Hoshino, Masaki Universal lower bound of the convergence rate of solutions for a semi-linear heat equation with a critical exponent. (English) Zbl 07762911 Analysis, München 43, No. 4, 241-253 (2023). MSC: 35B40 35B33 35C20 35K15 35K58 PDF BibTeX XML Cite \textit{M. Hoshino}, Analysis, München 43, No. 4, 241--253 (2023; Zbl 07762911) Full Text: DOI
Kow, Pu-Zhao; Ma, Shiqi; Sahoo, Suman Kumar An inverse problem for semilinear equations involving the fractional Laplacian. (English) Zbl 07749164 Inverse Probl. 39, No. 9, Article ID 095006, 27 p. (2023). MSC: 35R30 35K20 35R11 PDF BibTeX XML Cite \textit{P.-Z. Kow} et al., Inverse Probl. 39, No. 9, Article ID 095006, 27 p. (2023; Zbl 07749164) Full Text: DOI arXiv
Priyadarshana, S.; Mohapatra, J. An efficient computational technique for time dependent semilinear parabolic problems involving two small parameters. (English) Zbl 07746772 J. Appl. Math. Comput. 69, No. 5, 3721-3754 (2023). MSC: 65M06 35K58 65M12 PDF BibTeX XML Cite \textit{S. Priyadarshana} and \textit{J. Mohapatra}, J. Appl. Math. Comput. 69, No. 5, 3721--3754 (2023; Zbl 07746772) Full Text: DOI
Huang, Yumin Existence and regularity of global solutions to a Cauchy problem for a square phase-field crystal model. (English) Zbl 07744432 Appl. Anal. 102, No. 12, 3362-3373 (2023). MSC: 35D30 35B65 35K30 35K58 PDF BibTeX XML Cite \textit{Y. Huang}, Appl. Anal. 102, No. 12, 3362--3373 (2023; Zbl 07744432) Full Text: DOI
Alziary, Bénédicte; Takáč, Peter Monotone methods in counterparty risk models with nonlinear Black-Scholes-type equations. (English) Zbl 07744414 S\(\vec{\text{e}}\)MA J. 80, No. 3, 353-379 (2023). MSC: 35Q91 35A16 91G40 35K58 91G60 PDF BibTeX XML Cite \textit{B. Alziary} and \textit{P. Takáč}, S\(\vec{\text{e}}\)MA J. 80, No. 3, 353--379 (2023; Zbl 07744414) Full Text: DOI arXiv
Priyadarshana, S.; Mohapatra, J.; Pattanaik, S. R. An improved time accurate numerical estimation for singularly perturbed semilinear parabolic differential equations with small space shifts and a large time lag. (English) Zbl 07736767 Math. Comput. Simul. 214, 183-203 (2023). MSC: 65-XX 76-XX PDF BibTeX XML Cite \textit{S. Priyadarshana} et al., Math. Comput. Simul. 214, 183--203 (2023; Zbl 07736767) Full Text: DOI
Du, Yihong; Hu, Yuanyang; Liang, Xing A climate shift model with free boundary: enhanced invasion. (English) Zbl 07735780 J. Dyn. Differ. Equations 35, No. 1, 771-809 (2023). MSC: 35R35 35K20 35K58 35Q92 PDF BibTeX XML Cite \textit{Y. Du} et al., J. Dyn. Differ. Equations 35, No. 1, 771--809 (2023; Zbl 07735780) Full Text: DOI
Priyadarshana, S.; Mohapatra, J. Weighted variable based numerical scheme for time-lagged semilinear parabolic problems including small parameter. (English) Zbl 07734336 J. Appl. Math. Comput. 69, No. 3, 2439-2463 (2023). MSC: 65-XX 35K58 65M06 65M12 PDF BibTeX XML Cite \textit{S. Priyadarshana} and \textit{J. Mohapatra}, J. Appl. Math. Comput. 69, No. 3, 2439--2463 (2023; Zbl 07734336) Full Text: DOI
Oulmelk, A.; Srati, M.; Afraites, L.; Hadri, A. An artificial neural network approach to identify the parameter in a nonlinear subdiffusion model. (English) Zbl 07733081 Commun. Nonlinear Sci. Numer. Simul. 125, Article ID 107413, 26 p. (2023). MSC: 35R11 35K20 35K58 35R30 PDF BibTeX XML Cite \textit{A. Oulmelk} et al., Commun. Nonlinear Sci. Numer. Simul. 125, Article ID 107413, 26 p. (2023; Zbl 07733081) Full Text: DOI
Hisa, Kotaro; Ishige, Kazuhiro; Takahashi, Jin Initial traces and solvability for a semilinear heat equation on a half space of \(\mathbb{R}^N\). (English) Zbl 1521.35110 Trans. Am. Math. Soc. 376, No. 8, 5731-5773 (2023). MSC: 35K58 35A01 35A21 35K20 PDF BibTeX XML Cite \textit{K. Hisa} et al., Trans. Am. Math. Soc. 376, No. 8, 5731--5773 (2023; Zbl 1521.35110) Full Text: DOI arXiv
Baňas, Ľubomír; Yang, Huanyu; Zhu, Rongchan Sharp interface limit of stochastic Cahn-Hilliard equation with singular noise. (English) Zbl 1521.35214 Potential Anal. 59, No. 2, 497-518 (2023). MSC: 35R60 35B25 35K20 35K58 60H15 60H30 PDF BibTeX XML Cite \textit{Ľ. Baňas} et al., Potential Anal. 59, No. 2, 497--518 (2023; Zbl 1521.35214) Full Text: DOI arXiv
Kulikov, A. N.; Kulikov, D. A. Local attractors of one of the original versions of the Kuramoto-Sivashinsky equation. (English. Russian original) Zbl 1519.35035 Theor. Math. Phys. 215, No. 3, 751-768 (2023); translation from Teor. Mat. Fiz. 215, No. 3, 339-359 (2023). MSC: 35B41 35B32 35K35 35K58 37L10 PDF BibTeX XML Cite \textit{A. N. Kulikov} and \textit{D. A. Kulikov}, Theor. Math. Phys. 215, No. 3, 751--768 (2023; Zbl 1519.35035); translation from Teor. Mat. Fiz. 215, No. 3, 339--359 (2023) Full Text: DOI
Kulikov, A. N.; Kulikov, D. A. Local bifurcations of invariant manifolds of the Cahn-Hilliard-Oono equation. (English) Zbl 1520.35008 Lobachevskii J. Math. 44, No. 3, 1003-1017 (2023). MSC: 35B32 35C20 35K35 35K58 37L10 PDF BibTeX XML Cite \textit{A. N. Kulikov} and \textit{D. A. Kulikov}, Lobachevskii J. Math. 44, No. 3, 1003--1017 (2023; Zbl 1520.35008) Full Text: DOI
