×

On the Kummer construction. (English) Zbl 1191.14049

The paper under review deals with a generalization of the construction of the Kummer surfaces. Namely, if \(A\) is an abelian surface ad \(i\) is an involution on \(A\), the Kummer surface \(K(A)\) is obtained via a two-steps construction: first one considers the quotient \(A/i\), then one resolves the singularities of \(A/i\).
The generalization is the following: consider a \(d-\)dimensional abelian variety \(A\), an integer \(r\in\mathbb{N}\), and a finite group \(G\) with an irreducible integral representation \(\rho_{\mathbb{Z}}:G\longrightarrow GL(r,\mathbb{Z})\) with \(\{0\}\) as the fixed point set. If \(d\) is odd, assume that \(\text{det}(\rho_{\mathbb{Z}})=1\). The induced action is \(\rho_{A}:G\longrightarrow \text{Aut}(A^{r})\), where \(\rho_{A}:=\rho_{\mathbb{Z}}\otimes_{\mathbb{Z}}A\), i. e. \(G\) acts on \(A^{r}\) with integral matrices coming from \(\rho_{\mathbb{Z}}\), and we have the quotient \(Y:=A^{r}/G\). If a crepant resolution \(f:X\longrightarrow Y\) of \(Y\) exists, then \(X\) is a \(dr-\)dimensional manifold with trivial canonical divisor and \(H^{1}(X,\mathbb{C})=0\). The main issue of the paper is to give a method to calculate the Betti numbers of \(X\), which is carried out explicitely in several cases.
In Section 2 of the paper, the author introduce notations and basic facts about groups, representations, crepant and symplectic resolutions. In Section 3 the general method for computing the cohomology of the crepant resolution \(X\) is described. Namely, the first step is to provide a description of the cohomology of \(Y=A^{r}/G\): if \(R(G)\) is the ring of complex representations of \(G\), \(\mu_{0}:R(G)\longrightarrow\mathbb{Z}\) the map assigning to a representation the rank of its maximal trivial subrepresentation, \(P_{Z}(t)=\sum_{i=0}^{\text{dim}(Z)}b_{i}(Z)t^{i}\) the virtual Poincaré polynomial of a complex algebraic variety, and \(P_{Z,G}(t)\) the \(G-\)Poincaré polynomial of \(Z\) with an action of a finite group \(G\), then \(P_{Y}(t)=\mu_{0}(P_{A^{r},G}(t))\) (see Lemma 3.1).
The next step is to compute the cohomology of the crepant resolution \(f:X\longrightarrow Y\): the idea is to decompose \(Y\) in strata \(Y([H])\) for \(H\) subgroup of \(G\), where \(Y([H])\) is given by the points of \(Y\) whose isotropy group is conjugated to \(H\). Over \(Y([H])\) the singularities are all locally quotients of the form \(\mathbb{C}^{\text{dr}}/H\). This gives a decomposition of \(X\) in strata \(X([H])\) such that the map \(f([H]):X([H])\longrightarrow Y([H])\) is a locally trivial fiber bundle whose fiber depends on the resolution of \(\mathbb{C}^{\text{dr}}/H\). One computes \(P_{X}(t)\) via the \(P_{X([H])}(t)\). The authors make further assumption on \(f:X\longrightarrow Y\): it has to be a locally product (see Definition 3.2), and the McKay correspondence holds for crepant resolutions of \(\mathbb{C}^{\text{dr}}/H\). Principle 3.4 gives a general formula to compute \(P_{X}(t)\): it depends on \(G\), \(\rho_{\mathbb{C}}\) and on the integral conjugacy class of \(\rho_{\mathbb{Z}}\). In particular, constructions with the same \(\rho_{\mathbb{C}}\) but different \(\rho_{\mathbb{Z}}\) can have different cohomologies.
In Section 4 the authors present explicit calculations for \(d=1\), i. e. \(A\) is an elliptic curve. For \(r=2\), then \(G=\mathbb{Z}_{n}\), the cyclic group of order \(n=2,3,4,6\). The case \(n=6\) is carried out. For \(r=3\) one gets a construction of a Calabi-Yau manifold via quotients. Then \(G\) can be the dihedral group \(D_{2a}\) for \(a=2,3,4,6\), the alternating group \(A_{4}\) and the symmetric group \(S_{4}\). Explicit computations are provided for \(S_{4}\) (see Proposition 4.3).
In Section 5 the case \(d=2\), i. e. \(A\) is an abelian surface, is considered. The group is \(G=S_{r}\): in this case one gets \(X=\text{Kum}^{(r-1)}\), the generalized Kummer variety of dimension \(2r\). Explicit computation of \(P_{X}(t)\) is given for \(r=3\) (Proposition 5.2), and the general elements of the construction are presented in Lemma 5.1.
In Section 6 the case of \(d=4\) is studied. The action of \(G\) is prescribed only on \(H^{1}(A,\mathbb{C})\), i. e. one fixes the complex representation \(\rho_{\mathbb{C}}:G\longrightarrow SL(\mathfrak{a})\) (where \(\mathfrak{a}\) is the tangent space of \(A\) at some point) without requiring that it comes from an integral representation. One has three cases: \(S_{r+1}\), \(G_{n,m}:=\mathbb{Z}^{n}_{m}\rtimes S_{n}\) and \(Q_{8}\rtimes\mathbb{Z}_{3}\). In the first two cases, the symplectic resolution is obtained via Hilbert schemes.
In Theorem 6.1 the authors show that if \(G=Q_{8}\rtimes\mathbb{Z}_{3}\) acts with action on \(H^{1}(A,\mathbb{C})\) prescribed, then the quotient \(A/G\) does not admit any symplectic resolution: the proof is based on a careful study of the fixed locus of \(G\) and of its non-trivial subgroups.
Theorems 6.2 and 6.4 present explicit formulas for \(P_{X}(t)\) for a crepant resolution \(X\) of \(A/G\), where \(G\) is respectively \(S_{3}\), the dihedral group of order 6, or \(\mathbb{Z}^{2}_{2}\rtimes\mathbb{Z}_{2}\), the dihedral group of order 8, with prescribed actions on \(H^{1}(A,\mathbb{C})\). In particular, the authors show that if two different crepant resolutions exists, then they have the same Betti numbers.

