×

Convergence, stability analysis, and solvers for approximating sublinear positone and semipositone boundary value problems using finite difference methods. (English) Zbl 1514.65151

Summary: Positone and semipositone boundary value problems are semilinear elliptic partial differential equations (PDEs) that arise in reaction-diffusion models in mathematical biology and the theory of nonlinear heat generation. Under certain conditions, the problems may have multiple positive solutions or even nonexistence of a positive solution. We develop analytic techniques for proving admissibility, stability, and convergence results for simple finite difference approximations of positive solutions to sublinear problems. We also develop guaranteed solvers that can detect nonuniqueness for positone problems and nonexistence for semipositone problems. The admissibility and stability results are based on adapting the method of sub- and supersolutions typically used to analyze the underlying PDEs. The new convergence analysis technique directly shows that all pointwise limits of finite difference approximations are solutions to the boundary value problem eliminating the possibility of false algebraic solutions plaguing the convergence of the methods. Most known approximation methods for positone and semipositone boundary value problems rely upon shooting techniques; hence, they are restricted to one-dimensional problems and/or radial solutions. The results in this paper will serve as a foundation for approximating positone and semipositone boundary value problems in higher dimensions and on more general domains using simple approximation methods. Numerical tests for known applied problems with multiple positive solutions are provided. The tests focus on approximating certain positive solutions as well as generating discrete bifurcation curves that support the known existence and uniqueness results for the PDE problem.

MSC:

