Li, Binjie; Xie, Xiaoping Convergence of a spatial semidiscretization for a backward semilinear stochastic parabolic equation. (English) Zbl 07669349 SIAM J. Control Optim. 61, No. 1, 47-71 (2023). MSC: 60H15 60J65 49N10 49J55 65K10 65C30 PDF BibTeX XML Cite \textit{B. Li} and \textit{X. Xie}, SIAM J. Control Optim. 61, No. 1, 47--71 (2023; Zbl 07669349) Full Text: DOI arXiv OpenURL
Ding, Pengyan; Yang, Zhijian Complete regularity and strong attractor for the strongly damped wave equation with critical nonlinearities on \(\mathbb{R}^3\). (English) Zbl 07663282 J. Evol. Equ. 23, No. 1, Paper No. 21, 42 p. (2023). MSC: 35B41 35B33 35B40 35B65 35K58 37L30 PDF BibTeX XML Cite \textit{P. Ding} and \textit{Z. Yang}, J. Evol. Equ. 23, No. 1, Paper No. 21, 42 p. (2023; Zbl 07663282) Full Text: DOI OpenURL
Castorina, Daniele; Catino, Giovanni; Mantegazza, Carlo Semilinear Li and Yau inequalities. (English) Zbl 07660742 Ann. Mat. Pura Appl. (4) 202, No. 2, 827-850 (2023). MSC: 35A23 35K58 35R01 58J35 PDF BibTeX XML Cite \textit{D. Castorina} et al., Ann. Mat. Pura Appl. (4) 202, No. 2, 827--850 (2023; Zbl 07660742) Full Text: DOI arXiv OpenURL
Gao, Dongmei; Wang, Jun; Wang, Xuan Existence and blow-up of solutions in Hénon-type heat equation with exponential nonlinearity. (English) Zbl 07659014 Adv. Nonlinear Anal. 12, Article ID 20220290, 28 p. (2023). MSC: 35K58 35B40 35B44 35C06 35K15 35J67 35J61 PDF BibTeX XML Cite \textit{D. Gao} et al., Adv. Nonlinear Anal. 12, Article ID 20220290, 28 p. (2023; Zbl 07659014) Full Text: DOI OpenURL
Wu, Yu; Ge, Yongbin; Zhang, Lin A high-order compact LOD method for solving the three-dimensional reaction-diffusion equation with nonlinear reaction term. (English) Zbl 07657518 Comput. Appl. Math. 42, No. 1, Paper No. 46, 32 p. (2023). MSC: 35G31 35K58 35K65 35K67 PDF BibTeX XML Cite \textit{Y. Wu} et al., Comput. Appl. Math. 42, No. 1, Paper No. 46, 32 p. (2023; Zbl 07657518) Full Text: DOI OpenURL
Coclite, Giuseppe Maria; di Ruvo, Lorenzo \(H^1\) solutions for a Kuramoto-Velarde type equation. (English) Zbl 07657126 Mediterr. J. Math. 20, No. 3, Paper No. 110, 26 p. (2023). MSC: 35G25 35K30 35K58 PDF BibTeX XML Cite \textit{G. M. Coclite} and \textit{L. di Ruvo}, Mediterr. J. Math. 20, No. 3, Paper No. 110, 26 p. (2023; Zbl 07657126) Full Text: DOI OpenURL
Zhang, Qiangheng Regular dynamics of non-autonomous retarded Swift-Hohenberg equations. (English) Zbl 07656264 Mediterr. J. Math. 20, No. 2, Paper No. 99, 18 p. (2023). MSC: 35B40 35B41 35K35 35K58 37L05 PDF BibTeX XML Cite \textit{Q. Zhang}, Mediterr. J. Math. 20, No. 2, Paper No. 99, 18 p. (2023; Zbl 07656264) Full Text: DOI OpenURL
Chaudhry, Jehanzeb H.; Estep, Donald; Giannini, Trevor; Stevens, Zachary; Tavener, Simon J. Error estimation for the time to a threshold value in evolutionary partial differential equations. (English) Zbl 07654454 BIT 63, No. 1, Paper No. 12, 32 p. (2023). MSC: 65M60 65M15 35K58 35L71 76B15 35K05 35R10 PDF BibTeX XML Cite \textit{J. H. Chaudhry} et al., BIT 63, No. 1, Paper No. 12, 32 p. (2023; Zbl 07654454) Full Text: DOI arXiv OpenURL
He, Junfeng; Bu, Zhen-Hui Global stability of critical-speed pulsating fronts for degenerate monostable reactions. (English) Zbl 07654042 Commun. Nonlinear Sci. Numer. Simul. 118, Article ID 107001, 14 p. (2023). MSC: 35C07 35B35 35B40 35K58 PDF BibTeX XML Cite \textit{J. He} and \textit{Z.-H. Bu}, Commun. Nonlinear Sci. Numer. Simul. 118, Article ID 107001, 14 p. (2023; Zbl 07654042) Full Text: DOI OpenURL
Diaz Palencia, Jose Luis Semigroup theory and asymptotic profiles of solutions for a higher-order Fisher-KPP problem in \(\mathbb{R}^N\). (English) Zbl 07653406 Electron. J. Differ. Equ. 2023, Paper No. 04, 17 p. (2023). MSC: 35K91 35K30 47D06 PDF BibTeX XML Cite \textit{J. L. Diaz Palencia}, Electron. J. Differ. Equ. 2023, Paper No. 04, 17 p. (2023; Zbl 07653406) Full Text: Link OpenURL
Katz, Rami; Fridman, Emilia Global stabilization of a 1D semilinear heat equation via modal decomposition and direct Lyapunov approach. (English) Zbl 07649475 Automatica 149, Article ID 110809, 10 p. (2023). Reviewer: Jia-Yuan Dai (Taichung) MSC: 93D15 93C20 35K05 35K58 93C10 PDF BibTeX XML Cite \textit{R. Katz} and \textit{E. Fridman}, Automatica 149, Article ID 110809, 10 p. (2023; Zbl 07649475) Full Text: DOI OpenURL
Huang, Lizhuang; Xu, Zhiting Traveling wave fronts of a diffusive Nicholson’s Blowflies equation with two delays. (English) Zbl 07644569 Appl. Math. Lett. 139, Article ID 108545, 7 p. (2023). MSC: 35C07 35K58 35B51 PDF BibTeX XML Cite \textit{L. Huang} and \textit{Z. Xu}, Appl. Math. Lett. 139, Article ID 108545, 7 p. (2023; Zbl 07644569) Full Text: DOI OpenURL
Antonopoulou, Dimitra C. Higher moments for the stochastic Cahn-Hilliard equation with multiplicative Fourier noise. (English) Zbl 07643217 Nonlinearity 36, No. 2, 1053-1081 (2023). MSC: 35R60 35B25 35K35 35K58 60H30 60H15 PDF BibTeX XML Cite \textit{D. C. Antonopoulou}, Nonlinearity 36, No. 2, 1053--1081 (2023; Zbl 07643217) Full Text: DOI OpenURL