Kashchenko, S. A.; Tolbey, A. O. Bifurcations in the logistic equation with diffusion and delay in the boundary condition. (English. Russian original) Zbl 1520.35007 Math. Notes 113, No. 6, 869-873 (2023); translation from Mat. Zametki 113, No. 6, 940-944 (2023). MSC: 35B32 35K20 35K58 37L10 PDF BibTeX XML Cite \textit{S. A. Kashchenko} and \textit{A. O. Tolbey}, Math. Notes 113, No. 6, 869--873 (2023; Zbl 1520.35007); translation from Mat. Zametki 113, No. 6, 940--944 (2023) Full Text: DOI
Xu, Yang; Zhou, Zhenguo; Zhao, Jingjun Error estimates of conforming virtual element methods with a modified symmetric Nitsche’s formula for 2D semilinear parabolic equations. (English) Zbl 07698929 J. Sci. Comput. 95, No. 3, Paper No. 69, 34 p. (2023). MSC: 65M15 65M60 PDF BibTeX XML Cite \textit{Y. Xu} et al., J. Sci. Comput. 95, No. 3, Paper No. 69, 34 p. (2023; Zbl 07698929) Full Text: DOI
Le, Thuy T. Global reconstruction of initial conditions of nonlinear parabolic equations via the Carleman-contraction method. (English) Zbl 1517.35262 Nguyen, Dinh-Liem (ed.) et al., Recent advances in inverse problems for partial differential equations. AMS special session on recent developments on analysis and computation for inverse problems for PDEs, virtual, March 13–14, 2021 and AMS special session on recent advances in inverse problems for PDEs, virtual, October 23–23, 2021. Providence, RI: American Mathematical Society (AMS). Contemp. Math. 784, 23-42 (2023). MSC: 35R30 35K20 35K58 65M32 PDF BibTeX XML Cite \textit{T. T. Le}, Contemp. Math. 784, 23--42 (2023; Zbl 1517.35262) Full Text: DOI arXiv
Coclite, Giuseppe Maria; di Ruvo, Lorenzo On a diffusion model for growth and dispersal in a population. (English) Zbl 1512.35159 Commun. Pure Appl. Anal. 22, No. 4, 1194-1225 (2023). MSC: 35G25 35K58 PDF BibTeX XML Cite \textit{G. M. Coclite} and \textit{L. di Ruvo}, Commun. Pure Appl. Anal. 22, No. 4, 1194--1225 (2023; Zbl 1512.35159) Full Text: DOI
Balázsová, Monika; Feistauer, Miloslav; Sändig, Anna-Margarete Regularity results and numerical solution by the discontinuous Galerkin method to semilinear parabolic initial boundary value problems with nonlinear Newton boundary conditions in a polygonal space-time cylinder. (English) Zbl 1519.65036 J. Numer. Math. 31, No. 1, 29-42 (2023). Reviewer: Jan Giesselmann (Darmstadt) MSC: 65M60 65M06 65N30 65N15 35K58 35A01 35A02 35B65 35K05 PDF BibTeX XML Cite \textit{M. Balázsová} et al., J. Numer. Math. 31, No. 1, 29--42 (2023; Zbl 1519.65036) Full Text: DOI
Coclite, Giuseppe Maria; di Ruvo, Lorenzo \(H^1\) solutions for a Kuramoto-Velarde type equation. (English) Zbl 1509.35111 Mediterr. J. Math. 20, No. 3, Paper No. 110, 26 p. (2023). MSC: 35G25 35K30 35K58 PDF BibTeX XML Cite \textit{G. M. Coclite} and \textit{L. di Ruvo}, Mediterr. J. Math. 20, No. 3, Paper No. 110, 26 p. (2023; Zbl 1509.35111) Full Text: DOI
Kagawa, Keiichiro; Ôtani, Mitsuharu The time-periodic problem of the viscous Cahn-Hilliard equation with the homogeneous Dirichlet boundary condition. (English) Zbl 1506.35005 J. Fixed Point Theory Appl. 25, No. 1, Paper No. 40, 27 p. (2023). MSC: 35B10 35K35 35K58 PDF BibTeX XML Cite \textit{K. Kagawa} and \textit{M. Ôtani}, J. Fixed Point Theory Appl. 25, No. 1, Paper No. 40, 27 p. (2023; Zbl 1506.35005) Full Text: DOI
Dahi, Ibrahim; Sidi Ammi, Moulay Rchid Existence of capacity solution for a nonlocal thermistor problem in Musielak-Orlicz-Sobolev spaces. (English) Zbl 1506.35116 Ann. Funct. Anal. 14, No. 1, Paper No. 12, 33 p. (2023). MSC: 35K58 35K20 35R09 46E30 PDF BibTeX XML Cite \textit{I. Dahi} and \textit{M. R. Sidi Ammi}, Ann. Funct. Anal. 14, No. 1, Paper No. 12, 33 p. (2023; Zbl 1506.35116) Full Text: DOI
Feketa, P.; Kapustyan, O. V.; Kapustian, O. A.; Korol, I. I. Global attractors of mild solutions semiflow for semilinear parabolic equation without uniqueness. (English) Zbl 1498.35099 Appl. Math. Lett. 135, Article ID 108435, 9 p. (2023). MSC: 35B41 35K20 35K58 PDF BibTeX XML Cite \textit{P. Feketa} et al., Appl. Math. Lett. 135, Article ID 108435, 9 p. (2023; Zbl 1498.35099) Full Text: DOI
Sun, Xizheng; Liu, Bingchen; Li, Fengjie Fujita exponents for an inhomogeneous parabolic equation with variable coefficients. (English) Zbl 07771078 Math. Methods Appl. Sci. 45, No. 11, 7058-7071 (2022). MSC: 35B44 35B33 35B40 35K15 35K58 PDF BibTeX XML Cite \textit{X. Sun} et al., Math. Methods Appl. Sci. 45, No. 11, 7058--7071 (2022; Zbl 07771078) Full Text: DOI
Ho Duy Binh; Vo Viet Tri Mild solutions to a time-fractional diffusion equation with a hyper-Bessel operator have a continuous dependence with regard to fractional derivative orders. (English) Zbl 1518.35631 Proc. Inst. Math. Mech., Natl. Acad. Sci. Azerb. 48, Spec. Iss., 24-38 (2022). MSC: 35R11 35B30 35K20 35K58 PDF BibTeX XML Cite \textit{Ho Duy Binh} and \textit{Vo Viet Tri}, Proc. Inst. Math. Mech., Natl. Acad. Sci. Azerb. 48, 24--38 (2022; Zbl 1518.35631) Full Text: DOI
Abita, Rahmoune Bounds for blow-up solutions of a semilinear pseudo-parabolic equation with a memory term and logarithmic nonlinearity in variable space. (English) Zbl 1518.35461 Math. Scand. 128, No. 3, 553-572 (2022). MSC: 35K70 35B44 35K58 PDF BibTeX XML Cite \textit{R. Abita}, Math. Scand. 128, No. 3, 553--572 (2022; Zbl 1518.35461) Full Text: DOI
