×

\({\mathcal D}\)-elliptic sheaves and the Langlands correspondence. (English) Zbl 0809.11032

Let \(X\) be a curve over the finite field \(\mathbb{F}_ q\) \((q=p^ m)\) with \(\infty\in X\) a fixed closed point; we set \(A\) to be the affine ring of \(X-\infty\). In his fundamental paper “Elliptic modules” [Math. USSR, Sb. 23, 561-592 (1976); translation from Mat. Sb., Nov. Ser. 94(136), 594-627 (1974; Zbl 0321.14014)] V. G. Drinfeld introduced elegant analogs (now called “Drinfeld modules”) of elliptic curves and abelian varieties for \(A\). Although various instances of this theory go back to L. Carlitz in the 1930’s, Drinfeld’s seminal paper marked the beginning of the modern theory of function fields over finite fields. In particular, Drinfeld was able to give a moduli theoretic construction of the maximal abelian extension of \(k\) (= fraction field of \(A\)) which is split totally at \(\infty\), as well as to give a Jacquet-Langlands style two-dimensional reciprocity law where the infinite component is a Steinberg representation. The two-dimensional reciprocity law is established by decomposing the étale cohomology of the compactified rank 2 moduli scheme. The impediment to implementing this procedure for arbitrary \(d>2\) is the difficulty of obtaining a good compactification in general.
The operator \(\tau: x\mapsto x^ q\) satisfies many analogies with the classical differentiation operator \(D:= d/dx\) and these analogies go surprisingly deep. A prime example of this was given in 1976 when Drinfeld found an interpretation of a Drinfeld module \(\varphi\) in terms of a locally free sheaf \({\mathcal F}\) on \(X\) (of the same rank as \(\varphi\)) with maps relating \({\mathcal F}\) and its twist by the Frobenius map; this sheaf-theoretic interpretation being analogous to results of I. Krichever on differential operators.
An excellent reference for all this is the paper by D. Mumford [An algebro-geometric construction of commuting operators and of solutions to the Toda lattice equation, Korteweg-de Vries equation and related nonlinear equations, [Proc. int. symp. on algebraic geometry, Kyoto, 115- 153 (1977; Zbl 0423.14007)]. Such locally free sheaves are examples of “shtuka”, “\(F\)-sheaves”, or “elliptic sheaves” – this last being the notation used in the paper being reviewed. More generally, shtuka appear when the axioms in the \[ \text{elliptic modules} \longleftrightarrow \text{elliptic sheaves} \] dictionary are weakened a bit.
The paper under review contains the basic (and profound) work on “\({\mathcal D}\)-elliptic sheaves”, where \({\mathcal D}\) is a central simple algebra over \(k\). These can be viewed, at least to first order, as “elliptic sheaves with complex multiplication by \({\mathcal D}\)” (and, among other axioms the dimension of \({\mathcal D}\) must also be the rank of the elliptic sheaf). A notion of “level structure” can be given generalizing that for Drinfeld modules. The point being that such \({\mathcal D}\)-elliptic sheaves have good, smooth, moduli spaces, and, when \({\mathcal D}\) is a division algebra, this moduli is projective (think of the theory of Shimura curves). Thus, and importantly, the problems of non-compact moduli spaces are avoided. In particular, using the cohomology of such moduli spaces the authors prove a reciprocity law generalizing the one given in Drinfeld’s original paper. As a consequence, the authors find enough representations to establish the basic local Langlands conjecture for \(\text{GL}_ d\) (\(d\) arbitrary) of a local field of equal characteristic; this completes a program that was first begun by P. Deligne in the 1970’s using Drinfeld’s original work for \(d=2\). The proofs of these reciprocity laws are highly nontrivial and use many of the main techniques available in harmonic analysis such as the Selberg trace formula and the Grothendieck-Lefschetz fixed point formula. The authors also discuss applications of their results to the Tate conjectures for their varieties.