Kagawa, Keiichiro; Ôtani, Mitsuharu The time-periodic problem of the viscous Cahn-Hilliard equation with the homogeneous Dirichlet boundary condition. (English) Zbl 07643148 J. Fixed Point Theory Appl. 25, No. 1, Paper No. 40, 27 p. (2023). MSC: 35B10 35K35 35K58 PDF BibTeX XML Cite \textit{K. Kagawa} and \textit{M. Ôtani}, J. Fixed Point Theory Appl. 25, No. 1, Paper No. 40, 27 p. (2023; Zbl 07643148) Full Text: DOI OpenURL
Mizuguchi, Makoto; Sekine, Kouta; Hashimoto, Kouji; Nakao, Mitsuhiro T.; Oishi, Shin’ichi Rigorous numerical inclusion of the blow-up time for the Fujita-type equation. (English) Zbl 07642739 Japan J. Ind. Appl. Math. 40, No. 1, 665-689 (2023). MSC: 35B44 35K20 35K58 35K91 65M15 PDF BibTeX XML Cite \textit{M. Mizuguchi} et al., Japan J. Ind. Appl. Math. 40, No. 1, 665--689 (2023; Zbl 07642739) Full Text: DOI OpenURL
Dahi, Ibrahim; Sidi Ammi, Moulay Rchid Existence of capacity solution for a nonlocal thermistor problem in Musielak-Orlicz-Sobolev spaces. (English) Zbl 07638061 Ann. Funct. Anal. 14, No. 1, Paper No. 12, 33 p. (2023). MSC: 35K58 35K20 35R09 46E30 PDF BibTeX XML Cite \textit{I. Dahi} and \textit{M. R. Sidi Ammi}, Ann. Funct. Anal. 14, No. 1, Paper No. 12, 33 p. (2023; Zbl 07638061) Full Text: DOI OpenURL
Cao, Kai Convergence rate analysis of the coefficient identification problems in a Kuramoto-Sivashinsky equation. (English) Zbl 1504.35640 Inverse Probl. 39, No. 1, Article ID 015006, 42 p. (2023). MSC: 35R30 35K35 35K58 PDF BibTeX XML Cite \textit{K. Cao}, Inverse Probl. 39, No. 1, Article ID 015006, 42 p. (2023; Zbl 1504.35640) Full Text: DOI OpenURL
Ma, Wenjun; Sun, Liangliang Inverse potential problem for a semilinear generalized fractional diffusion equation with spatio-temporal dependent coefficients. (English) Zbl 1504.35652 Inverse Probl. 39, No. 1, Article ID 015005, 29 p. (2023). MSC: 35R30 35K20 35K58 35R11 PDF BibTeX XML Cite \textit{W. Ma} and \textit{L. Sun}, Inverse Probl. 39, No. 1, Article ID 015005, 29 p. (2023; Zbl 1504.35652) Full Text: DOI OpenURL
Cancès, Clément; Matthes, Daniel Construction of a two-phase flow with singular energy by gradient flow methods. (English) Zbl 1502.35063 J. Differ. Equations 344, 439-470 (2023). MSC: 35K52 35K58 35K65 PDF BibTeX XML Cite \textit{C. Cancès} and \textit{D. Matthes}, J. Differ. Equations 344, 439--470 (2023; Zbl 1502.35063) Full Text: DOI arXiv OpenURL
Carreño, Nicolás; Santos, Maurício C. Stackelberg-Nash exact controllability for the Kuramoto-Sivashinsky equation with boundary and distributed controls. (English) Zbl 1502.35062 J. Differ. Equations 343, 1-63 (2023). MSC: 35K35 35K58 93C10 93B05 PDF BibTeX XML Cite \textit{N. Carreño} and \textit{M. C. Santos}, J. Differ. Equations 343, 1--63 (2023; Zbl 1502.35062) Full Text: DOI OpenURL
Xie, Zhe; Zhang, Jiangwei; Xie, Yongqin Asymptotic behavior of quasi-linear evolution equations on time-dependent product spaces. (English) Zbl 1502.35027 Discrete Contin. Dyn. Syst., Ser. B 28, No. 3, 2316-2334 (2023). MSC: 35B40 35B41 35K35 35K58 35R09 45K05 PDF BibTeX XML Cite \textit{Z. Xie} et al., Discrete Contin. Dyn. Syst., Ser. B 28, No. 3, 2316--2334 (2023; Zbl 1502.35027) Full Text: DOI OpenURL
Ichida, Yu Classification of nonnegative traveling wave solutions for the 1D degenerate parabolic equations. (English) Zbl 1501.35115 Discrete Contin. Dyn. Syst., Ser. B 28, No. 2, 1116-1132 (2023). MSC: 35C07 35B40 35K58 35K65 PDF BibTeX XML Cite \textit{Y. Ichida}, Discrete Contin. Dyn. Syst., Ser. B 28, No. 2, 1116--1132 (2023; Zbl 1501.35115) Full Text: DOI OpenURL
Fang, Qinhe; Cheng, Hongmei; Yuan, Rong Spatial dynamics of some modified Leslie-Gower prey-predator model with shifting habitat. (English) Zbl 1501.35248 J. Math. Anal. Appl. 518, No. 2, Article ID 126713, 22 p. (2023). MSC: 35K58 35K40 92D25 PDF BibTeX XML Cite \textit{Q. Fang} et al., J. Math. Anal. Appl. 518, No. 2, Article ID 126713, 22 p. (2023; Zbl 1501.35248) Full Text: DOI OpenURL
McOwen, Robert; Topalov, Peter Spatial asymptotics and equilibria of heat flow on \(\mathbb{R}^d\). (English) Zbl 1498.35537 J. Math. Anal. Appl. 518, No. 1, Article ID 126668, 31 p. (2023). MSC: 35Q79 35K05 35K15 35K58 35C20 35B40 35A01 35A02 PDF BibTeX XML Cite \textit{R. McOwen} and \textit{P. Topalov}, J. Math. Anal. Appl. 518, No. 1, Article ID 126668, 31 p. (2023; Zbl 1498.35537) Full Text: DOI arXiv OpenURL
Eom, Junyong Large time behavior of ODE type solutions to higher-order semilinear parabolic equations with small initial data. (English) Zbl 1498.35071 J. Math. Anal. Appl. 517, No. 2, Article ID 126625, 15 p. (2023). MSC: 35B40 35K30 35K58 PDF BibTeX XML Cite \textit{J. Eom}, J. Math. Anal. Appl. 517, No. 2, Article ID 126625, 15 p. (2023; Zbl 1498.35071) Full Text: DOI OpenURL
Ould Khatri, Mohamed Mahmoud; Youssfi, Ahmed Semilinear heat equation with singular terms. (English) Zbl 07670557 Electron. J. Qual. Theory Differ. Equ. 2022, Paper No. 69, 34 p. (2022). MSC: 35K20 35K91 35K67 35B65 PDF BibTeX XML Cite \textit{M. M. Ould Khatri} and \textit{A. Youssfi}, Electron. J. Qual. Theory Differ. Equ. 2022, Paper No. 69, 34 p. (2022; Zbl 07670557) Full Text: DOI OpenURL
