×

Stark ladder resonances for small electric fields. (English) Zbl 0737.34060

Summary: We prove the existence of resonances in the semi-classical regime of small \(h\) for Stark ladder Hamiltonians \(H(h,F)\equiv-h^ 2{d^ 2 \over dx^ 2}+v+Fx\) in one dimension. The potential \(v\) is a real periodic function with period \(\tau\) which is the restriction to \(\mathbb{R}\) of a function analytic in a strip about \(\mathbb{R}\). The electric field strength \(F\) satisfies the bounds \(\| v'\|_ \infty>F>0\). In general, the imaginary part of the resonances are bounded above by \(ce^{- \kappa\rho_ T h^{-1}}\), for some \(0<\kappa\leq 1\), where \(\rho_ T h^{-1}\) is the single barrier tunneling distance in the Agmon metric for \(v+Fx\). In the regime where the distance between resonant wells is \({\mathcal O}(F^{-1})\), we prove that there is at least one resonance whose width is bounded above by \(ce^{-\alpha/F}\), for some \(\alpha,c>0\) independent of \(h\) and \(F\) for \(h\) sufficiently small. This is an extension of the Oppenheimer formula for the Stark effect to the case of periodic potentials.

MSC:

34L40 Particular ordinary differential operators (Dirac, one-dimensional Schrödinger, etc.)
34C25 Periodic solutions to ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] [AF] Agler, J., Froese, R.: Existence of Stark Ladder resonances. Commun. Math. Phys.100, 161–171 (1985) · Zbl 0651.47006 · doi:10.1007/BF01212445
[2] [AC] Aguilar, J., Combes, J.-M.: A class of analytic perturbations for one-body Schrödinger Hamiltonians. Commun. Math. Phys.22, 269–279 (1971) · Zbl 0219.47011 · doi:10.1007/BF01877510
[3] [A1] Avron, J. E.: The lifetime of Wannier ladder states. Ann. Phys.143, 33–53 (1982) · doi:10.1016/0003-4916(82)90213-5
[4] [A2] Avron, J. E.: Binding of one-dimensional Bloch electrons by external fields. Phys. Rev.B16, 711–713 (1977) · doi:10.1103/PhysRevB.16.711
[5] [AZ] Avron, J. E., Zak, J.: Stability of band structure for external fields. Phys. Rev.B9, 658–663 (1974) · doi:10.1103/PhysRevB.9.658
[6] [BC] Balslev, E., Combes, J.-M.: Spectral properties of many-body Schrödinger operators with dilation analytic potentials. Commun. Math. Phys.22, 280–294 (1971) · Zbl 0219.47005 · doi:10.1007/BF01877511
[7] [B] Bentosela, F.: Bloch electrons in constant electric field. Commun. Math. Phys.68, 173–182 (1979) · doi:10.1007/BF01418126
[8] [BCDSSW] Bentosela, F., Carmona, R., Duclos, P., Simon, B., Souillard, B., Weder, R.: Schrödinger operators with an electric field and random or deterministic potentials. Commun. Math. Phys.88, 387–397 (1983) · Zbl 0531.60061 · doi:10.1007/BF01213215
[9] [BCD1] Briet, Ph., Combes, J.-M., Duclos, P.: On the location of resonances for Schrödinger operators in the semi-classical limit I. Resonance free domains. J. Math. Anal. Appl.126, 90–99 (1987) · Zbl 0629.47043 · doi:10.1016/0022-247X(87)90077-1
[10] [BCD2] Briet, Ph., Combes, J.-M., Duclos, P.: On the location of resonances for Schrödinger operators II. Barrier top resonances. Commun. Partial Diff. Equations12, 201–222 (1987) · Zbl 0622.47047 · doi:10.1080/03605308708820488
[11] [BCD3] Briet, Ph., Combes, J.-M., Duclos, P.: Spectral stability under tunnelling. Commun. Math. Phys.126, 133–156 (1989) · Zbl 0702.35189 · doi:10.1007/BF02124334
[12] [BCD4] Briet, Ph., Combes, J.-M., Duclos, P., in preparation
[13] [BD1] Buslaev, V. S., Dmitrieva, L. A.: Spectral properties of the Bloch electrons in external fields. University of California, Berkeley preprint PAM-477, 1989 · Zbl 0725.34097
[14] [BD2] Buslaev, V. S., Dmitrieva, L. A.: Adiabatic perturbation of a periodic potential II. Teor. Mat. Fiz.73, 430–442 (1987) · Zbl 0643.34068
[15] [BG] Bentosela, F., Grecchi, V.: Stark Wannier Ladders. Marseille preprint, 1989, to appear in Commun. Math. Phys. · Zbl 0743.35053
[16] [BGZ] Bentosela, F., Grecchi, V., Zironi, F.: Oscillations of Wannier Resonances. Phys. Rev. Letts.50, 84–86 (1983) · doi:10.1103/PhysRevLett.50.84
[17] [CDKS] Combes, J.-M., Duclos, P., Klein, M., Seiler, R.: The shape resonance. Commun. Math. Phys.110, 215–236 (1987) · Zbl 0629.47044 · doi:10.1007/BF01207364