Maslovskaya, Anna; Kuttler, Christina; Chebotarev, Alexander; Kovtanyuk, Andrey Optimal multiplicative control of bacterial quorum sensing under external enzyme impact. (English) Zbl 1516.92021 Math. Model. Nat. Phenom. 17, Paper No. 29, 15 p. (2022). MSC: 92C70 35K58 49J20 49K20 PDF BibTeX XML Cite \textit{A. Maslovskaya} et al., Math. Model. Nat. Phenom. 17, Paper No. 29, 15 p. (2022; Zbl 1516.92021) Full Text: DOI
Takhirov, J. O.; Umirkhonov, M. T. On wave solutions of the relaxation transport equation. (English) Zbl 07671820 Uzb. Math. J. 66, No. 2, 165-169 (2022). MSC: 35K57 35K58 35K20 PDF BibTeX XML Cite \textit{J. O. Takhirov} and \textit{M. T. Umirkhonov}, Uzb. Math. J. 66, No. 2, 165--169 (2022; Zbl 07671820) Full Text: DOI
Fadai, Nabil T.; Billingham, John Non-local effects on travelling waves arising in a moving-boundary reaction-diffusion model. (English) Zbl 1511.35071 J. Phys. A, Math. Theor. 55, No. 40, Article ID 405701, 10 p. (2022). MSC: 35C07 35K58 35R09 PDF BibTeX XML Cite \textit{N. T. Fadai} and \textit{J. Billingham}, J. Phys. A, Math. Theor. 55, No. 40, Article ID 405701, 10 p. (2022; Zbl 1511.35071) Full Text: DOI
Oanh, Nguyen Thi Ngoc A method for choosing the regularization parameter of determining the right-hand side from integral observation. (English) Zbl 1507.35342 Asian-Eur. J. Math. 15, No. 7, Article ID 2250132, 6 p. (2022). MSC: 35R30 35K20 35K58 49J20 PDF BibTeX XML Cite \textit{N. T. N. Oanh}, Asian-Eur. J. Math. 15, No. 7, Article ID 2250132, 6 p. (2022; Zbl 1507.35342) Full Text: DOI
Frigeri, Sergio; Lam, Kei Fong; Signori, Andrea Strong well-posedness and inverse identification problem of a non-local phase field tumour model with degenerate mobilities. (English) Zbl 1504.35128 Eur. J. Appl. Math. 33, No. 2, 267-308 (2022). MSC: 35D30 35K52 35K58 35R30 49J20 92C50 PDF BibTeX XML Cite \textit{S. Frigeri} et al., Eur. J. Appl. Math. 33, No. 2, 267--308 (2022; Zbl 1504.35128) Full Text: DOI arXiv
Volkov, V. T.; Nefedov, N. N. Asymptotic solution of the boundary control problem for a Burgers-type equation with modular advection and linear gain. (English. Russian original) Zbl 1504.35036 Comput. Math. Math. Phys. 62, No. 11, 1849-1858 (2022); translation from Zh. Vychisl. Mat. Mat. Fiz. 62, No. 11, 1851-1860 (2022). MSC: 35B25 35C10 35K20 35K58 35R30 PDF BibTeX XML Cite \textit{V. T. Volkov} and \textit{N. N. Nefedov}, Comput. Math. Math. Phys. 62, No. 11, 1849--1858 (2022; Zbl 1504.35036); translation from Zh. Vychisl. Mat. Mat. Fiz. 62, No. 11, 1851--1860 (2022) Full Text: DOI
Court, Sébastien; Kunisch, Karl Design of the monodomain model by artificial neural networks. (English) Zbl 07621930 Discrete Contin. Dyn. Syst. 42, No. 12, 6031-6061 (2022). MSC: 68T07 35D30 35K40 35K45 35K58 35B30 35M99 41A99 49J45 49N15 PDF BibTeX XML Cite \textit{S. Court} and \textit{K. Kunisch}, Discrete Contin. Dyn. Syst. 42, No. 12, 6031--6061 (2022; Zbl 07621930) Full Text: DOI arXiv
Jo, Yong-Hyok; Ri, Myong-Hwan Application of Rothe’s method to a parabolic inverse problem with nonlocal boundary condition. (English) Zbl 07613013 Appl. Math., Praha 67, No. 5, 573-592 (2022). MSC: 65M20 35K58 35R30 PDF BibTeX XML Cite \textit{Y.-H. Jo} and \textit{M.-H. Ri}, Appl. Math., Praha 67, No. 5, 573--592 (2022; Zbl 07613013) Full Text: DOI
Slodička, Marian Some direct and inverse source problems in nonlinear evolutionary PDEs with Volterra operators. (English) Zbl 1501.35428 Inverse Probl. 38, No. 12, Article ID 124001, 19 p. (2022). MSC: 35R09 35K20 35K58 35R30 PDF BibTeX XML Cite \textit{M. Slodička}, Inverse Probl. 38, No. 12, Article ID 124001, 19 p. (2022; Zbl 1501.35428) Full Text: DOI
Ishige, Kazuhiro; Salani, Paolo; Takatsu, Asuka Power concavity for elliptic and parabolic boundary value problems on rotationally symmetric domains. (English) Zbl 1501.35020 Commun. Contemp. Math. 24, No. 9, Article ID 2150097, 29 p. (2022). MSC: 35B07 35J25 35K20 35K58 58J32 52A55 PDF BibTeX XML Cite \textit{K. Ishige} et al., Commun. Contemp. Math. 24, No. 9, Article ID 2150097, 29 p. (2022; Zbl 1501.35020) Full Text: DOI arXiv
Colli, Pierluigi; Gilardi, Gianni; Rocca, Elisabetta; Sprekels, Jürgen Well-posedness and optimal control for a Cahn-Hilliard-Oono system with control in the mass term. (English) Zbl 1500.35200 Discrete Contin. Dyn. Syst., Ser. S 15, No. 8, 2135-2172 (2022). MSC: 35K52 35K58 35D35 49J20 49K30 35Q93 PDF BibTeX XML Cite \textit{P. Colli} et al., Discrete Contin. Dyn. Syst., Ser. S 15, No. 8, 2135--2172 (2022; Zbl 1500.35200) Full Text: DOI arXiv
Zakharov, Sergey V. Evolution of a multiscale singularity of the solution of the Burgers equation in the 4-dimensional space-time. (English) Zbl 1500.35018 Ural Math. J. 8, No. 1, 136-144 (2022). MSC: 35B25 35K45 35K58 PDF BibTeX XML Cite \textit{S. V. Zakharov}, Ural Math. J. 8, No. 1, 136--144 (2022; Zbl 1500.35018) Full Text: DOI MNR