Klevchuk, I. I. Existence and stability of traveling waves in parabolic systems of differential equations with weak diffusion. (English) Zbl 07644466 Carpathian Math. Publ. 14, No. 2, 493-503 (2022). MSC: 35C07 35B10 35B25 35K20 35K58 PDF BibTeX XML Cite \textit{I. I. Klevchuk}, Carpathian Math. Publ. 14, No. 2, 493--503 (2022; Zbl 07644466) Full Text: DOI OpenURL
Chung, Soon-Yeong; Hwang, Jaeho A necessary and sufficient condition for the existence of global solutions to discrete semilinear parabolic equations on networks. (English) Zbl 07641613 Chaos Solitons Fractals 158, Article ID 112055, 8 p. (2022). MSC: 35R02 35K58 PDF BibTeX XML Cite \textit{S.-Y. Chung} and \textit{J. Hwang}, Chaos Solitons Fractals 158, Article ID 112055, 8 p. (2022; Zbl 07641613) Full Text: DOI OpenURL
Kroemer, Milan; Laux, Tim The Hele-Shaw flow as the sharp interface limit of the Cahn-Hilliard equation with disparate mobilities. (English) Zbl 07638238 Commun. Partial Differ. Equations 47, No. 12, 2444-2486 (2022). Reviewer: Michał Kowalczyk (Santiago) MSC: 35K58 35B35 35K35 35K65 76D27 82C26 PDF BibTeX XML Cite \textit{M. Kroemer} and \textit{T. Laux}, Commun. Partial Differ. Equations 47, No. 12, 2444--2486 (2022; Zbl 07638238) Full Text: DOI arXiv OpenURL
Frigeri, Sergio; Lam, Kei Fong; Signori, Andrea Strong well-posedness and inverse identification problem of a non-local phase field tumour model with degenerate mobilities. (English) Zbl 1504.35128 Eur. J. Appl. Math. 33, No. 2, 267-308 (2022). MSC: 35D30 35K52 35K58 35R30 49J20 92C50 PDF BibTeX XML Cite \textit{S. Frigeri} et al., Eur. J. Appl. Math. 33, No. 2, 267--308 (2022; Zbl 1504.35128) Full Text: DOI arXiv OpenURL
Benia, Yassine; Sadallah, Boubaker-Khaled New regularity results for the heat equation and application to non-homogeneous Burgers equation. (English) Zbl 1503.35052 Georgian Math. J. 29, No. 6, 813-821 (2022). MSC: 35B65 35K20 35K58 PDF BibTeX XML Cite \textit{Y. Benia} and \textit{B.-K. Sadallah}, Georgian Math. J. 29, No. 6, 813--821 (2022; Zbl 1503.35052) Full Text: DOI OpenURL
Inui, Takahisa; Machihara, Shuji Non-delay limit in the energy space from the nonlinear damped wave equation to the nonlinear heat equation. (English) Zbl 1502.35008 J. Hyperbolic Differ. Equ. 19, No. 3, 407-437 (2022). MSC: 35B25 35L15 35L71 35K58 35A35 PDF BibTeX XML Cite \textit{T. Inui} and \textit{S. Machihara}, J. Hyperbolic Differ. Equ. 19, No. 3, 407--437 (2022; Zbl 1502.35008) Full Text: DOI arXiv OpenURL
Jo, Yong-Hyok; Ri, Myong-Hwan Application of Rothe’s method to a parabolic inverse problem with nonlocal boundary condition. (English) Zbl 07613013 Appl. Math., Praha 67, No. 5, 573-592 (2022). MSC: 65M20 35K58 35R30 PDF BibTeX XML Cite \textit{Y.-H. Jo} and \textit{M.-H. Ri}, Appl. Math., Praha 67, No. 5, 573--592 (2022; Zbl 07613013) Full Text: DOI OpenURL
Collot, Charles; Ghoul, Tej-Eddine; Masmoudi, Nader Singularity formation for Burgers’ equation with transverse viscosity. (English. French summary) Zbl 1501.35089 Ann. Sci. Éc. Norm. Supér. (4) 55, No. 4, 1047-1133 (2022). MSC: 35B44 35A20 35B35 35M10 35L67 35K58 PDF BibTeX XML Cite \textit{C. Collot} et al., Ann. Sci. Éc. Norm. Supér. (4) 55, No. 4, 1047--1133 (2022; Zbl 1501.35089) Full Text: DOI arXiv OpenURL
Czaja, Radoslaw; Kania, Maria Dissipative mechanism and global attractor for modified Swift-Hohenberg equation in \(\mathbb{R}^N\). (English) Zbl 1501.35082 Turk. J. Math. 46, No. 7, 2728-2750 (2022). MSC: 35B41 35K30 35K58 35Q92 PDF BibTeX XML Cite \textit{R. Czaja} and \textit{M. Kania}, Turk. J. Math. 46, No. 7, 2728--2750 (2022; Zbl 1501.35082) Full Text: DOI OpenURL
Colli, Pierluigi; Gilardi, Gianni; Rocca, Elisabetta; Sprekels, Jürgen Well-posedness and optimal control for a Cahn-Hilliard-Oono system with control in the mass term. (English) Zbl 1500.35200 Discrete Contin. Dyn. Syst., Ser. S 15, No. 8, 2135-2172 (2022). MSC: 35K52 35K58 35D35 49J20 49K30 35Q93 PDF BibTeX XML Cite \textit{P. Colli} et al., Discrete Contin. Dyn. Syst., Ser. S 15, No. 8, 2135--2172 (2022; Zbl 1500.35200) Full Text: DOI arXiv OpenURL
Krasnoshchok, M. Monotone iterations method for fractional diffusion equations. (English) Zbl 07604452 Mat. Stud. 57, No. 2, 122-136 (2022). MSC: 35R11 26A33 35B45 35K58 PDF BibTeX XML Cite \textit{M. Krasnoshchok}, Mat. Stud. 57, No. 2, 122--136 (2022; Zbl 07604452) Full Text: DOI OpenURL
Nikolić, Vanja; Said-Houari, Belkacem Local well-posedness of a coupled Westervelt-Pennes model of nonlinear ultrasonic heating. (English) Zbl 1500.35100 Nonlinearity 35, No. 11, 5749-5780 (2022). MSC: 35G61 35L71 35K58 PDF BibTeX XML Cite \textit{V. Nikolić} and \textit{B. Said-Houari}, Nonlinearity 35, No. 11, 5749--5780 (2022; Zbl 1500.35100) Full Text: DOI arXiv OpenURL
