×

A nonlinear ergodic theorem for discrete systems. (English) Zbl 0801.92023

Consider the discrete-time evolution model of a structured population \(x(t+1)= P(t)x(t)\), where \(x\in {\mathcal R}^ m\) and \(P(t)= \sum_{i=0}^ r a_ i(t){\mathcal L}^ i\) with \({\mathcal L}\) a nonnegative \(m\times m\) matrix and scalar functions \(a_ i(t)\), such that \(0\leq a_ 0(t) \leq a\) and \(0<b\leq a_ i(t)\), \(i=1,\dots,r\), for some uniform \(a\) and \(b\). If \(0\leq w\in {\mathcal R}^ m\) is a weight vector then \(x(t)/ w^ T x(t)\to v^ +\), where \(v^ +\) is a positive eigenvector associated to a strictly positive, dominant, simple eigenvalue of \({\mathcal L}\), normalized by \(w^ T v^ +=1\). This gives a knowledge of the limit distribution of the structure, while the magnitude could be estimated by a one- dimensional model.
An application is given to a class of size-structured (intraspecific) competition models with resources in limited supply (zoo plankton, mollusks or anemones).

MSC:

92D40 Ecology
39A10 Additive difference equations
15A18 Eigenvalues, singular values, and eigenvectors
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Caswell, H.: Matrix Population Models. Sunderland, MA: Sinauer 1989
[2] Crowe, K. M.: Parameter dependence, size, and survivability. Rocky Mt. J. Math. (in press) · Zbl 0824.92021
[3] Crowe, K. M.: Persistence in asymptotically autonomous systems of difference equations. Can. Appl. Math. Quart. (submitted) · Zbl 0981.92001
[4] Crowe, K. M.: A Discrete Size-Structured Competition Model. PhD thesis. Tucson, University of Arizona 1991
[5] Crowe, K. M.: The effects of asymmetric competition on competitive outcome. In: Proceedings of the First World Congress of Nonlinear Analysis. Berlin New York: de Gruyter 1993 · Zbl 0841.92029
[6] Cushing, J. M.: Nonlinear matrix models and population dynamics. Nat. Resour. Modeling 2(4) (1988) · Zbl 0850.92069
[7] Cushing, J. M.: A Strong Ergodic Theorem for some nonlinear matrix models for structured population growth. Nat. Resour. Modeling 3(3), 331-357 (1989) · Zbl 0850.92064
[8] Cushing, J. M.: Some competition models for size-structured populations. Rocky Mt. J. Math. 20(4) (1990) · Zbl 0732.92020
[9] Desharnais, R. A., Cohen, J. E.: Life not lived due to disequilibrium in heterogeneous age-structured populations. Theor. Popul. Biol. 29, 385-406 (1986) · Zbl 0609.92030 · doi:10.1016/0040-5809(86)90016-X
[10] Guckenheimer, J., Oster, G., Ipaktchi, A.: The dynamics of density dependent population models. J. Math. Biol. 4, 101-147 (1977) · Zbl 0379.92016
[11] Hall, D. J., Threlkeld, S. T., Burns, C. W., Crowley, P. H.: The Size-Efficiency Hypothesis and the structure of zooplankton communities. Ann. Rev. Ecol. Syst. 7, 177-208 (1976) · doi:10.1146/annurev.es.07.110176.001141
[12] Impagliazzo, J.: Deterministic Aspects of Mathematical Demography. (Biomath., vol. 13) Berlin Heidelberg New York: Springer 1980
[13] LaSalle, J. P.: The Stability of Dynamical Systems. (Reg. Conf. Ser. Appl. Math.) Philadelphia: SIAM 1976 · Zbl 0364.93002
[14] Leslie, P. H.: On the use of matrices in certain population mathematics. Biometrika 33, 183-212 (945) · Zbl 0060.31803 · doi:10.1093/biomet/33.3.183
[15] Leslie, P. H.: Some further notes on the use of matrices in population mathematics. Biometrika 35, 213-245 (1948) · Zbl 0034.23303
[16] Lewis, E. G.: On the generation and growth of a population. Sankhya 6, 93-96 (1942)
[17] Raghunathan, M. S.: A proof of Osledec’s multiplicative ergodic theorem. Isr. J. Math. 32(4), 356-362 (1979) · Zbl 0415.28013 · doi:10.1007/BF02760464
[18] Usher, M. B.: A matrix model for forest management. Biometrics 25, 309-315 (1969) · doi:10.2307/2528791
[19] Usher, M. B.: Developments in the Leslie matrix model. (Math. Models Ecol.) London: Blackwell 1972
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.