MSC:

11G09 Drinfel’d modules; higher-dimensional motives, etc.
14H05 Algebraic functions and function fields in algebraic geometry
11S37 Langlands-Weil conjectures, nonabelian class field theory
14G15 Finite ground fields in algebraic geometry
11F72 Spectral theory; trace formulas (e.g., that of Selberg)
11R58 Arithmetic theory of algebraic function fields
14L05 Formal groups, \(p\)-divisible groups
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] [An] Anderson, G.:t-motives. Duke Math. J.53, 457-502 (1986) · Zbl 0679.14001 · doi:10.1215/S0012-7094-86-05328-7
[2] [Ar-Cl] Arthur, J., Clozel, L.: Base change and the advanced theory of the trace formula. (Ann. Math. Stud. vol. 120) Princeton: Princeton University Press and University of Tokyo Press (1989) · Zbl 0682.10022
[3] [Art] Artin. M.: Versal deformations and algebraic stacks. Invent. Math.27, 165-189 (1974) · Zbl 0317.14001 · doi:10.1007/BF01390174
[4] [Be-Ze 1] Bernstein, I.N., Zelevinskii, A.V.: Representations of the group GL(n, F) whereF is a non-archimedean local field. Russ. Math. Surv.31(3), 1-68 (1976) · Zbl 0348.43007 · doi:10.1070/RM1976v031n03ABEH001532
[5] [Be-Ze 2] Bernstein, I.N. Zelevinskii, A.V.: Induced representations of reductivep-adic groups. I. Ann. Sci. Ec. Norm. Supér., IV. Sér.10, 441-472 (1977) · Zbl 0412.22015
[6] [Ca] Cartier, P.: Representations of ?-adic groups: A survey. In: Borel, A., Casselman, W. (eds.) Corvallis conference on Automorphic forms, Representations andL-functions. (Proc. Symp. Pure Math. vol. XXXIII, part 1, pp. 111-156) Providence, RI: Am. Math. Soc. 1979
[7] [Cu-Re] Curtis, C., Reiner, I.: Methods of representation theory: with applications to finite groups and orders, vol. 1. New York: Wiley 1981
[8] [De 1] Deligne, P.: Les constantes des équations fonctionelles des fonctionsL. In: Deligne, P., Kuyk, W. (eds.) Modular functions of one variable II. Antwerpen conference 1972. (Lect. Notes Math., 349, pp. 501-597) Berlin Heidelberg New York: Springer 1973
[9] [De 2] Deligne, P.: La conjecture de Weil II. Publ. Math., Inst. Hautes Étud. Sci.52, 137-252 (1980) · Zbl 0456.14014 · doi:10.1007/BF02684780
[10] [De 3] Deligne, P.: Formes modulaires et représentations de GL(2). In: Deligne, P., Kuyk, W. (eds.) Modular functions of one variable II. Antwerpen conference 1972. (Lect. Notes Math., vol. 349, pp. 55-105) Berlin Heidelberg New York: Springer 1973
[11] [De-Hu] Deligne, P., Husemoller, D.: Survey of Drinfel’d modules. In: Ribet, K.A. (ed.) Current trends in arithmetical algebraic geometry. (Contemp. Math. vol. 67, pp. 25-91) Providence, RI: Am. Math. Soc. 1987
[12] [De-Ka-Vi] Deligne, P., Kazhdan, D., Vigneras, M.-F.: Représentations des algèbres centrales simplesp-adiques. In: Bernstein, I.N., Deligne, P., Kazhdan, D., Vigneras, M.-F. (eds.) Représentations des groupes réductifs sur un corps local, pp. 33-118. Paris: Hermann 1984