Zakharov, Sergey V. Evolution of a multiscale singularity of the solution of the Burgers equation in the 4-dimensional space-time. (English) Zbl 1500.35018 Ural Math. J. 8, No. 1, 136-144 (2022). MSC: 35B25 35K45 35K58 PDF BibTeX XML Cite \textit{S. V. Zakharov}, Ural Math. J. 8, No. 1, 136--144 (2022; Zbl 1500.35018) Full Text: DOI MNR OpenURL
Achille, Adou Koffi; Fatou N., Diop; Koffi, N’Guessan; Augustin, Touré Kidjégbo Numerical blow-up time for nonlinear parabolic problems. (English) Zbl 07602845 Adv. Differ. Equ. Control Process. 28, 135-152 (2022). MSC: 35B44 35K58 65N06 PDF BibTeX XML Cite \textit{A. K. Achille} et al., Adv. Differ. Equ. Control Process. 28, 135--152 (2022; Zbl 07602845) Full Text: DOI OpenURL
Castillo, Ricardo; Guzmán-Rea, Omar; Zegarra, María Existence and non-existence of global solutions for a heat equation with degenerate coefficients. (English) Zbl 1498.35006 SN Partial Differ. Equ. Appl. 3, No. 6, Paper No. 69, 16 p. (2022). MSC: 35A01 35B33 35K15 35K58 35K65 PDF BibTeX XML Cite \textit{R. Castillo} et al., SN Partial Differ. Equ. Appl. 3, No. 6, Paper No. 69, 16 p. (2022; Zbl 1498.35006) Full Text: DOI arXiv OpenURL
Aouaouda, Meriem; Ayadi, Abdelkhamid; Yashima, Hisao Fujita Convergence of approximate solutions by heat kernel for transport-diffusion equation in a half-plane. (Russian. English summary) Zbl 07600143 Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki 26, No. 2, 222-258 (2022). MSC: 35K20 35K58 35K08 PDF BibTeX XML Cite \textit{M. Aouaouda} et al., Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki 26, No. 2, 222--258 (2022; Zbl 07600143) Full Text: DOI MNR OpenURL
Hayashi, Nakao; Kaikina, Elena I.; Naumkin, Pavel I.; Ogawa, Takayoshi Nonlinear Neumann boundary value problem for semilinear heat equations with critical power nonlinearities. (English) Zbl 1498.35536 Asymptotic Anal. 130, No. 1-2, 261-295 (2022). MSC: 35Q79 35K05 35K58 35A01 35B40 PDF BibTeX XML Cite \textit{N. Hayashi} et al., Asymptotic Anal. 130, No. 1--2, 261--295 (2022; Zbl 1498.35536) Full Text: DOI OpenURL
Sun, Liangliang; Chang, Maoli On the reconstruction of convection coefficient in a semilinear anomalous diffusion system. (English) Zbl 1498.35628 Taiwanese J. Math. 26, No. 5, 927-951 (2022). MSC: 35R30 35R11 35R25 35K20 65M30 65M32 PDF BibTeX XML Cite \textit{L. Sun} and \textit{M. Chang}, Taiwanese J. Math. 26, No. 5, 927--951 (2022; Zbl 1498.35628) Full Text: DOI OpenURL
Kapustyan, Oleksiy; Misiats, Oleksandr; Stanzhytskyi, Oleksandr Strong solutions and asymptotic behavior of bidomain equations with random noise. (English) Zbl 1498.35167 Stoch. Dyn. 22, No. 6, Article ID 2250027, 28 p. (2022). MSC: 35D35 35R60 35K51 35K58 60G10 60H15 PDF BibTeX XML Cite \textit{O. Kapustyan} et al., Stoch. Dyn. 22, No. 6, Article ID 2250027, 28 p. (2022; Zbl 1498.35167) Full Text: DOI arXiv OpenURL
Rahmoune, Abita Lower and upper bounds for the blow-up time for a thin-film equation with variable exponent in the reaction term. (English) Zbl 1498.35114 Ann. Pol. Math. 129, No. 1, 55-76 (2022). MSC: 35B44 35K35 35K57 35K58 35R09 PDF BibTeX XML Cite \textit{A. Rahmoune}, Ann. Pol. Math. 129, No. 1, 55--76 (2022; Zbl 1498.35114) Full Text: DOI OpenURL
Beyn, Wolf-Jürgen; Döding, Christian Stability of traveling oscillating fronts in complex Ginzburg Landau equations. (English) Zbl 07597595 SIAM J. Math. Anal. 54, No. 5, 5447-5488 (2022). Reviewer: Anna Ghazaryan (Oxford) MSC: 35B35 35B40 35C07 35K58 35P05 35Q56 PDF BibTeX XML Cite \textit{W.-J. Beyn} and \textit{C. Döding}, SIAM J. Math. Anal. 54, No. 5, 5447--5488 (2022; Zbl 07597595) Full Text: DOI arXiv OpenURL
Lin, Yi-Hsuan; Liu, Hongyu; Liu, Xu; Zhang, Shen Simultaneous recoveries for semilinear parabolic systems. (English) Zbl 1498.35620 Inverse Probl. 38, No. 11, Article ID 115006, 39 p. (2022). MSC: 35R30 35K20 35K58 PDF BibTeX XML Cite \textit{Y.-H. Lin} et al., Inverse Probl. 38, No. 11, Article ID 115006, 39 p. (2022; Zbl 1498.35620) Full Text: DOI arXiv OpenURL
Guillin, Arnaud; Le Bris, Pierre; Monmarché, Pierre Convergence rates for the Vlasov-Fokker-Planck equation and uniform in time propagation of chaos in non convex cases. (English) Zbl 1504.60137 Electron. J. Probab. 27, Paper No. 124, 44 p. (2022). Reviewer: Pavel Stoynov (Sofia) MSC: 60J60 35K58 82B40 PDF BibTeX XML Cite \textit{A. Guillin} et al., Electron. J. Probab. 27, Paper No. 124, 44 p. (2022; Zbl 1504.60137) Full Text: DOI arXiv Link OpenURL
Salins, Michael Existence and uniqueness of global solutions to the stochastic heat equation with superlinear drift on an unbounded spatial domain. (English) Zbl 1498.35643 Stoch. Dyn. 22, No. 5, Article ID 2250014, 30 p. (2022). MSC: 35R60 35K58 60H15 PDF BibTeX XML Cite \textit{M. Salins}, Stoch. Dyn. 22, No. 5, Article ID 2250014, 30 p. (2022; Zbl 1498.35643) Full Text: DOI arXiv OpenURL
López-Lázaro, Heraclio; Nascimento, Marcelo J. D.; Rubio, Obidio Finite fractal dimension of pullback attractors for semilinear heat equation with delay in some domain with moving boundary. (English) Zbl 1498.35103 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 225, Article ID 113107, 35 p. (2022). MSC: 35B41 35K20 35K58 35R10 35R37 37L30 35Q79 PDF BibTeX XML Cite \textit{H. López-Lázaro} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 225, Article ID 113107, 35 p. (2022; Zbl 1498.35103) Full Text: DOI OpenURL