MSC:

14J32 Calabi-Yau manifolds (algebro-geometric aspects)
14E15 Global theory and resolution of singularities (algebro-geometric aspects)
14F10 Differentials and other special sheaves; D-modules; Bernstein-Sato ideals and polynomials
14J28 \(K3\) surfaces and Enriques surfaces
20C10 Integral representations of finite groups

Software:

Maxima
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Beauville, A.: Variétés Kähleriennes dont la première classe de Chern est nulle. J. Differ. Geom. 18(4), 755–782 (1984) · Zbl 0537.53056
[2] Bellamy, G.: On singular Calogero-Moser spaces, http://arxiv.org/abs/0707.3694 (2007) · Zbl 1227.14008
[3] Birkenhake, C., Lange, H.: Complex Abelian Varieties, 2nd edn. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 302. Springer, Berlin (2004) · Zbl 1056.14063
[4] Bertin, J., Markushevich, D.: Singularités quotients non abéliennes de dimension 3 et variétés de Calabi-Yau. Math. Ann. 299(1), 105–116 (1994) · Zbl 0801.32016 · doi:10.1007/BF01459774
[5] Bourbaki, N.: Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines. Actualités Scientifiques et Industrielles, vol. 1337. Hermann, Paris (1968) · Zbl 0186.33001
[6] Barth, W., Peters, C., Van de Ven, A.: Compact Complex Surfaces. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 4. Springer, Berlin (1984) · Zbl 0718.14023
[7] Bredon, G.E.: Introduction to Compact Transformation Groups. Pure and Applied Mathematics, vol. 46. Academic Press, San Diego (1972) · Zbl 0246.57017
[8] Cynk, S., Hulek, K.: Higher-dimensional modular Calabi-Yau manifolds. Can. Math. Bull. 50(4), 486–503 (2007) · Zbl 1141.14009 · doi:10.4153/CMB-2007-049-9
[9] Curtis, C.W., Reiner, I.: Representation Theory of Finite Groups and Associative Algebras. Pure and Applied Mathematics, vol. XI. Wiley-Interscience, New York (1962) · Zbl 0131.25601
[10] Cynk, S., Schuett, M.: Generalised Kummer constructions and Weil restrictions, http://arxiv.org/abs/0710.4565 (2007)
[11] Debarre, O.: On the Euler characteristic of generalized Kummer varieties. Am. J. Math. 121(3), 577–586 (1999) · Zbl 0956.14014 · doi:10.1353/ajm.1999.0018
[12] Dais, D.I., Henk, M., Ziegler, G.M.: On the existence of crepant resolutions of Gorenstein abelian quotient singularities in dimensions . In: Algebraic and Geometric Combinatorics. Contemp. Math., vol. 423, pp. 125–193. Am. Math. Soc., Providence (2006) · Zbl 1139.14015
[13] Donten, M.: On Kummer 3-folds, http://arxiv.org/abs/0812.3758 (2008) · Zbl 1237.14048
[14] Durfee, A.H.: Fifteen characterizations of rational double points and simple critical points. Enseign. Math. (2) 25(1–2), 131–163 (1979) · Zbl 0418.14020
[15] Fulton, W., Harris, J.: Representation Theory. Graduate Texts in Mathematics, vol. 129. Springer, New York (1991). A first course, Readings in Mathematics · Zbl 0744.22001
[16] Fu, B., Namikawa, Y.: Uniqueness of crepant resolutions and symplectic singularities. Ann. Inst. Fourier (Grenoble) 54(1), 1–19 (2004) · Zbl 1063.14018
[17] Fu, B.: A survey on symplectic singularities and symplectic resolutions. Ann. Math. Blaise Pascal 13(2), 209–236 (2006) · Zbl 1116.14008
[18] Fujiki, A.: On primitively symplectic compact Kähler V-manifolds of dimension four. In: Classification of Algebraic and Analytic Manifolds, Katata, 1982. Progr. Math., vol. 39, pp. 71–250. Birkhäuser, Boston (1983)
[19] Fulton, W.: Introduction to Toric Varieties. Annals of Mathematics Studies, vol. 131. Princeton University Press, Princeton (1993). The William H. Roever Lectures in Geometry · Zbl 0813.14039
[20] Ginzburg, V., Kaledin, D.: Poisson deformations of symplectic quotient singularities. Adv. Math. 186(1), 1–57 (2004) · Zbl 1062.53074 · doi:10.1016/j.aim.2003.07.006
