35472) Full Text: DOI
Kharibegashvili, Sergo Some local and nonlocal multidimensional problems for a class of semilinear hyperbolic equations and systems. (English) Zbl 1437.35467 Mem. Differ. Equ. Math. Phys. 75, 1-91 (2018). MSC: 35L53 35L71 PDF BibTeX XML Cite \textit{S. Kharibegashvili}, Mem. Differ. Equ. Math. Phys. 75, 1--91 (2018; Zbl 1437.35467) Full Text: Link
Trélat, Emmanuel Stabilization of semilinear PDEs, and uniform decay under discretization. (English) Zbl 1436.35305 Ammari, Kaïs (ed.) et al., Evolution equations. Long time behavior and control. Proceedings of the summer school, Université Savoie Mont Blanc, Chambéry, France, June 15–18, 2015. Cambridge: Cambridge University Press. Lond. Math. Soc. Lect. Note Ser. 439, 31-76 (2018). MSC: 35Q93 74K20 74F05 93B52 93C20 35B35 35B40 74B05 93B05 35A35 35K05 35K58 35L02 PDF BibTeX XML Cite \textit{E. Trélat}, Lond. Math. Soc. Lect. Note Ser. 439, 31--76 (2018; Zbl 1436.35305) Full Text: DOI
Sun, Junling; Yang, Jie; Sun, Lei A dissipative hyperbolic systems approach to image restoration. (English) Zbl 1416.35158 Ital. J. Pure Appl. Math. 40, 68-81 (2018). MSC: 35L53 35L71 35R09 68U10 PDF BibTeX XML Cite \textit{J. Sun} et al., Ital. J. Pure Appl. Math. 40, 68--81 (2018; Zbl 1416.35158) Full Text: Link
Khazari, Adil; El Alaoui, Fatima Ezzahrae; Boutoulout, Ali Boundary constrained observability for hyperbolic systems. (English) Zbl 1418.93044 Nonlinear Stud. 25, No. 4, 795-806 (2018). MSC: 93B07 93C20 35L71 PDF BibTeX XML Cite \textit{A. Khazari} et al., Nonlinear Stud. 25, No. 4, 795--806 (2018; Zbl 1418.93044) Full Text: Link