Tuan, Nguyen Huy; Tri, Vo Viet; O’Regan, Donal On a nonlinear parabolic equation with fractional Laplacian and integral conditions. (English) Zbl 1498.35594 Appl. Anal. 101, No. 17, 5974-5988 (2022). MSC: 35R11 35B65 26A33 35K20 35K58 35R25 PDF BibTeX XML Cite \textit{N. H. Tuan} et al., Appl. Anal. 101, No. 17, 5974--5988 (2022; Zbl 1498.35594) Full Text: DOI OpenURL
Jiang, Yicheng; Rubino, Bruno; Zhang, Kaijun Asymptotic behavior of solutions for time-delayed nonlocal dispersion equations with Dirichlet boundary. (English) Zbl 1498.35077 Appl. Anal. 101, No. 16, 5684-5699 (2022). MSC: 35B40 35C07 35G31 35K57 35K58 35R09 92D25 PDF BibTeX XML Cite \textit{Y. Jiang} et al., Appl. Anal. 101, No. 16, 5684--5699 (2022; Zbl 1498.35077) Full Text: DOI OpenURL
Mohan, Manil T. Mild solutions for the stochastic generalized Burgers-Huxley equation. (English) Zbl 1497.60089 J. Theor. Probab. 35, No. 3, 1511-1536 (2022). MSC: 60H15 35K58 35Q35 37H10 60H40 PDF BibTeX XML Cite \textit{M. T. Mohan}, J. Theor. Probab. 35, No. 3, 1511--1536 (2022; Zbl 1497.60089) Full Text: DOI OpenURL
Borikhanov, Meiirkhan B.; Torebek, Berikbol T. Nonexistence of global solutions for an inhomogeneous pseudo-parabolic equation. (English) Zbl 1498.35107 Appl. Math. Lett. 134, Article ID 108366, 7 p. (2022). MSC: 35B44 35B33 35K58 35K70 PDF BibTeX XML Cite \textit{M. B. Borikhanov} and \textit{B. T. Torebek}, Appl. Math. Lett. 134, Article ID 108366, 7 p. (2022; Zbl 1498.35107) Full Text: DOI arXiv OpenURL
Ngo Tran Vu; Dao Bao Dung; Huynh Thi Hoang Dung General decay and blow-up results for a class of nonlinear pseudo-parabolic equations with viscoelastic term. (English) Zbl 1497.35053 J. Math. Anal. Appl. 516, No. 2, Article ID 126557, 25 p. (2022). MSC: 35B40 35B44 35K35 35K58 35K70 35R09 PDF BibTeX XML Cite \textit{Ngo Tran Vu} et al., J. Math. Anal. Appl. 516, No. 2, Article ID 126557, 25 p. (2022; Zbl 1497.35053) Full Text: DOI OpenURL
Zeng, Fugeng; Deng, Qigang; Huang, Yao Global existence and blow up for a class of pseudo-parabolic equations with logarithmic nonlinearity. (English) Zbl 1497.35068 Results Appl. Math. 15, Article ID 100308, 14 p. (2022). Reviewer: Maria Alessandra Ragusa (Catania) MSC: 35B44 35K35 35K58 35K70 PDF BibTeX XML Cite \textit{F. Zeng} et al., Results Appl. Math. 15, Article ID 100308, 14 p. (2022; Zbl 1497.35068) Full Text: DOI OpenURL
Samanta, Pintu; Rao, Ch. Srinivasa Asymptotic solutions of Burgers equation and modified Burgers equation satisfying flux type conditions. (English) Zbl 1496.35141 Int. J. Appl. Comput. Math. 8, No. 4, Paper No. 205, 28 p. (2022). MSC: 35C05 35C20 35B40 35K20 35K58 PDF BibTeX XML Cite \textit{P. Samanta} and \textit{Ch. S. Rao}, Int. J. Appl. Comput. Math. 8, No. 4, Paper No. 205, 28 p. (2022; Zbl 1496.35141) Full Text: DOI OpenURL
Kamalia, Putri Zahra; Sakaguchi, Shigeru Patterns with prescribed numbers of critical points on topological tori. (English) Zbl 1496.35060 Complex Var. Elliptic Equ. 67, No. 10, 2382-2396 (2022). MSC: 35B38 35B20 35B35 35K20 35K57 35K58 35J61 58J05 PDF BibTeX XML Cite \textit{P. Z. Kamalia} and \textit{S. Sakaguchi}, Complex Var. Elliptic Equ. 67, No. 10, 2382--2396 (2022; Zbl 1496.35060) Full Text: DOI arXiv OpenURL
Qu, Chengyuan; Zhou, Wenshu Asymptotic analysis for a pseudo-parabolic equation with nonstandard growth conditions. (English) Zbl 1496.35107 Appl. Anal. 101, No. 13, 4701-4720 (2022). MSC: 35B44 35B40 35D30 35K35 35K58 35K70 PDF BibTeX XML Cite \textit{C. Qu} and \textit{W. Zhou}, Appl. Anal. 101, No. 13, 4701--4720 (2022; Zbl 1496.35107) Full Text: DOI OpenURL
Ervedoza, Sylvain; Le Balc’h, Kévin; Tucsnak, Marius Reachability results for perturbed heat equations. (English) Zbl 1498.93029 J. Funct. Anal. 283, No. 10, Article ID 109666, 61 p. (2022). MSC: 93B03 93C20 35K05 93B05 35K58 PDF BibTeX XML Cite \textit{S. Ervedoza} et al., J. Funct. Anal. 283, No. 10, Article ID 109666, 61 p. (2022; Zbl 1498.93029) Full Text: DOI OpenURL
Duong, G. K.; Ghoul, T. E.; Kavallaris, N. I.; Zaag, H. Blowup solutions for the nonlocal shadow limit model of a singular Gierer-Meinhardt system with critical parameters. (English) Zbl 1496.35102 J. Differ. Equations 336, 73-125 (2022). MSC: 35B44 35B40 35K20 35K57 35K58 35R09 PDF BibTeX XML Cite \textit{G. K. Duong} et al., J. Differ. Equations 336, 73--125 (2022; Zbl 1496.35102) Full Text: DOI OpenURL
Chuong, Quach V.; Nhan, Le C.; Truong, Le X. Existence and nonexistence of global solutions to the Cahn-Hilliard equation with variable exponent sources. (English) Zbl 1496.35071 Electron. J. Differ. Equ. 2022, Paper No. 46, 22 p. (2022). MSC: 35B40 35K35 35K58 92C17 PDF BibTeX XML Cite \textit{Q. V. Chuong} et al., Electron. J. Differ. Equ. 2022, Paper No. 46, 22 p. (2022; Zbl 1496.35071) Full Text: Link OpenURL