[21] Göttsche, L.: Hilbertschemata nulldimensionaler Unterschemata glatter Varietäten. Bonner Mathematische Schriften [Bonn Mathematical Publications], vol. 243. Universität Bonn Mathematisches Institut, Bonn (1993). Dissertation, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn (1991)
[22] Göttsche, L.: Hilbert Schemes of Zero-dimensional Subschemes of Smooth Varieties. Lecture Notes in Mathematics, vol. 1572. Springer, Berlin (1994) · Zbl 0814.14004
[23] Göttsche, L., Soergel, W.: Perverse sheaves and the cohomology of Hilbert schemes of smooth algebraic surfaces. Math. Ann. 296(2), 235–245 (1993) · Zbl 0789.14002 · doi:10.1007/BF01445104
[24] Hirzebruch, F., Höfer, T.: On the Euler number of an orbifold. Math. Ann. 286(1–3), 255–260 (1990) · Zbl 0679.14006 · doi:10.1007/BF01453575
[25] James, G., Kerber, A.: The Representation Theory of the Symmetric Group. Encyclopedia of Mathematics and Its Applications, vol. 16. Addison-Wesley, Reading (1981). With a foreword by P.M. Cohn, With an introduction by Gilbert de B. Robinson · Zbl 0491.20010
[26] Kaledin, D.: McKay correspondence for symplectic quotient singularities. Invent. Math. 148(1), 151–175 (2002) · Zbl 1060.14020 · doi:10.1007/s002220100192
[27] Kaledin, D.: On crepant resolutions of symplectic quotient singularities. Sel. Math. (New Ser.) 9(4), 529–555 (2003) · Zbl 1066.14003 · doi:10.1007/s00029-003-0308-8
[28] Kuzmanovich, J., Pavlichenkov, A.: Finite groups of matrices whose entries are integers. Am. Math. Mon. 109(2), 173–186 (2002) · Zbl 1024.20040 · doi:10.2307/2695329
[29] Kummer, E.E.: Über die Flächen vierten Grades mit sechzehn singulären Punkten. Springer, Berlin (1975). Collected papers, Volume II: Function theory, geometry and miscellaneous, Edited and with a foreword by André Weil
[30] Lehn, M., Sorger, C.: A symplectic resolution for the binary tetrahedral group, http://arxiv.org/abs/0810.3225 (2008) · Zbl 1312.14007
[31] Newman, M.: Integral Matrices. Pure and Applied Mathematics, vol. 45. Academic Press, San Diego (1972) · Zbl 0254.15009
[32] Nieper-Wißkirchen, M.A.: On the Chern numbers of generalised Kummer varieties. Math. Res. Lett. 9(5–6), 597–606 (2002) · Zbl 1035.14015
[33] Nieper-Wißkirchen, M.A.: On the elliptic genus of generalised Kummer varieties. Math. Ann. 330(2), 201–213 (2004) · Zbl 1072.58015
[34] Oguiso, K., Sakurai, J.: Calabi-Yau threefolds of quotient type. Asian J. Math. 5(1), 43–77 (2001) · Zbl 1031.14022
[35] Paranjape, K., Ramakrishnan, D.: Quotients of E n by \(\mathfrak{a}_{n+1}\) and Calabi-Yau manifolds. In: Algebra and Number Theory, pp. 90–98. Hindustan Book Agency, Delhi (2005) · Zbl 1108.14306
[36] Reid, M.: Young person’s guide to canonical singularities. In: Algebraic Geometry, Bowdoin, 1985, Brunswick, Maine, 1985. Proc. Sympos. Pure Math., vol. 46, pp. 345–414. Am. Math. Soc., Providence (1987)
[37] Reid, M.: La correspondance de McKay. Astérisque 276, 53–72 (2002). Séminaire Bourbaki, Vol. 1999/2000
[38] Sawon, J.: Rozansky-Witten invariants of hyperkähler manifolds. Ph.D. Cambridge (2004) · Zbl 0946.32014
[39] Schelter, W., et al.: Maxima, a computer algebra system. Available at http://maxima.sourceforge.net/ (1982–2007)
[40] Totaro, B.: Topology of singular algebraic varieties. In: Proceedings of the International Congress of Mathematicians, vol. II, Beijing, 2002, pp. 533–541. Higher Ed. Press, Beijing (2002) · Zbl 1057.14030
[41] Verbitsky, M.: Holomorphic symplectic geometry and orbifold singularities. Asian J. Math. 4(3), 553–563 (2000) · Zbl 1018.32028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.