Hayashi, Nakao; Kaikina, Elena I.; Naumkin, Pavel I.; Ogawa, Takayoshi Nonlinear Neumann boundary value problem for semilinear heat equations with critical power nonlinearities. (English) Zbl 1498.35536 Asymptotic Anal. 130, No. 1-2, 261-295 (2022). MSC: 35Q79 35K05 35K58 35A01 35B40 PDF BibTeX XML Cite \textit{N. Hayashi} et al., Asymptotic Anal. 130, No. 1--2, 261--295 (2022; Zbl 1498.35536) Full Text: DOI
Priyadarshana, S.; Mohapatra, J.; Govindrao, L. An efficient uniformly convergent numerical scheme for singularly perturbed semilinear parabolic problems with large delay in time. (English) Zbl 1496.65126 J. Appl. Math. Comput. 68, No. 4, 2617-2639 (2022). MSC: 65M06 65M12 35K58 PDF BibTeX XML Cite \textit{S. Priyadarshana} et al., J. Appl. Math. Comput. 68, No. 4, 2617--2639 (2022; Zbl 1496.65126) Full Text: DOI
Ait Ben Hassi, El Mustapha; Chorfi, Salah-Eddine; Maniar, Lahcen Stable determination of coefficients in semilinear parabolic system with dynamic boundary conditions. (English) Zbl 1498.35611 Inverse Probl. 38, No. 11, Article ID 115007, 28 p. (2022). MSC: 35R30 35K51 35K58 93B07 PDF BibTeX XML Cite \textit{E. M. Ait Ben Hassi} et al., Inverse Probl. 38, No. 11, Article ID 115007, 28 p. (2022; Zbl 1498.35611) Full Text: DOI arXiv
Lin, Yi-Hsuan; Liu, Hongyu; Liu, Xu; Zhang, Shen Simultaneous recoveries for semilinear parabolic systems. (English) Zbl 1498.35620 Inverse Probl. 38, No. 11, Article ID 115006, 39 p. (2022). MSC: 35R30 35K20 35K58 PDF BibTeX XML Cite \textit{Y.-H. Lin} et al., Inverse Probl. 38, No. 11, Article ID 115006, 39 p. (2022; Zbl 1498.35620) Full Text: DOI arXiv
Au, Vo Van; Baleanu, Dumitru; Zhou, Yong; Huu Can, Nguyen On a problem for the nonlinear diffusion equation with conformable time derivative. (English) Zbl 1500.35291 Appl. Anal. 101, No. 17, 6255-6279 (2022). MSC: 35R11 26A33 34B16 35K20 35K58 35R25 47A52 PDF BibTeX XML Cite \textit{V. Van Au} et al., Appl. Anal. 101, No. 17, 6255--6279 (2022; Zbl 1500.35291) Full Text: DOI
Tuan, Nguyen Huy; Tri, Vo Viet; O’Regan, Donal On a nonlinear parabolic equation with fractional Laplacian and integral conditions. (English) Zbl 1498.35594 Appl. Anal. 101, No. 17, 5974-5988 (2022). MSC: 35R11 35B65 26A33 35K20 35K58 35R25 PDF BibTeX XML Cite \textit{N. H. Tuan} et al., Appl. Anal. 101, No. 17, 5974--5988 (2022; Zbl 1498.35594) Full Text: DOI
Palencia, José Luis Díaz Traveling waves solutions for a cooperative system with nonlinear advection and nonlinear KPP term. (English) Zbl 1497.35085 Int. J. Biomath. 15, No. 7, Article ID 2250044, 19 p. (2022). MSC: 35C07 35K46 35K58 35K91 35K92 35Q92 PDF BibTeX XML Cite \textit{J. L. D. Palencia}, Int. J. Biomath. 15, No. 7, Article ID 2250044, 19 p. (2022; Zbl 1497.35085) Full Text: DOI
Manohar, Ram; Sinha, Rajen Kumar Elliptic reconstruction and a posteriori error estimates for fully discrete semilinear parabolic optimal control problems. (English) Zbl 1499.49020 J. Comput. Math. 40, No. 2, 147-176 (2022). MSC: 49J20 65J15 65N30 PDF BibTeX XML Cite \textit{R. Manohar} and \textit{R. K. Sinha}, J. Comput. Math. 40, No. 2, 147--176 (2022; Zbl 1499.49020) Full Text: DOI
Mashiyev, Rabil Ayazoglu; Ekincioglu, Ismail Lower bounds for blow-up time in a nonlinear parabolic problem with a gradient nonlinearity. (English) Zbl 1490.35051 J. Elliptic Parabol. Equ. 8, No. 1, 197-207 (2022). MSC: 35B44 35K20 35K58 PDF BibTeX XML Cite \textit{R. A. Mashiyev} and \textit{I. Ekincioglu}, J. Elliptic Parabol. Equ. 8, No. 1, 197--207 (2022; Zbl 1490.35051) Full Text: DOI
Hai, Dinh Nguyen Duy Hölder-logarithmic type approximation for nonlinear backward parabolic equations connected with a pseudo-differential operator. (English) Zbl 1487.35224 Commun. Pure Appl. Anal. 21, No. 5, 1715-1734 (2022). MSC: 35K58 35S16 35R25 47J06 60H50 PDF BibTeX XML Cite \textit{D. N. D. Hai}, Commun. Pure Appl. Anal. 21, No. 5, 1715--1734 (2022; Zbl 1487.35224) Full Text: DOI
Daíz Palencia, José Luis Analysis and instabilities of travelling waves solutions for a free boundary problem with non-homogeneous KPP reaction, with degenerate diffusion and with non-linear advection. (English) Zbl 1487.35167 Dyn. Syst. 37, No. 1, 83-104 (2022). MSC: 35C07 35B35 35K30 35K58 35K91 PDF BibTeX XML Cite \textit{J. L. Daíz Palencia}, Dyn. Syst. 37, No. 1, 83--104 (2022; Zbl 1487.35167) Full Text: DOI
Mai, Vinh Quang; Nane, Erkan; O’Regan, Donal; Tuan, Nguyen Huy Terminal value problem for nonlinear parabolic equation with Gaussian white noise. (English) Zbl 1486.35269 Electron Res. Arch. 30, No. 4, 1374-1413 (2022). MSC: 35K58 35R60 PDF BibTeX XML Cite \textit{V. Q. Mai} et al., Electron Res. Arch. 30, No. 4, 1374--1413 (2022; Zbl 1486.35269) Full Text: DOI
Sakthivel, K.; Arivazhagan, A.; Barani Balan, N. Inverse problem for a Cahn-Hilliard type system modeling tumor growth. (English) Zbl 1485.35426 Appl. Anal. 101, No. 3, 858-890 (2022). MSC: 35R30 35B35 35K51 35K58 35Q92 PDF BibTeX XML Cite \textit{K. Sakthivel} et al., Appl. Anal. 101, No. 3, 858--890 (2022; Zbl 1485.35426) Full Text: DOI
Wong, Chi Hong; Yang, Xue; Zhang, Jing Neumann boundary problems for parabolic partial differential equations with divergence terms. (English) Zbl 1493.60103 Potential Anal. 56, No. 4, 723-744 (2022). Reviewer: Udhayakumar Ramalingam (Vellore) MSC: 60H15 35R60 31B15 35K58 PDF BibTeX XML Cite \textit{C. H. Wong} et al., Potential Anal. 56, No. 4, 723--744 (2022; Zbl 1493.60103) Full Text: DOI