Binh, Tran Thanh; Binh, Nguyen Phuc; Thang, Bui Dinh; Long, Le Dinh Regularization of Cauchy problem for 2D time-fractional diffusion evolution equations. (English) Zbl 1496.35419 Fractals 30, No. 5, Article ID 2240181, 25 p. (2022). MSC: 35R11 35K20 35K58 35R25 PDF BibTeX XML Cite \textit{T. T. Binh} et al., Fractals 30, No. 5, Article ID 2240181, 25 p. (2022; Zbl 1496.35419) Full Text: DOI OpenURL
Tuan, Nguyen Anh; Luc, Nguyen Hoang; Trang, Nguyen Pham Quynh; Van, Ho Thi Kim New results for parabolic equation on the sphere with Caputo-Fabrizio operator. (English) Zbl 1496.35440 Fractals 30, No. 5, Article ID 2240158, 13 p. (2022). MSC: 35R11 35K58 35R01 PDF BibTeX XML Cite \textit{N. A. Tuan} et al., Fractals 30, No. 5, Article ID 2240158, 13 p. (2022; Zbl 1496.35440) Full Text: DOI OpenURL
Shen, Wenxian; Wang, Yi; Zhou, Dun Almost automorphically-forced flows on \(S^1\) or \(\mathbb{R}\) in one-dimensional almost periodic semilinear heat equations. (English) Zbl 1501.35249 Sci. China, Math. 65, No. 9, 1875-1894 (2022). Reviewer: Zhinan Xia (Hangzhou) MSC: 35K58 37C60 37L05 35B40 PDF BibTeX XML Cite \textit{W. Shen} et al., Sci. China, Math. 65, No. 9, 1875--1894 (2022; Zbl 1501.35249) Full Text: DOI arXiv OpenURL
Castorina, Daniele; Catino, Giovanni; Mantegazza, Carlo A triviality result for semilinear parabolic equations. (English) Zbl 1496.35234 Math. Eng. (Springfield) 4, No. 1, Paper No. 2, 15 p. (2022). MSC: 35K58 35A02 35R01 58J35 PDF BibTeX XML Cite \textit{D. Castorina} et al., Math. Eng. (Springfield) 4, No. 1, Paper No. 2, 15 p. (2022; Zbl 1496.35234) Full Text: DOI arXiv OpenURL
Hutzenthaler, Martin; Kruse, Thomas; Nguyen, Tuan Anh On the speed of convergence of Picard iterations of backward stochastic differential equations. (English) Zbl 1493.60091 Probab. Uncertain. Quant. Risk 7, No. 2, 133-150 (2022). MSC: 60H10 60H35 65C05 PDF BibTeX XML Cite \textit{M. Hutzenthaler} et al., Probab. Uncertain. Quant. Risk 7, No. 2, 133--150 (2022; Zbl 1493.60091) Full Text: DOI arXiv OpenURL
Abdelhedi, Bouthaina; Zaag, Hatem Refined blow-up asymptotics for a perturbed nonlinear heat equation with a gradient and a non-local term. (English) Zbl 1494.35043 J. Math. Anal. Appl. 515, No. 2, Article ID 126447, 19 p. (2022). MSC: 35B44 35K15 35K58 35R09 PDF BibTeX XML Cite \textit{B. Abdelhedi} and \textit{H. Zaag}, J. Math. Anal. Appl. 515, No. 2, Article ID 126447, 19 p. (2022; Zbl 1494.35043) Full Text: DOI arXiv OpenURL
Ahmed, Ragaa; Bernardin, Cédric; Gonçalves, Patrícia; Simon, Marielle A microscopic derivation of coupled SPDE’s with a KPZ flavor. (English. French summary) Zbl 1494.35200 Ann. Inst. Henri Poincaré, Probab. Stat. 58, No. 2, 890-915 (2022). MSC: 35R60 35K58 60H15 60H40 60K35 82C22 PDF BibTeX XML Cite \textit{R. Ahmed} et al., Ann. Inst. Henri Poincaré, Probab. Stat. 58, No. 2, 890--915 (2022; Zbl 1494.35200) Full Text: DOI arXiv OpenURL
Sun, Fenglong; Wang, Yutai; Yin, Hongjian Blow-up problems for a parabolic equation coupled with superlinear source and local linear boundary dissipation. (English) Zbl 1491.35070 J. Math. Anal. Appl. 514, No. 2, Article ID 126327, 17 p. (2022). MSC: 35B44 35K20 35K58 PDF BibTeX XML Cite \textit{F. Sun} et al., J. Math. Anal. Appl. 514, No. 2, Article ID 126327, 17 p. (2022; Zbl 1491.35070) Full Text: DOI arXiv OpenURL
Suo, Jinzhe; Tan, Kaiyuan Fisher-KPP equation with Robin boundary conditions on the real half line. (English) Zbl 1491.35011 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 222, Article ID 112933, 14 p. (2022). MSC: 35B08 35B40 35C07 35K20 35K57 35K58 PDF BibTeX XML Cite \textit{J. Suo} and \textit{K. Tan}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 222, Article ID 112933, 14 p. (2022; Zbl 1491.35011) Full Text: DOI OpenURL
Chikami, Noboru; Ikeda, Masahiro; Taniguchi, Koichi Optimal well-posedness and forward self-similar solution for the Hardy-Hénon parabolic equation in critical weighted Lebesgue spaces. (English) Zbl 1491.35107 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 222, Article ID 112931, 28 p. (2022). MSC: 35C06 35B40 35K15 35K58 PDF BibTeX XML Cite \textit{N. Chikami} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 222, Article ID 112931, 28 p. (2022; Zbl 1491.35107) Full Text: DOI arXiv OpenURL
Blessing, Jonas; Kupper, Michael Viscous Hamilton-Jacobi equations in exponential Orlicz hearts. (English. French summary) Zbl 1491.35076 J. Math. Pures Appl. (9) 163, 654-672 (2022). MSC: 35B45 35B65 35F21 35K15 35K58 35K91 47H20 35A01 PDF BibTeX XML Cite \textit{J. Blessing} and \textit{M. Kupper}, J. Math. Pures Appl. (9) 163, 654--672 (2022; Zbl 1491.35076) Full Text: DOI arXiv OpenURL
Fang, Fei; Zhang, Binlin Global existence and blow-up for semilinear parabolic equation with critical exponent in \(\mathbb{R}^N\). (English) Zbl 1499.35355 Electron. J. Qual. Theory Differ. Equ. 2022, Paper No. 3, 23 p. (2022). MSC: 35K58 35A01 35B44 35K15 PDF BibTeX XML Cite \textit{F. Fang} and \textit{B. Zhang}, Electron. J. Qual. Theory Differ. Equ. 2022, Paper No. 3, 23 p. (2022; Zbl 1499.35355) Full Text: DOI OpenURL