[18] [CDS] Combes, J.-M., Duclos, P., Seiler, R.: Krein’s formula and one-dimensional multiple well. J. Funct. Analysis52, 257–301 (1983) · Zbl 0562.47002 · doi:10.1016/0022-1236(83)90085-X
[19] [CFKS] Cycon, H., Froese, R., Kirsch, W., Simon, B.: Schrödinger Operators, with Applications to Quantum Mechanics and Global Geometry. Texts and Monographs in Physics. Berlin, Heidelberg, New York: Springer 1987 · Zbl 0619.47005
[20] [CH1] Combes, J.-M., Hislop, P. D.: Quantum tunnelling, non-trapping, and the existence of Stark Ladder resonances. J. Phys. A: Math. Gen.23, 1501–1511 (1990) · Zbl 0708.35061 · doi:10.1088/0305-4470/23/9/014
[21] [CH2] Combes, J.-M., Hislop, P. D.: Quantum tunnelling for Bloch electrons in small electric fields. In: Recent Developments in Quantum Mechanics, A. M. Boutet de Montvel (ed.). Kluger: Academic Publishing 1991 · Zbl 0726.34076
[22] [DeBH] DeBièvre, S., Hislop, P. D.: Spectral resonances for the Laplace-Beltrami operator. Ann. Inst. Henri Poincare48, 105–146 (1988) · Zbl 0645.58041
[23] [HSj1] Helffer, B., Sjöstrand, J.: Resonances en limite semi-classique. Suppl. Bull. S.M.F.114 (1986) · Zbl 0631.35075
[24] [HSj2] Helffer, B., Sjöstrand, J.: Multiple wells in the semi-classical limit I. Commun. Partial Differ. Equations9, 337–408 (1984) · Zbl 0546.35053 · doi:10.1080/03605308408820335
[25] [HSj3] Helffer, B., Sjöstrand, J.: Puits multiples en limite semi-classique II. Interaction Moléculaire, Symétries, Perturbation. Ann. Inst. Henri Poincaré42, 127–212 (1985) · Zbl 0595.35031
[26] [HSj4] Helffer, B., Sjöstrand, J.: Multiple wells in the semi-classical limit III. Interaction through non-resonant wells. Math. Nachr.124, 263–313 (1985) · Zbl 0597.35023 · doi:10.1002/mana.19851240117
[27] [H] Herbst, I.: Dilation analyticity in constant electric field I. The two-body problem. Commun. Math. Phys.64, 279–298 (1979) · Zbl 0447.47028 · doi:10.1007/BF01221735
[28] [HiSi] Hislop, P. D., Sigal, I. M.: Semiclassical theory of shape resonances in quantum mechanics. Mem. Am. Math. Soc.399 (1989) · Zbl 0704.35115
[29] [HN] Hislop, P. D., Nakamura, S.: Semiclassical resolvent estimates. Ann. Inst. Henri Poincaré51, 187–198 (1989)
[30] [Hz] Hunziker, W.: Distortion analyticity and molecular resonance curves. Ann. Inst. Henri Poincaré45, 399–358 (1986) · Zbl 0619.46068
[31] [K] Klein, M.: On the absence of resonances for Schrödinger operators with nontrapping potentials in the classical limit. Commun. Math. Phys.106, 485–494 (1986) · Zbl 0651.47007 · doi:10.1007/BF01207259
[32] [Ka] Kato, T.: Perturbation Theory for Linear Operators. Berlin, Heidelberg, New York: Springer 1980
[33] [N] Nakamura, S.: A note on the absence of resonances for Schrödinger operators. Lett. Math. Phys.16, 217–233 (1988) · Zbl 0688.35073 · doi:10.1007/BF00398958
[34] [NN] Nenciu, A., Nenciu, G.: Dynamics of Bloch electrons in external electric fields: I. Bounds for interband transitions and effective Wannier Hamiltonians. J. Phys.A14, 2817–2827 (1981); II. The existence of Stark Wannier ladder resonances. J. Phys.A15, 3313–3328 (1982) · doi:10.1088/0305-4470/14/10/033
[35] [RS1] Reed, M., Simon, B.: Methods of Modern Mathematical Physics, II. Fourier Analysis. Self-adjointness. New York: Academic Press 1975 · Zbl 0308.47002
[36] [RS2] Reed, M., Simon, B.: Methods of Modern Mathematical Physics, IV. Analysis of operators. New York: Academic Press 1978 · Zbl 0401.47001
[37] [Si1] Sigal, I. M.: Sharp exponential bounds on resonance states and width of resonances. Adv. Appl. Math.9, 127–166 (1988) · Zbl 0652.47008 · doi:10.1016/0196-8858(88)90011-5
[38] [Si2] Sigal, I. M.: Complex transformation method and resonances in one-body quantum systems. Ann. Inst. Henri Poincaré41, 103–114 (1984); and Addendum41, 333 (1984) · Zbl 0568.47008
[39] [Si3] Sigal, I. M.: Geometric theory of Stark resonances in multielectron systems. Commun. Math. Phys.119, 287–314 (1988) · Zbl 0672.58050 · doi:10.1007/BF01217742
[40] [S1] Simon, B.: Semiclassical analysis of low lying eigenvalues I. Non degenerate minima: Asymptotic expansions. Ann. Inst. Henri Poincaré38, 295–307 (1983)
[41] [S2] Simon, B.: Semiclassical analysis of low lying eigenvalues, II. Tunneling. Ann. Math.120, 89–118 (1984) · Zbl 0626.35070
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.