Tuan, Nguyen Huy On some inverse problem for bi-parabolic equation with observed data in \(L^p\) spaces. (English) Zbl 1484.35417 Opusc. Math. 42, No. 2, 305-335 (2022). MSC: 35R30 35A08 35L35 35L76 PDF BibTeX XML Cite \textit{N. H. Tuan}, Opusc. Math. 42, No. 2, 305--335 (2022; Zbl 1484.35417) Full Text: DOI
Han, Huiran; Zhang, Jiansong; Ji, Bingjie; Yu, Yue; Yu, Yun A new symmetric mixed element method for semi-linear parabolic problem based on two-grid discretization. (English) Zbl 07469180 Comput. Math. Appl. 108, 206-215 (2022). MSC: 65M60 65M12 65N30 65M15 65M55 35K58 65M06 PDF BibTeX XML Cite \textit{H. Han} et al., Comput. Math. Appl. 108, 206--215 (2022; Zbl 07469180) Full Text: DOI
Kurokiba, Masaki; Ogawa, Takayoshi Maximal regularity and a singular limit problem for the Patlak-Keller-Segel system in the scaling critical space involving BMO. (English) Zbl 1487.35037 SN Partial Differ. Equ. Appl. 3, No. 1, Paper No. 3, 56 p. (2022). Reviewer: Debabrata Karmakar (Bangalore) MSC: 35B25 35K58 35B65 30H25 30H35 92C17 35K45 PDF BibTeX XML Cite \textit{M. Kurokiba} and \textit{T. Ogawa}, SN Partial Differ. Equ. Appl. 3, No. 1, Paper No. 3, 56 p. (2022; Zbl 1487.35037) Full Text: DOI
Li, Gang Two flow approaches to the Loewner-Nirenberg problem on manifolds. (English) Zbl 1485.35362 J. Geom. Anal. 32, No. 1, Paper No. 7, 30 p. (2022). Reviewer: Ruobing Zhang (Stony Brook) MSC: 35R01 35A01 35J61 35K20 35K58 35B40 PDF BibTeX XML Cite \textit{G. Li}, J. Geom. Anal. 32, No. 1, Paper No. 7, 30 p. (2022; Zbl 1485.35362) Full Text: DOI arXiv
Nefedov, N. N. On a new type of periodic fronts in Burgers type equations with modular advection. (English) Zbl 1501.35029 Manuilov, Vladimir M. (ed.) et al., Differential equations on manifolds and mathematical physics. Dedicated to the memory of Boris Sternin. Selected papers based on the presentations of the conference on partial differential equations and applications, Moscow, Russia, November 6–9, 2018. Cham: Birkhäuser. Trends Math., 273-286 (2021). MSC: 35B25 35B10 35B35 35K20 35K58 PDF BibTeX XML Cite \textit{N. N. Nefedov}, in: Differential equations on manifolds and mathematical physics. Dedicated to the memory of Boris Sternin. Selected papers based on the presentations of the conference on partial differential equations and applications, Moscow, Russia, November 6--9, 2018. Cham: Birkhäuser. 273--286 (2021; Zbl 1501.35029) Full Text: DOI
Starovoĭtov, Victor N. Solvability of a boundary value problem of chaotic dynamics of polymer molecule in the case of bounded interaction potential. (Russian. English summary) Zbl 1491.35276 Sib. Èlektron. Mat. Izv. 18, No. 2, 1714-1719 (2021). MSC: 35K58 35K20 35Q92 35R09 PDF BibTeX XML Cite \textit{V. N. Starovoĭtov}, Sib. Èlektron. Mat. Izv. 18, No. 2, 1714--1719 (2021; Zbl 1491.35276) Full Text: DOI
Polyntseva, Svetlana V.; Spirina, Kira I. The problem of determining of the source function and of the leading coefficient in the many-dimensional semilinear parabolic equation. (English) Zbl 07510973 J. Sib. Fed. Univ., Math. Phys. 14, No. 4, 497-506 (2021). MSC: 35Rxx 35Kxx 65Mxx PDF BibTeX XML Cite \textit{S. V. Polyntseva} and \textit{K. I. Spirina}, J. Sib. Fed. Univ., Math. Phys. 14, No. 4, 497--506 (2021; Zbl 07510973) Full Text: DOI MNR
Yadav, Narendra Singh; Mukherjee, Kaushik On \(\varepsilon \)-uniform higher order accuracy of new efficient numerical method and its extrapolation for singularly perturbed parabolic problems with boundary layer. (English) Zbl 1499.65445 Int. J. Appl. Comput. Math. 7, No. 3, Paper No. 72, 58 p. (2021). MSC: 65M06 65N06 65M12 35K58 35B25 65B05 PDF BibTeX XML Cite \textit{N. S. Yadav} and \textit{K. Mukherjee}, Int. J. Appl. Comput. Math. 7, No. 3, Paper No. 72, 58 p. (2021; Zbl 1499.65445) Full Text: DOI
Nakamura, Makoto; Sato, Yuya Existence and non-existence of global solutions for the semilinear complex Ginzburg-Landau type equation in homogeneous and isotropic spacetime. (English) Zbl 1491.35407 Kyushu J. Math. 75, No. 2, 169-209 (2021). MSC: 35Q56 35Q75 35K58 35G20 83F05 35A01 35B40 PDF BibTeX XML Cite \textit{M. Nakamura} and \textit{Y. Sato}, Kyushu J. Math. 75, No. 2, 169--209 (2021; Zbl 1491.35407) Full Text: DOI
Takhirov, J. O.; Umirkhonov, M. T. On a free boundary problem for a Maxwell fluid. (English) Zbl 1499.35737 Uzb. Math. J. 65, No. 3, 147-158 (2021). MSC: 35R35 35K57 35K58 35K20 PDF BibTeX XML Cite \textit{J. O. Takhirov} and \textit{M. T. Umirkhonov}, Uzb. Math. J. 65, No. 3, 147--158 (2021; Zbl 1499.35737) Full Text: DOI
Colli, Pierluigi; Gilardi, Gianni; Marinoschi, Gabriela Solvability and sliding mode control for the viscous Cahn-Hilliard system with a possibly singular potential. (English) Zbl 1481.35249 Math. Control Relat. Fields 11, No. 4, 905-934 (2021). MSC: 35K35 35K58 58J35 80A22 93B52 93C20 PDF BibTeX XML Cite \textit{P. Colli} et al., Math. Control Relat. Fields 11, No. 4, 905--934 (2021; Zbl 1481.35249) Full Text: DOI arXiv