Karaman, Bahar On fractional Fitzhugh-Nagumo equation as a transmission of nerve impulses design. (English) Zbl 1491.35099 Int. J. Appl. Comput. Math. 8, No. 3, Paper No. 95, 13 p. (2022). MSC: 35C05 35K58 35R11 PDF BibTeX XML Cite \textit{B. Karaman}, Int. J. Appl. Comput. Math. 8, No. 3, Paper No. 95, 13 p. (2022; Zbl 1491.35099) Full Text: DOI OpenURL
Colli, Pierluigi; Fukao, Takeshi; Scarpa, Luca The Cahn-Hilliard equation with forward-backward dynamic boundary condition via vanishing viscosity. (English) Zbl 1504.35063 SIAM J. Math. Anal. 54, No. 3, 3292-3315 (2022). Reviewer: Gabriela Marinoschi (Bucureşti) MSC: 35B40 35K61 35K35 35K58 35D30 35B20 74N20 80A22 PDF BibTeX XML Cite \textit{P. Colli} et al., SIAM J. Math. Anal. 54, No. 3, 3292--3315 (2022; Zbl 1504.35063) Full Text: DOI arXiv OpenURL
Larkin, N. A. Existence and decay of global solutions to the three-dimensional Kuramoto-Sivashinsky-Zakharov-Kuznetsov equation. (English) Zbl 1491.35046 J. Math. Anal. Appl. 514, No. 1, Article ID 126046, 18 p. (2022). MSC: 35B40 35K35 35K58 PDF BibTeX XML Cite \textit{N. A. Larkin}, J. Math. Anal. Appl. 514, No. 1, Article ID 126046, 18 p. (2022; Zbl 1491.35046) Full Text: DOI OpenURL
Slodička, Marián On a semilinear parabolic problem with non-local (Bitsadze-Samarskii type) boundary conditions in more dimensions. (English) Zbl 1491.35275 Commun. Nonlinear Sci. Numer. Simul. 113, Article ID 106575, 16 p. (2022). MSC: 35K58 35K20 65M15 PDF BibTeX XML Cite \textit{M. Slodička}, Commun. Nonlinear Sci. Numer. Simul. 113, Article ID 106575, 16 p. (2022; Zbl 1491.35275) Full Text: DOI OpenURL
Kovaleva, A. M. Bifurcations of solutions to equations with deviating spatial arguments. (English. Russian original) Zbl 1493.35010 J. Math. Sci., New York 262, No. 6, 797-808 (2022); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 168, 33-44 (2019). MSC: 35B32 35K20 35K58 35R10 PDF BibTeX XML Cite \textit{A. M. Kovaleva}, J. Math. Sci., New York 262, No. 6, 797--808 (2022; Zbl 1493.35010); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 168, 33--44 (2019) Full Text: DOI OpenURL
Hesse, Robert; Neamţu, Alexandra Global solutions for semilinear rough partial differential equations. (English) Zbl 1491.35274 Stoch. Dyn. 22, No. 2, Article ID 2240011, 18 p. (2022). MSC: 35K58 35R60 37L55 58J35 60H15 PDF BibTeX XML Cite \textit{R. Hesse} and \textit{A. Neamţu}, Stoch. Dyn. 22, No. 2, Article ID 2240011, 18 p. (2022; Zbl 1491.35274) Full Text: DOI arXiv OpenURL
Mahdi, Achache Non-autonomous maximal regularity for fractional evolution equations. (English) Zbl 1490.35072 J. Evol. Equ. 22, No. 2, Paper No. 48, 34 p. (2022). MSC: 35B65 35K20 35K58 35K90 35R11 PDF BibTeX XML Cite \textit{A. Mahdi}, J. Evol. Equ. 22, No. 2, Paper No. 48, 34 p. (2022; Zbl 1490.35072) Full Text: DOI OpenURL
Pang, Liyan; Wu, Shi-Liang Fast propagation for a reaction-diffusion equation in cylinder. (English) Zbl 1490.35044 Appl. Math. Lett. 129, Article ID 107963, 6 p. (2022). MSC: 35B40 35K20 35K58 PDF BibTeX XML Cite \textit{L. Pang} and \textit{S.-L. Wu}, Appl. Math. Lett. 129, Article ID 107963, 6 p. (2022; Zbl 1490.35044) Full Text: DOI OpenURL
Mei, Ming; Wang, Yang Existence of traveling wave fronts of delayed Fisher-type equations with degenerate nonlinearities. (English) Zbl 1490.35089 Appl. Math. Lett. 129, Article ID 107937, 8 p. (2022). MSC: 35C07 35K58 35R10 PDF BibTeX XML Cite \textit{M. Mei} and \textit{Y. Wang}, Appl. Math. Lett. 129, Article ID 107937, 8 p. (2022; Zbl 1490.35089) Full Text: DOI OpenURL
Wu, Hui; Kong, Cuixian Differential Harnack estimate of solutions to a class of semilinear parabolic equation. (English) Zbl 1490.35204 Math. Inequal. Appl. 25, No. 2, 397-405 (2022). MSC: 35K58 35B44 35B45 35B50 35K15 58J35 PDF BibTeX XML Cite \textit{H. Wu} and \textit{C. Kong}, Math. Inequal. Appl. 25, No. 2, 397--405 (2022; Zbl 1490.35204) Full Text: DOI OpenURL
Michalak, Anna; Nowakowski, Andrzej Dual Lyapunov approach to finite time stability for parabolic PDE. (English) Zbl 1490.35036 Dyn. Partial Differ. Equ. 19, No. 3, 177-189 (2022). MSC: 35B35 35K20 35K58 PDF BibTeX XML Cite \textit{A. Michalak} and \textit{A. Nowakowski}, Dyn. Partial Differ. Equ. 19, No. 3, 177--189 (2022; Zbl 1490.35036) Full Text: DOI OpenURL
Nguyen, Huy Tuan; Tuan, Nguyen Anh; Yang, Chao Global well-posedness for fractional Sobolev-Galpern type equations. (English) Zbl 1489.35303 Discrete Contin. Dyn. Syst. 42, No. 6, 2637-2665 (2022). MSC: 35R11 35K20 35K58 35K70 PDF BibTeX XML Cite \textit{H. T. Nguyen} et al., Discrete Contin. Dyn. Syst. 42, No. 6, 2637--2665 (2022; Zbl 1489.35303) Full Text: DOI arXiv OpenURL
Lopes, Pedro T. P.; Roidos, Nikolaos Smoothness and long time existence for solutions of the Cahn-Hilliard equation on manifolds with conical singularities. (English) Zbl 1489.35160 Monatsh. Math. 197, No. 4, 677-716 (2022). MSC: 35K58 35B40 35B65 35K25 35K65 35K90 35K91 35R01 PDF BibTeX XML Cite \textit{P. T. P. Lopes} and \textit{N. Roidos}, Monatsh. Math. 197, No. 4, 677--716 (2022; Zbl 1489.35160) Full Text: DOI arXiv OpenURL