[13] [De-Mu] Deligne, P., Mumford, D.: The irreducibility of the space of curves of given genus. Publ. Math., Inst. Hautes Étud. Sci.36, 75-110 (1969) · Zbl 0181.48803 · doi:10.1007/BF02684599
[14] [De-Ra] Deligne, P., Rapoport, M.: Les schémas de modules de courbes elliptiques. In: Deligne, P., Kuyk, W. (eds.) Modular functions of one variable II. Antwerpen conference 1972. (Lect. Notes Math., vol. 349, pp. 143-316) Berlin Heidelberg New York: Springer 1973
[15] [Dr 1] Drinfel’d, V.G.: Elliptic modules. Math. USSR, Sb.23, 561-592 (1974) · Zbl 0321.14014 · doi:10.1070/SM1974v023n04ABEH001731
[16] [Dr 2] Drinfel’d, V.G.: Elliptic modules. II. Math. USSR, Sb.31, 159-170 (1977) · Zbl 0386.20022 · doi:10.1070/SM1977v031n02ABEH002296
[17] [Dr 3] Drinfel’d, V.G.: Commutative subrings of certain noncommutative rings. Funct. Anal. Appl.11, 9-12 (1977) · Zbl 0368.14011 · doi:10.1007/BF01135527
[18] [Dr 4] Drinfel’d, V.G.: Letter to H. Carayol (January 12th, 1980)
[19] [Dr 5] Drinfel’d, V.G.: Letter to U. Stuhler. (September 17th, 1985)
[20] [Dr 6] Drinfel’d, V.G.: Varieties of modules ofF-sheaves. Funct. Anal. Appl.21 107-122 (1987) · Zbl 0665.12013 · doi:10.1007/BF01078024
[21] [Dr 7] Drinfel’d, V.G.: The proof of Petersson’s conjecture for GL(2) over a global field of characteristicp. Funct. Anal. Appl.22, 28-43 (1988) · Zbl 0662.12012 · doi:10.1007/BF01077720
[22] [Dr 8] Drinfel’d, V.G.: Cohomology of compactified manifolds of modules ofF-sheaves of rank 2. J. Soy. Math.46, (no. 1), 1789-1821 (1989) · Zbl 0672.14008 · doi:10.1007/BF01099348
[23] [Fl-Ka] Flicker, Y., Kazhdan, D.: Geometric Ramanujan conjecture and Drinfeld reciprocity law. In: Aubert, K., Bombieri, E., Goldfeld, D. (eds.) Number theory, trace formulas and discrete groups, pp. 201-218. New York London: Academic Press 1989
[24] [Go-Ja] Godement, R., Jacquet, H.: Zeta functions of simple algebras. (Lect. Notes Math., 260) Berlin Heidelberg New York: Springer 1972 · Zbl 0244.12011
[25] [Gr] Grayson, D.R.: Finite generation ofK-groups of a curve over a finite field (after D. Quillen). In: Dennis, R.K. (ed.). Algebraic K-Theory. Proceedings, 1980, Part I. (Lect. Notes Math., vol. 966, pp. 69-90) Berlin Heidelberg New York: Springer 1982
[26] [Gro] Grothendieck, A.: Techniques de construction et théorèmes d’existence en géométrie algébrique IV: Les schémas de Hilbert. Sémin. Bourbaki, exposé 221 (1960/61)
[27] [Ha-Na] Harder, G., Narasimhan, M.S.: On the cohomology of moduli spaces of vector bundles on curves. Math. Ann.212, 215-248 (1975) · Zbl 0324.14006 · doi:10.1007/BF01357141
[28] [H-C] Harish-Chandra: A submersion principle and its applications. In: Collected papers, vol. IV, pp. 439-446. Berlin Heidelberg New York: Springer 1984
[29] [He 1] Henniart, G.: On the local Langlands conjecture for GL(n): The cyclic case. Ann. Math.123, 145-203 (1986) · Zbl 0588.12010 · doi:10.2307/1971354