Taliaferro, Steven D. Existence of nonnegative solutions of nonlinear fractional parabolic inequalities. (English) Zbl 1481.35414 J. Evol. Equ. 21, No. 4, 5003-5035 (2021). MSC: 35R45 35B09 35B33 35K58 35R11 PDF BibTeX XML Cite \textit{S. D. Taliaferro}, J. Evol. Equ. 21, No. 4, 5003--5035 (2021; Zbl 1481.35414) Full Text: DOI arXiv
Palencia, José An invasive-invaded species dynamics with a high order diffusion operator. (English) Zbl 1480.35280 Dyn. Partial Differ. Equ. 18, No. 4, 257-278 (2021). MSC: 35K46 35K55 35K91 35K92 PDF BibTeX XML Cite \textit{J. Palencia}, Dyn. Partial Differ. Equ. 18, No. 4, 257--278 (2021; Zbl 1480.35280) Full Text: DOI
Starovoitov, Victor N. Weak solvability of a boundary value problem for a parabolic equation with a global-in-time term that contains a weighted integral. (English) Zbl 1479.35906 J. Elliptic Parabol. Equ. 7, No. 2, 623-634 (2021). MSC: 35R09 35D30 35K20 35K58 35Q92 PDF BibTeX XML Cite \textit{V. N. Starovoitov}, J. Elliptic Parabol. Equ. 7, No. 2, 623--634 (2021; Zbl 1479.35906) Full Text: DOI arXiv
Lipton, Alexander; Kaushansky, Vadim; Reisinger, Christoph Semi-analytical solution of a McKean-Vlasov equation with feedback through hitting a boundary. (English) Zbl 1479.35534 Eur. J. Appl. Math. 32, No. 6, 1035-1068 (2021). MSC: 35K58 35C20 35Q83 35Q91 65R20 PDF BibTeX XML Cite \textit{A. Lipton} et al., Eur. J. Appl. Math. 32, No. 6, 1035--1068 (2021; Zbl 1479.35534) Full Text: DOI arXiv
Kaltenbacher, Barbara; Nguyen, Tram Thi Ngoc; Scherzer, Otmar The tangential cone condition for some coefficient identification model problems in parabolic PDEs. (English) Zbl 1487.35343 Kaltenbacher, Barbara (ed.) et al., Time-dependent problems in imaging and parameter identification. Cham: Springer. 121-163 (2021). MSC: 35Q53 35Q56 35Q92 35Q60 65J20 65J22 78A46 92C55 74H75 35K58 35R30 PDF BibTeX XML Cite \textit{B. Kaltenbacher} et al., in: Time-dependent problems in imaging and parameter identification. Cham: Springer. 121--163 (2021; Zbl 1487.35343) Full Text: DOI arXiv
Wang, Yang; Chen, Yanping; Huang, Yunqing; Yi, Huaming A family of two-grid partially penalized immersed finite element methods for semi-linear parabolic interface problems. (English) Zbl 1501.65060 J. Sci. Comput. 88, No. 3, Paper No. 80, 39 p. (2021). Reviewer: Kanakadurga Sivakumar (Chennai) MSC: 65M55 65M60 65H10 65M15 35B45 35B65 35K58 PDF BibTeX XML Cite \textit{Y. Wang} et al., J. Sci. Comput. 88, No. 3, Paper No. 80, 39 p. (2021; Zbl 1501.65060) Full Text: DOI
Triet, Nguyen Anh; Binh, Tran Thanh; Phuong, Nguyen Duc; Baleanu, Dumitru; Can, Nguyen Huu Recovering the initial value for a system of nonlocal diffusion equations with random noise on the measurements. (English) Zbl 1470.35439 Math. Methods Appl. Sci. 44, No. 6, 5188-5209 (2021). MSC: 35R30 35R25 35K58 47J06 47H10 35K51 PDF BibTeX XML Cite \textit{N. A. Triet} et al., Math. Methods Appl. Sci. 44, No. 6, 5188--5209 (2021; Zbl 1470.35439) Full Text: DOI
Colli, Pierluigi; Signori, Andrea; Sprekels, Jürgen Optimal control of a phase field system modelling tumor growth with chemotaxis and singular potentials. (English) Zbl 1486.35392 Appl. Math. Optim. 83, No. 3, 2017-2049 (2021); correction ibid. 84, No. 3, 3569-3570 (2021). Reviewer: Alain Brillard (Riedisheim) MSC: 35Q92 49K20 35K58 49K40 92C37 92C50 35B65 PDF BibTeX XML Cite \textit{P. Colli} et al., Appl. Math. Optim. 83, No. 3, 2017--2049 (2021; Zbl 1486.35392) Full Text: DOI arXiv
Ding, Hang; Zhou, Jun Global existence and blow-up for a parabolic problem of Kirchhoff type with logarithmic nonlinearity. (English) Zbl 1469.35122 Appl. Math. Optim. 83, No. 3, 1651-1707 (2021). MSC: 35K58 35K20 35R11 47G20 35B44 35Q91 PDF BibTeX XML Cite \textit{H. Ding} and \textit{J. Zhou}, Appl. Math. Optim. 83, No. 3, 1651--1707 (2021; Zbl 1469.35122) Full Text: DOI
Sobajima, Motohiro Global existence of solutions to a weakly coupled critical parabolic system in two-dimensional exterior domains. (English) Zbl 1466.35065 J. Math. Anal. Appl. 501, No. 2, Article ID 125214, 20 p. (2021). MSC: 35B45 35K51 35K58 PDF BibTeX XML Cite \textit{M. Sobajima}, J. Math. Anal. Appl. 501, No. 2, Article ID 125214, 20 p. (2021; Zbl 1466.35065) Full Text: DOI
Shi, Xiangyu; Lu, Linzhang A new approach of superconvergence analysis of nonconforming Wilson finite element for semi-linear parabolic problem. (English) Zbl 07351730 Comput. Math. Appl. 94, 28-37 (2021). MSC: 65M60 65M12 65N30 65M15 35K20 35K58 65M06 PDF BibTeX XML Cite \textit{X. Shi} and \textit{L. Lu}, Comput. Math. Appl. 94, 28--37 (2021; Zbl 07351730) Full Text: DOI
Coclite, Giuseppe Maria; di Ruvo, Lorenzo Well-posedness of the classical solution for the Kuramto-Sivashinsky equation with anisotropy effects. (English) Zbl 1464.35144 Z. Angew. Math. Phys. 72, No. 2, Paper No. 68, 38 p. (2021). MSC: 35K30 35K58 PDF BibTeX XML Cite \textit{G. M. Coclite} and \textit{L. di Ruvo}, Z. Angew. Math. Phys. 72, No. 2, Paper No. 68, 38 p. (2021; Zbl 1464.35144) Full Text: DOI