65N06 Finite difference methods for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
65N22 Numerical solution of discretized equations for boundary value problems involving PDEs
35B09 Positive solutions to PDEs
35B32 Bifurcations in context of PDEs
35J61 Semilinear elliptic equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Lions, P. L., On the existence of positive solutions for semilinear elliptic equations, SIAM Rev., 24, 442-467 (1982) · Zbl 0511.35033
[2] Castro, A.; Shivaji, R., Non-negative solutions for a class of non-positone problems, Proc. Roy. Soc. Edinburgh, 108A, 291-302 (1988) · Zbl 0659.34018
[3] Shivaji, R., Uniqueness results for a class of positone problems, Nonlinear Anal., 7, 2, 223-230 (1983) · Zbl 0511.35035
[4] Castro, A.; Shivaji, R., Uniqueness of positive solutions for a class of elliptic boundary value problems, Proc. Roy. Soc. Edinburgh Sect. A, 98A, 267-269 (1984) · Zbl 0558.35025
[5] Dragoni, G., Il problema dei valori ai limiti studiato in grande per gli integrali di una equazione differenziale del secondo ordine, G. Mat. Battaglini, 69, 77-112 (1931) · JFM 57.0506.02
[6] De Coster, C.; Habets, P., Upper and lower solutions in the theory of ODE boundary value problems: Classical and recent results, (Zanolin, F., Non Linear Analysis and Boundary Value Problems for Ordinary Differential Equations (1996), Springer Vienna: Springer Vienna Vienna), 1-78 · Zbl 0889.34018
[7] Pao, C. V., Block monotone iterative methods for numerical solutions of nonlinear elliptic equations, Numer. Math., 72, 239-262 (1995) · Zbl 0838.65104
[8] Pao, C. V., Monotone iterative methods for finite difference system of reaction-diffusion equations, Numer. Math., 46, 4, 571-586 (1985) · Zbl 0589.65072
[9] Pao, C. V., Comparison methods and stability analysis of reaction diffusion systems, (Comparison Methods and Stability Theory (1994), CRC Press), 277-292 · Zbl 0832.35076
[10] Feng, X.; Glowinski, R.; Neilan, M., Recent developments in numerical methods for fully nonlinear second order partial differential equations, SIAM Rev., 55, 205-267 (2013) · Zbl 1270.65062
[11] Goddard, J.; Morris, Q.; Shivaji, R.; Son, B., Bifurcation curves for some singular and nonsingular problems with nonlinear boundary conditions, Electron. J. Differential Equations, 2018, 26, 1-12 (2018) · Zbl 1386.34047
[12] Korman, P.; Li, Y.; Ouyang, T., A simplified proof of a conjecture for the perturbed Gelfand equation from combustion theory, J. Differential Equations, 263, 5, 2874-2885 (2017) · Zbl 1379.35135
[13] Neuberger, J. M.; Swift, J. W., Newton’s method and morse index for semilinear elliptic PDEs, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 11, 801-820 (2001) · Zbl 1090.35530
[14] Laetsch, T., The number of solutions of a nonlinear two point boundary value problem, Indiana Univ. Math. J., 20, 1-13 (1970/71) · Zbl 0215.14602
[15] Gidas, B.; Ni, W.-M.; Nirenberg, L., Symmetry and related properties via the maximum principle, Comm. Math. Phys., 68, 209-243 (1979) · Zbl 0425.35020
[16] Crouzeix, M.; Rappaz, J., (On Numerical Approximation in Bifurcation Theory. On Numerical Approximation in Bifurcation Theory, RMA Collection Recherches en Mathèmatiques Appliquèes (1990), Springer)
[17] Choi, Y. S.; McKenna, P. J., A mountain pass method for the numerical solutions of semilinear elliptic problems, Nonlinear Anal. TMA, 20, 417-437 (1993) · Zbl 0779.35032
[18] Ding, Z. H.; Costa, D.; Chen, G., A high-linking algorithm for sign-changing solutions of semilinear elliptitc equations, Nonlinear Anal. TMA, 38, 151-172 (1999) · Zbl 0941.35023
[19] Neuberger, J. M.; Sieben, N.; Swift, J. W., Symmetry and automated branch following for a semilinear elliptic PDE on a fractal region, SIAM J. Appl. Dyn. Syst., 5, 476-507 (2006) · Zbl 1179.35123
[20] Li, Y.; Zhou, J. X., A minimax method for finding multiple critical points and its application to semilinear PDEs, SIAM J. Sci. Comput., 23, 840-865 (2002) · Zbl 1002.35004
[21] Chen, C.; Xie, Z., Search-extension method for multiple solutions of nonlinear problem, Comput. Math. Appl., 47, 327-343 (2004) · Zbl 1168.35338
[22] Xie, Z.; Chen, C.; Xu, Y., An improved search-extension method for computing multiple solutions of semilinear PDEs, IMA J. Numer. Anal., 25, 549-576 (2005) · Zbl 1077.65122
[23] Zhang, X.; Zhang, J.; Yu, B., Eigenfunction expansion method for multiple solutions of semilinear elliptic equations with polynomial nonlinearity, SIAM J. Numer. Anal., 51, 2680-2699 (2013) · Zbl 1305.65174
[24] Allgower, E. L.; Bates, D. J.; Sommese, A. J.; Wampler, C. W., Solution of polynomial system derived from differential equations, Computing, 76, 1-10 (2006) · Zbl 1086.65075
[25] Allgower, E. L.; Cruceanu, S. G.; Tavener, S., Application of numerical continuation to compute all solutions of semilinear elliptic equations, Adv. Geom., 9, 371-400 (2009) · Zbl 1169.65105
[26] Hao, W.; Hauenstein, J. D.; Hu, B.; Sommese, A. J., A bootstrapping approach for computing multiple solutions of differential equations, J. Comput. Appl. Math., 258, 181-190 (2014) · Zbl 1294.65085
[27] Zhu, H.; Li, Z.; Yang, Z., Newton’s method based on bifurcation for solving multiple solutions of nonlinear elliptic equations, Math. Methods Appl. Sci., 36, 2208-2223 (2013) · Zbl 1281.35019
[28] Farrell, P. E.; Birkisson, A.; Funke, S. W., Deflation techniques for finding distinct solutions of nonlinear partial differential equations, SIAM J. Sci. Comput., 37, A2026-A2045 (2015) · Zbl 1327.65237
[29] Wang, Y.; Hao, W.; Lin, G., Two-level spectral methods for nonlinear elliptic equations with multiple solutions, SIAM J. Sci. Comput., 40, B1180-B1205 (2018) · Zbl 1398.65107
[30] Barles, G.; Souganidis, P. E., Convergence of approximation schemes for fully nonlinear second order equations, Asymptotic Anal., 4, 271-283 (1991) · Zbl 0729.65077
[31] Crandall, M. G.; Ishii, H.; Lions, P. L., User’s guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc., 27, 1-67 (1992) · Zbl 0755.35015
[32] Feng, X.; Lewis, T., A narrow-stencil finite difference method for approximating viscosity solutions of Hamilton-Jacobi-Bellman equations, SIAM J. Numer. Anal., 59, 886-924 (2021) · Zbl 1468.65174
[33] Plemmons, R. J., M-matrix characterizations. I - nonsingular M-matrices, Linear Algebra Appl., 18, 175-188 (1977) · Zbl 0359.15005
[34] Amann, H., Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev., 18, 620-709 (1976) · Zbl 0345.47044
[35] Seydel, R., (Practical Bifurcation and Stability Analysis. Practical Bifurcation and Stability Analysis, Interdisciplinary Applied Mathematics (2010), Springer-Verlag: Springer-Verlag New York) · Zbl 1195.34004
[36] Keller, H. B., Numerical solution of bifurcation and nonlinear eigenvalue problems, (Applications of Bifurcation Theory (Proc. Advanced Sem., Univ. Wisconsin, Madison, Wis., 1976) (1977), Publ. Math. Res. Center), 359-384, No. 38 · Zbl 0581.65043
[37] Brown, K. J.; Ibrahim, M. M.A.; Shivaji, R., S-shaped bifurcation curves, Nonlinear Anal., 5, 5, 475-486 (1981) · Zbl 0458.35036
[38] Boddington, T.; Gray, P.; Robinson, C., Thermal explosion and the disappearance of criticality at small activation energies: Exact results for the slab, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 368, 441-461 (1979)
[39] Hung, K.-C.; Wang, S.-H., A theorem on S-shaped bifurcation curve for a positone problem with convex-concave nonlinearity and its applications to the perturbed Gelfand problem, J. Differential Equations, 251, 223-237 (2011) · Zbl 1229.34037
[40] Kernevez, J. P.; Joly, G.; Duban, M. C.; Bunow, B.; Thomas, D., Hysteresis, oscillations and pattern formation in realistic immobilized enzyme systems, J. Math. Biol., 7, 41-56 (1979) · Zbl 0433.92014
[41] Oruganti, S.; Shi, J.; Shivaji, R., Diffusive logistic equation with constant yield harvesting. I. Steady states, Trans. Amer. Math. Soc., 354, 9, 3601-3619 (2002) · Zbl 1109.35049
[42] Oberman, A., Convergent difference schemes for degenerate elliptic and parabolic equations:Hamilton-Jacobi equations and free boundary problems, SIAM J. Numer. Anal., 44, 2, 879-895 (2006) · Zbl 1124.65103
[43] Pao, C. V., Monotone iterative methods for numerical solutions of nonlinear integro-elliptic boundary problems, Appl. Math. Comput., 186, 2, 1624-1642 (2007) · Zbl 1117.65174
[44] Pao, C. V.; Lu, X., Block monotone iterative method for semilinear parabolic equations with nonlinear boundary conditions, SIAM J. Numer. Anal., 47, 6, 4581-4606 (2010) · Zbl 1213.35038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.