[30] [He 2] Henniart, G.: La conjecture de Langlands locale numérique pour GL(n), Ann. Sci. Éc. Norm. Supér., IV Sér21, 497-544 (1988)
[31] [He 3] Henniart, G.: La conjecture de Langlands locale pour GL(3). Mém. Soc. Math. Fr. Nouv. Sér.11/12, 497-544 (1984) · Zbl 0666.12013
[32] [He 4] Henniart, G.: Le point sur la conjecture de Langlands pour GL(N) sur un corps local. In: Goldstein, C. (ed.). Séminaire de théorie des nombres de Paris 1983-1984. (Prog. Math., vol. 59, pp. 115-131) Boston Basel St?ttgart: Birkhäuser 1985
[33] [He 5] Henniart, G.: Appendix to this paper
[34] [Her] Herstein, I.N.: Noncommutative rings. Carus Math. Monogr.15 (1968) · Zbl 0177.05801
[35] [Il] Illusie, L.: Complexe cotangent et déformations. I, II. (Lect. Notes Math., vols. 239, 283) Berlin Heidelberg New York: Springer 1971, 1973
[36] [Ja-Pi-Sh 1] Jacquet, H., Piatetski-Shapiro, I., Shalika, J.: Automorphic forms on GL3. I, II. Ann. Math.109, 169-258 (1979) · Zbl 0401.10037 · doi:10.2307/1971270
[37] [Ja-Pi-Sh 2] Jacquet, H., Piatetski-Shapiro, I., Shalika, J.: Rankin-Selberg convolutions. Am. J. Math.105, 367-483 (1983) · Zbl 0525.22018 · doi:10.2307/2374264
[38] [Ja-Sh 1] Jacquet, H., Shalika, J.: Conducteur des représentations du groupe linéaire. Math. Ann.256, 199-214, (1979) · Zbl 0451.22011 · doi:10.1007/BF01450798
[39] [Ja-Sh 2] Jacquet, H., Shalika, J.: On Euler products and the classification of automorphic representations. I. Am. J. Math.103, 499-558 (1981); II. Am. J. Math.103, 777-815 (1981) · Zbl 0473.12008 · doi:10.2307/2374103
[40] [Ka] Kazhdan, D.: An introduction to Drinfeld’s ?shtuka?. In: Borel, A., Casselman W. (eds.) Corvallis conference on Automorphic forms, Representations andL-functions. (Proc. Symp. Pure Math. vol. XXXIII, part 2, pp. 347-356) Providence, RI: Am. Math. Soc. 1979
[41] [Ko] Koch, H.: Eisensteinsche Polynomfolgen und Arithmetik in Divisionsalgebren über lokalen Körpern. Math. Nachr.104, 229-251 (1981) · Zbl 0495.12016 · doi:10.1002/mana.19811040118
[42] [Kot 1] Kottwitz, R.: Sign changes in harmonic analysis on reductive groups. Trans. Am. Math. Soc.278, 289-297 (1983) · Zbl 0538.22010 · doi:10.1090/S0002-9947-1983-0697075-6
[43] [Kot 2] Kottwitz, R.: Tamagawa numbers. Ann. Math.127, 629-646 (1988) · Zbl 0678.22012 · doi:10.2307/2007007
[44] [Kot 3] Kottwitz, R.: On the ?-adic representations associated to some simple Shimura varieties, Invent. math.108, 653-665 (1992) · Zbl 0765.22011 · doi:10.1007/BF02100620
[45] [La] Langlands, R.P.: Euler Products. Yale University Press 1971
[46] [Lan] Langton, S.: Valuative criteria for families of vector bundles on algebraic varieties. Ann. Math.101, 215-248 (1975) · Zbl 0307.14007 · doi:10.2307/1970987
[47] [Lau 1] Laumon, G.: Transformation de Fourier, constantes d’équations fonctionelles et conjecture de Weil. Publ. Math., Inst. Hautes Étud. Sci.65, 131-210 (1987) · Zbl 0641.14009 · doi:10.1007/BF02698937