Haque, Md. Rabiul; Ioku, Norisuke; Ogawa, Takayoshi; Sato, Ryuichi Well-posedness of the Cauchy problem for convection-diffusion equations in uniformly local Lebesgue spaces. (English) Zbl 1474.35404 Differ. Integral Equ. 34, No. 3-4, 223-244 (2021). Reviewer: Rodica Luca (Iaşi) MSC: 35K58 35Q30 35A01 76D05 PDF BibTeX XML Cite \textit{Md. R. Haque} et al., Differ. Integral Equ. 34, No. 3--4, 223--244 (2021; Zbl 1474.35404)
Shang, Yunxia; Li, Shumin Conditional stability in a backward Cahn-Hilliard equation via a Carleman estimate. Estimates for linear Cahn-Hilliard equations. (English) Zbl 1460.35191 J. Inverse Ill-Posed Probl. 29, No. 2, 159-171 (2021). MSC: 35K25 35K35 35K58 35R25 35R30 PDF BibTeX XML Cite \textit{Y. Shang} and \textit{S. Li}, J. Inverse Ill-Posed Probl. 29, No. 2, 159--171 (2021; Zbl 1460.35191) Full Text: DOI
Bensid, Sabri; Kaid, Zineb Multiple stationary solutions of parabolic problem with discontinuous nonlinearities and their stability. (English) Zbl 1461.35138 Complex Var. Elliptic Equ. 66, No. 3, 487-506 (2021). MSC: 35K86 35B35 35P30 35K58 35R70 86A10 PDF BibTeX XML Cite \textit{S. Bensid} and \textit{Z. Kaid}, Complex Var. Elliptic Equ. 66, No. 3, 487--506 (2021; Zbl 1461.35138) Full Text: DOI
Colli, Pierluigi; Fukao, Takeshi; Wu, Hao On a transmission problem for equation and dynamic boundary condition of Cahn-Hilliard type with nonsmooth potentials. (English) Zbl 07745736 Math. Nachr. 293, No. 11, 2051-2081 (2020). MSC: 35K35 35K58 35K61 74N20 80A22 PDF BibTeX XML Cite \textit{P. Colli} et al., Math. Nachr. 293, No. 11, 2051--2081 (2020; Zbl 07745736) Full Text: DOI arXiv OA License
Cai, Jingjing; Xu, Li Asymptotic behaviour of solutions of Fisher-KPP equation with free boundaries in time-periodic environment. (English) Zbl 1504.35657 Eur. J. Appl. Math. 31, No. 3, 423-449 (2020). MSC: 35R35 35B40 35C07 35K20 35K58 PDF BibTeX XML Cite \textit{J. Cai} and \textit{L. Xu}, Eur. J. Appl. Math. 31, No. 3, 423--449 (2020; Zbl 1504.35657) Full Text: DOI
Chandel, R. C. Singh; Kumar, Hemant Estimated solutions of generalized and multidimensional Churchill’s diffusion problems. (English) Zbl 07582398 Jñānābha 50, No. 2, 146-152 (2020). MSC: 35R11 35K58 26A33 46A45 33E12 PDF BibTeX XML Cite \textit{R. C. S. Chandel} and \textit{H. Kumar}, Jñānābha 50, No. 2, 146--152 (2020; Zbl 07582398) Full Text: Link
Xu, Fengdan; Zhou, Qian; Nie, Yuanyuan Null controllability of a semilinear degenerate parabolic equation with a gradient term. (English) Zbl 1485.93082 Bound. Value Probl. 2020, Paper No. 55, 14 p. (2020). MSC: 93B05 93C20 35K65 PDF BibTeX XML Cite \textit{F. Xu} et al., Bound. Value Probl. 2020, Paper No. 55, 14 p. (2020; Zbl 1485.93082) Full Text: DOI
Lukyanenko, Dmitry V.; Prigorniy, Igor V.; Shishlenin, Maxim A. Some features of solving an inverse backward problem for a generalized Burgers’ equation. (English) Zbl 1461.35237 J. Inverse Ill-Posed Probl. 28, No. 5, 641-649 (2020). MSC: 35R30 35B25 35K20 35K58 65M32 PDF BibTeX XML Cite \textit{D. V. Lukyanenko} et al., J. Inverse Ill-Posed Probl. 28, No. 5, 641--649 (2020; Zbl 1461.35237) Full Text: DOI
Ettinger, Boris; Hening, Alexandru; Wong, Tak Kwong The inverse first passage time problem for killed Brownian motion. (English) Zbl 1460.35203 Ann. Appl. Probab. 30, No. 3, 1251-1275 (2020). MSC: 35K58 35K20 60J70 91G40 91G80 PDF BibTeX XML Cite \textit{B. Ettinger} et al., Ann. Appl. Probab. 30, No. 3, 1251--1275 (2020; Zbl 1460.35203) Full Text: DOI arXiv Euclid
Nakamura, Makoto On the nonrelativistic limit of a semilinear field equation in a homogeneous and isotropic space. (English) Zbl 1454.35380 Kyoto J. Math. 60, No. 4, 1333-1359 (2020). MSC: 35Q75 35Q76 35L71 35A01 35B44 35Q55 35K58 83C05 83F05 PDF BibTeX XML Cite \textit{M. Nakamura}, Kyoto J. Math. 60, No. 4, 1333--1359 (2020; Zbl 1454.35380) Full Text: DOI arXiv Euclid
Ding, Hang; Zhou, Jun Global existence and blow-up of solutions to a nonlocal Kirchhoff diffusion problem. (English) Zbl 1452.35073 Nonlinearity 33, No. 11, 6099-6133 (2020). MSC: 35K20 35K58 35R11 47G20 35B44 35R09 PDF BibTeX XML Cite \textit{H. Ding} and \textit{J. Zhou}, Nonlinearity 33, No. 11, 6099--6133 (2020; Zbl 1452.35073) Full Text: DOI
Beretta, Elena; Cavaterra, Cecilia; Ratti, Luca On the determination of ischemic regions in the monodomain model of cardiac electrophysiology from boundary measurements. (English) Zbl 1452.35253 Nonlinearity 33, No. 11, 5659-5685 (2020). MSC: 35R30 35K58 35K61 65M32 PDF BibTeX XML Cite \textit{E. Beretta} et al., Nonlinearity 33, No. 11, 5659--5685 (2020; Zbl 1452.35253) Full Text: DOI arXiv
Volkov, V. T.; Nefedov, N. N. Asymptotic solution of coefficient inverse problems for Burgers-type equations. (English. Russian original) Zbl 1450.35293 Comput. Math. Math. Phys. 60, No. 6, 950-959 (2020); translation from Zh. Vychisl. Mat. Mat. Fiz. 60, No. 6, 975-984 (2020). MSC: 35R30 35B25 35K20 35K58 PDF BibTeX XML Cite \textit{V. T. Volkov} and \textit{N. N. Nefedov}, Comput. Math. Math. Phys. 60, No. 6, 950--959 (2020; Zbl 1450.35293); translation from Zh. Vychisl. Mat. Mat. Fiz. 60, No. 6, 975--984 (2020) Full Text: DOI
