Zhang, Linghai Properties of solutions of \(n\)-dimensional incompressible Navier-Stokes equations. (English) Zbl 1449.35343 Ann. Appl. Math. 35, No. 4, 392-448 (2019). MSC: 35Q30 35D30 PDF BibTeX XML Cite \textit{L. Zhang}, Ann. Appl. Math. 35, No. 4, 392--448 (2019; Zbl 1449.35343)
Nguyen, Van Hoang The sharp Gagliardo-Nirenberg-Sobolev inequality in quantitative form. (English) Zbl 1423.26032 J. Funct. Anal. 277, No. 7, 2179-2208 (2019). Reviewer: Maria Alessandra Ragusa (Catania) MSC: 26D10 PDF BibTeX XML Cite \textit{V. H. Nguyen}, J. Funct. Anal. 277, No. 7, 2179--2208 (2019; Zbl 1423.26032) Full Text: DOI arXiv
Nguyen, Van Hoang The sharp Poincaré-Sobolev type inequalities in the hyperbolic spaces \(\mathbb{H}^n\). (English) Zbl 1396.46031 J. Math. Anal. Appl. 462, No. 2, 1570-1584 (2018). MSC: 46E35 PDF BibTeX XML Cite \textit{V. H. Nguyen}, J. Math. Anal. Appl. 462, No. 2, 1570--1584 (2018; Zbl 1396.46031) Full Text: DOI
Killip, Rowan; Murphy, Jason; Visan, Monica; Zheng, Jiqiang The focusing cubic NLS with inverse-square potential in three space dimensions. (English) Zbl 1413.35407 Differ. Integral Equ. 30, No. 3-4, 161-206 (2017). MSC: 35Q55 35B44 35B35 PDF BibTeX XML Cite \textit{R. Killip} et al., Differ. Integral Equ. 30, No. 3--4, 161--206 (2017; Zbl 1413.35407) Full Text: arXiv
Chen, Jianqing Sharp variational characterization and a Schrödinger equation with Hartree type nonlinearity. (English) Zbl 1356.35105 Discrete Contin. Dyn. Syst., Ser. S 9, No. 6, 1613-1628 (2016). MSC: 35J20 35A30 PDF BibTeX XML Cite \textit{J. Chen}, Discrete Contin. Dyn. Syst., Ser. S 9, No. 6, 1613--1628 (2016; Zbl 1356.35105) Full Text: DOI
Saanouni, Tarek Remarks on the inhomogeneous fractional nonlinear Schrödinger equation. (English) Zbl 1348.35242 J. Math. Phys. 57, No. 8, 081503, 14 p. (2016). MSC: 35Q55 35R11 35G25 49K40 PDF BibTeX XML Cite \textit{T. Saanouni}, J. Math. Phys. 57, No. 8, 081503, 14 p. (2016; Zbl 1348.35242) Full Text: DOI arXiv
Schütz, Lineia; Ziebell, Juliana S.; Zingano, Janaína P.; Zingano, Paulo R. Sharp pointwise estimates for functions in the Sobolev spaces \(H^s(\mathbb R^n)\). (English) Zbl 1357.46033 Adv. Differ. Equ. Control Process. 16, No. 1, 45-53 (2015). MSC: 46E35 35A23 26D10 PDF BibTeX XML Cite \textit{L. Schütz} et al., Adv. Differ. Equ. Control Process. 16, No. 1, 45--53 (2015; Zbl 1357.46033) Full Text: DOI Link
Esfahani, Amin Anisotropic Gagliardo-Nirenberg inequality with fractional derivatives. (English) Zbl 1337.26030 Z. Angew. Math. Phys. 66, No. 6, 3345-3356 (2015). Reviewer: James Adedayo Oguntuase (Abeokuta) MSC: 26D10 26A33 35A23 PDF BibTeX XML Cite \textit{A. Esfahani}, Z. Angew. Math. Phys. 66, No. 6, 3345--3356 (2015; Zbl 1337.26030) Full Text: DOI
Nasibov, Sh. M.; Namazov, M. A. On a Sobolev inequality. (Russian. English summary) Zbl 1347.26036 Proc. Inst. Appl. Math. 2, No. 2, 187-195 (2013). Reviewer: Piotr Biler (Wrocław) MSC: 26D10 35J60 35B45 PDF BibTeX XML Cite \textit{Sh. M. Nasibov} and \textit{M. A. Namazov}, Proc. Inst. Appl. Math. 2, No. 2, 187--195 (2013; Zbl 1347.26036)
Ma, Li; Zhao, Lin Uniqueness of ground states of some coupled nonlinear Schrödinger systems and their application. (English) Zbl 1154.35083 J. Differ. Equations 245, No. 9, 2551-2565 (2008). MSC: 35Q55 35B45 PDF BibTeX XML Cite \textit{L. Ma} and \textit{L. Zhao}, J. Differ. Equations 245, No. 9, 2551--2565 (2008; Zbl 1154.35083) Full Text: DOI
Carlen, Eric A.; Loss, Michael Sharp constant in Nash’s inequality. (English) Zbl 0822.35018 Int. Math. Res. Not. 1993, No. 7, 213-215 (1993). MSC: 35B45 26D10 PDF BibTeX XML Cite \textit{E. A. Carlen} and \textit{M. Loss}, Int. Math. Res. Not. 1993, No. 7, 213--215 (1993; Zbl 0822.35018) Full Text: DOI