Ahmed, Bourabta; Taki-Eddine, Oussaeif; Imad, Rezzoug; Zainouba, Chebana Solvability of solution of singular and degenerate fractional nonlinear parabolic Dirichlet problems. (English) Zbl 1489.35295 Bull. Inst. Math., Acad. Sin. (N.S.) 17, No. 1, 105-123 (2022). MSC: 35R11 35K20 35K58 35K65 35K67 PDF BibTeX XML Cite \textit{B. Ahmed} et al., Bull. Inst. Math., Acad. Sin. (N.S.) 17, No. 1, 105--123 (2022; Zbl 1489.35295) Full Text: DOI OpenURL
Zhang, Huiyang; Xia, Yonghui Periodic wave solution of the generalized Burgers-Fisher equation via abelian integral. (English) Zbl 1501.34033 Qual. Theory Dyn. Syst. 21, No. 3, Paper No. 64, 13 p. (2022). Reviewer: Jihua Yang (Guyuan) MSC: 34C08 34C05 34C37 35C07 35K58 PDF BibTeX XML Cite \textit{H. Zhang} and \textit{Y. Xia}, Qual. Theory Dyn. Syst. 21, No. 3, Paper No. 64, 13 p. (2022; Zbl 1501.34033) Full Text: DOI OpenURL
Dunlap, Alexander; Gu, Yu A forward-backward SDE from the 2D nonlinear stochastic heat equation. (English) Zbl 1487.35463 Ann. Probab. 50, No. 3, 1204-1253 (2022). MSC: 35R60 35K15 35K58 60H10 60H15 PDF BibTeX XML Cite \textit{A. Dunlap} and \textit{Y. Gu}, Ann. Probab. 50, No. 3, 1204--1253 (2022; Zbl 1487.35463) Full Text: DOI arXiv OpenURL
Fu, Xuenan; Wu, Jia-Yong Gradient estimates for a nonlinear parabolic equation with Dirichlet boundary condition. (English) Zbl 1487.35139 Kodai Math. J. 45, No. 1, 96-109 (2022). MSC: 35B53 35B45 35K20 35K58 58J35 PDF BibTeX XML Cite \textit{X. Fu} and \textit{J.-Y. Wu}, Kodai Math. J. 45, No. 1, 96--109 (2022; Zbl 1487.35139) Full Text: DOI arXiv OpenURL
Wang, Junjun Superconvergence analysis for a semilinear parabolic equation with BDF-3 finite element method. (English) Zbl 1490.65287 Appl. Anal. 101, No. 6, 1822-1832 (2022). MSC: 65N30 35K10 65N12 65N15 PDF BibTeX XML Cite \textit{J. Wang}, Appl. Anal. 101, No. 6, 1822--1832 (2022; Zbl 1490.65287) Full Text: DOI OpenURL
Takahashi, Jin Entire solutions with moving singularities for a semilinear heat equation with a critical exponent. (English) Zbl 1487.35028 SN Partial Differ. Equ. Appl. 3, No. 2, Paper No. 29, 16 p. (2022). MSC: 35B08 35A01 35A21 35B33 35K20 35K58 PDF BibTeX XML Cite \textit{J. Takahashi}, SN Partial Differ. Equ. Appl. 3, No. 2, Paper No. 29, 16 p. (2022; Zbl 1487.35028) Full Text: DOI OpenURL
Fujishima, Yohei; Ioku, Norisuke Global in time solvability for a semilinear heat equation without the self-similar structure. (English) Zbl 1487.35116 SN Partial Differ. Equ. Appl. 3, No. 2, Paper No. 23, 32 p. (2022). MSC: 35B44 35A01 35B33 35K15 35K58 35K91 46E30 PDF BibTeX XML Cite \textit{Y. Fujishima} and \textit{N. Ioku}, SN Partial Differ. Equ. Appl. 3, No. 2, Paper No. 23, 32 p. (2022; Zbl 1487.35116) Full Text: DOI OpenURL
Larkin, N. A. Existence and decay of global solutions for the Kuramoto-Sivashinsky-Zakharov-Kuznetsov equation posed on rectangles. (English) Zbl 1487.35084 SN Partial Differ. Equ. Appl. 3, No. 2, Paper No. 20, 17 p. (2022). MSC: 35B40 35K20 35K58 35K91 35Q53 PDF BibTeX XML Cite \textit{N. A. Larkin}, SN Partial Differ. Equ. Appl. 3, No. 2, Paper No. 20, 17 p. (2022; Zbl 1487.35084) Full Text: DOI OpenURL
Souplet, Philippe On refined blowup estimates for the exponential reaction-diffusion equation. (English) Zbl 1487.35128 SN Partial Differ. Equ. Appl. 3, No. 1, Paper No. 16, 9 p. (2022). MSC: 35B44 35B40 35K20 35K58 PDF BibTeX XML Cite \textit{P. Souplet}, SN Partial Differ. Equ. Appl. 3, No. 1, Paper No. 16, 9 p. (2022; Zbl 1487.35128) Full Text: DOI arXiv OpenURL
Kunisch, Karl; Priyasad, Buddhika Continuous differentiability of the value function of semilinear parabolic infinite time horizon optimal control problems on \(L^2(\Omega)\) Under control constraints. (English) Zbl 1487.49026 Appl. Math. Optim. 85, No. 2, Paper No. 10, 48 p. (2022). Reviewer: Alain Brillard (Riedisheim) MSC: 49K20 35K58 49N35 49J50 35F21 PDF BibTeX XML Cite \textit{K. Kunisch} and \textit{B. Priyasad}, Appl. Math. Optim. 85, No. 2, Paper No. 10, 48 p. (2022; Zbl 1487.49026) Full Text: DOI arXiv OpenURL
Hernández-Santamaría, Víctor; Le Balc’h, Kévin; Peralta, Liliana Statistical null-controllability of stochastic nonlinear parabolic equations. (English) Zbl 1486.60078 Stoch. Partial Differ. Equ., Anal. Comput. 10, No. 1, 190-222 (2022). MSC: 60H15 93B05 35R60 93C20 93B07 35K55 PDF BibTeX XML Cite \textit{V. Hernández-Santamaría} et al., Stoch. Partial Differ. Equ., Anal. Comput. 10, No. 1, 190--222 (2022; Zbl 1486.60078) Full Text: DOI arXiv OpenURL
Aparcana, Aldryn; Castillo, Ricardo; Guzmán-Rea, Omar; Loayza, Miguel Local existence for evolution equations with nonlocal term in time and singular initial data. (English) Zbl 1486.35410 Z. Angew. Math. Phys. 73, No. 2, Paper No. 85, 19 p. (2022). MSC: 35R11 35B33 35K15 35K57 35K58 35R05 35R09 PDF BibTeX XML Cite \textit{A. Aparcana} et al., Z. Angew. Math. Phys. 73, No. 2, Paper No. 85, 19 p. (2022; Zbl 1486.35410) Full Text: DOI OpenURL