[48] [Lau 2] Laumon, G.: Cohomology with compact supports of Drinfel’d modular varieties. Part I. Prépublications (91-01), pp. 1-201. Orsay: Université de Paris-Sud 1991
[49] [Mo] Morris, L.: Eisenstein series for reductive groups over global function fields. I. The cusp form case. Can. J. Math.34, 91-168 (1982) · Zbl 0499.22021 · doi:10.4153/CJM-1982-009-2
[50] [Mo-Wa] Moeglin, C., Waldspurger, J.-L.: Le spectre résiduel de GL(n), Ann. Sci. Éc. Norm. Supér., IV. Sér.22, 605-674 (1989) · Zbl 0696.10023
[51] [Mu] Mustafin, G.: Nonarchimedian uniformization. Math. USSR, Sb.34, 187-214 (1978) · Zbl 0411.14006 · doi:10.1070/SM1978v034n02ABEH001156
[52] [Ok-Sch-Sp] Okonek, C., Schneider, M., Spindler, H.: Vector bundles on complex projective spaces. Boston Basel Stuttgart: Birkhäuser 1980 · Zbl 0438.32016
[53] [Ra] Rapoport, M.: On the bad reduction of Shimura varieties. In: Clozel, L., Milne, J. (eds.) Automorphic forms, Shimura varieties andL-functions, vol. II. (Perspect. Math., vol. 11, pp. 253-321) Boston: Academic Press 1990
[54] [Re] Reiner, I.: Maximal orders. New York London: Academic Press 1975 · Zbl 0305.16001
[55] [Ro] Rogawski, J.: Representations of GL(n) and division algebras over ap-adic field, Duke Math. J.50, 161-196 (1983) · Zbl 0523.22015 · doi:10.1215/S0012-7094-83-05006-8
[56] [Se] Seshadri, C.S.: Fibrés vectoriels sur les courbes algébriques (redigée par J.-M. Drezet). Astérisque96 (1982)
[57] [Sh] Shalika, J.: The multiplicity one theorem for GL(n). Ann. Math.100, 171-193 (1974) · Zbl 0316.12010 · doi:10.2307/1971071
[58] [Sha] Shahidi, F.: On certainL-functions. Am. J. Math.103, 297-355 (1981) · Zbl 0467.12013 · doi:10.2307/2374219
[59] [St] Stuhler, U.:P-adic homogeneous spaces and moduli problems. Math. Z.192, 491-540 (1986) · Zbl 0631.14034 · doi:10.1007/BF01162699
[60] [Ta] Tadi?, M.: On the classification of irreducible unitary representations of GL(n) and the conjectures of Bernstein and Zelevinsky (non-archimedian case). Ann. Sci. Éc. Norm. Supér., IV. Sér.19, 335-382 (1986)
[61] [Tat] Tate, J.: Local constants. In: Fröhlich, A. (ed.) Algebraic number fields, Durham conference, pp. 89-131 New York London: Academic Press 1977
[62] [Wa] Wang, S.: On the commutator group of a simple algebra. Am. J. Math.72, 323-334 (1950) · Zbl 0040.30302 · doi:10.2307/2372036
[63] [We]) Weil, A.: Basic number theory. Berlin Heidelberg New York: Springer 1967 · Zbl 0176.33601
[64] [SGA 4, vol. III] Artin, M., Grothendieck, A., Verdier, J.-L.: Théorie des topos et cohomologie étale des schémas. (Lect. Notes Math., vol. 305) Berlin Heidelberg New York: Springer 1973
[65] [SGA5] Grothendieck, A.: Cohomologiel-adique et fonctionsL. (Lect. Notes Math., vol. 589) Berlin Heidelberg New York: Springer 1977
[66] [SGA 7 II] Deligne, P., Katz, N.: Groupes de monodromie en géométrie algébrique. (Lect. Notes Math., vol. 340) Berlin Heidelberg New York: Springer 1973
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.