Jing, Xiaohua; Jia, Junxiong; Peng, Jigen Well-posedness for a nonlocal nonlinear diffusion equation and applications to inverse problems. (English) Zbl 1450.35270 Appl. Anal. 99, No. 15, 2607-2621 (2020). MSC: 35R11 35R30 35K20 35K58 PDF BibTeX XML Cite \textit{X. Jing} et al., Appl. Anal. 99, No. 15, 2607--2621 (2020; Zbl 1450.35270) Full Text: DOI
Kakizawa, Ryôhei Determining nodes for semilinear parabolic evolution equations in Banach spaces. (English) Zbl 1447.35058 Acta Appl. Math. 168, 57-74 (2020). MSC: 35B40 35K58 35K90 47D06 PDF BibTeX XML Cite \textit{R. Kakizawa}, Acta Appl. Math. 168, 57--74 (2020; Zbl 1447.35058) Full Text: DOI
Vasiuchkova, Ksenia V.; Manakova, Natalia A.; Sviridyuk, Georgy A. Degenerate nonlinear semigroups of operators and their applications. (English) Zbl 1501.47095 Banasiak, Jacek (ed.) et al., Semigroups of operators – theory and applications. Selected papers based on the presentations at the conference, SOTA 2018, Kazimierz Dolny, Poland, September 30 – October 5, 2018. In honour of Jan Kisyński’s 85th birthday. Cham: Springer. Springer Proc. Math. Stat. 325, 363-378 (2020). MSC: 47H20 35K90 35R20 60H15 PDF BibTeX XML Cite \textit{K. V. Vasiuchkova} et al., Springer Proc. Math. Stat. 325, 363--378 (2020; Zbl 1501.47095) Full Text: DOI
Kovtunenko, Victor A.; Reichelt, Sina; Zubkova, Anna V. Corrector estimates in homogenization of a nonlinear transmission problem for diffusion equations in connected domains. (English) Zbl 1446.35017 Math. Methods Appl. Sci. 43, No. 4, 1838-1856 (2020). Reviewer: Adrian Muntean (Karlstad) MSC: 35B27 82C24 35K20 35K58 PDF BibTeX XML Cite \textit{V. A. Kovtunenko} et al., Math. Methods Appl. Sci. 43, No. 4, 1838--1856 (2020; Zbl 1446.35017) Full Text: DOI
Rossi, Luca Stability analysis for semilinear parabolic problems in general unbounded domains. (English) Zbl 1459.35246 J. Funct. Anal. 279, No. 7, Article ID 108657, 38 p. (2020). Reviewer: Yehuda Pinchover (Haifa) MSC: 35K57 35B35 35K58 35P05 PDF BibTeX XML Cite \textit{L. Rossi}, J. Funct. Anal. 279, No. 7, Article ID 108657, 38 p. (2020; Zbl 1459.35246) Full Text: DOI arXiv
Okabe, Shinya; Yoshizawa, Kensuke The obstacle problem for a fourth order semilinear parabolic equation. (English) Zbl 1443.35065 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 198, Article ID 111902, 22 p. (2020). MSC: 35K52 35B44 35K86 35K91 49J40 74H20 PDF BibTeX XML Cite \textit{S. Okabe} and \textit{K. Yoshizawa}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 198, Article ID 111902, 22 p. (2020; Zbl 1443.35065) Full Text: DOI
Yadav, Narendra Singh; Mukherjee, Kaushik Uniformly convergent new hybrid numerical method for singularly perturbed parabolic problems with interior layers. (English) Zbl 1440.65105 Int. J. Appl. Comput. Math. 6, No. 2, Paper No. 53, 44 p. (2020). MSC: 65M06 65M12 35B25 35K58 65N12 PDF BibTeX XML Cite \textit{N. S. Yadav} and \textit{K. Mukherjee}, Int. J. Appl. Comput. Math. 6, No. 2, Paper No. 53, 44 p. (2020; Zbl 1440.65105) Full Text: DOI
Sun, Ningkui; Han, Xuemei Asymptotic behavior of solutions of a reaction-diffusion model with a protection zone and a free boundary. (English) Zbl 1444.35098 Appl. Math. Lett. 107, Article ID 106470, 6 p. (2020). MSC: 35K51 35Q92 35B40 35K57 35K91 35R35 92D25 PDF BibTeX XML Cite \textit{N. Sun} and \textit{X. Han}, Appl. Math. Lett. 107, Article ID 106470, 6 p. (2020; Zbl 1444.35098) Full Text: DOI
Hu, Yuanyang; Hao, Xinan; Song, Xianfa; Du, Yihong A free boundary problem for spreading under shifting climate. (English) Zbl 1448.35584 J. Differ. Equations 269, No. 7, 5931-5958 (2020). MSC: 35R35 35K20 35K58 PDF BibTeX XML Cite \textit{Y. Hu} et al., J. Differ. Equations 269, No. 7, 5931--5958 (2020; Zbl 1448.35584) Full Text: DOI arXiv
Protsakh, N. P.; Parasiuk-Zasun, O. E. Inverse problem for semilinear Eidelman type equation. (English) Zbl 1437.35431 Mat. Stud. 53, No. 1, 48-58 (2020). MSC: 35K58 35K65 35R30 PDF BibTeX XML Cite \textit{N. P. Protsakh} and \textit{O. E. Parasiuk-Zasun}, Mat. Stud. 53, No. 1, 48--58 (2020; Zbl 1437.35431) Full Text: DOI
Ray, Tanushree; Sinha, Rajen Kumar An adaptive finite element method for semilinear parabolic interface problems with nonzero flux jump. (English) Zbl 1436.65188 Appl. Numer. Math. 153, 381-398 (2020). MSC: 65N30 65M06 65M15 35K58 PDF BibTeX XML Cite \textit{T. Ray} and \textit{R. K. Sinha}, Appl. Numer. Math. 153, 381--398 (2020; Zbl 1436.65188) Full Text: DOI
Pan, Xing-Bin Variational and operator methods for Maxwell-Stokes system. (English) Zbl 1435.35368 Discrete Contin. Dyn. Syst. 40, No. 6, 3909-3955 (2020). MSC: 35Q60 35Q35 78A30 78M34 76D07 35A15 35J62 35K59 35J20 35J47 35J50 35J57 35J61 58A12 47J30 PDF BibTeX XML Cite \textit{X.-B. Pan}, Discrete Contin. Dyn. Syst. 40, No. 6, 3909--3955 (2020; Zbl 1435.35368) Full Text: DOI
Endo, Maho; Kaneko, Yuki; Yamada, Yoshio Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. (English) Zbl 1445.35341 Discrete Contin. Dyn. Syst. 40, No. 6, 3375-3394 (2020). Reviewer: Adrian Muntean (Karlstad) MSC: 35R35 35K57 35J61 92D25 35B40 35K20 PDF BibTeX XML Cite \textit{M. Endo} et al., Discrete Contin. Dyn. Syst. 40, No. 6, 3375--3394 (2020; Zbl 1445.35341) Full Text: DOI