Dong, Hongjie; Phan, Tuoc Regularity for parabolic equations with singular or degenerate coefficients. (English) Zbl 07309254 Calc. Var. Partial Differ. Equ. 60, No. 1, Paper No. 44, 39 p. (2021). MSC: 35K65 35K67 35D10 35R11 PDF BibTeX XML Cite \textit{H. Dong} and \textit{T. Phan}, Calc. Var. Partial Differ. Equ. 60, No. 1, Paper No. 44, 39 p. (2021; Zbl 07309254) Full Text: DOI
Köhne, Matthias; Saal, Jürgen; Westermann, Laura Optimal Sobolev regularity for the Stokes equations on a 2D wedge domain. (English) Zbl 07307513 Math. Ann. 379, No. 1-2, 377-413 (2021). MSC: 35Q30 76D03 35K67 76D07 35K65 35B65 PDF BibTeX XML Cite \textit{M. Köhne} et al., Math. Ann. 379, No. 1--2, 377--413 (2021; Zbl 07307513) Full Text: DOI
Coclite, G. M.; Coclite, M. M. Long time behavior of a model for the evolution of morphogens in a growing tissue. II: \( \theta < \log 2\). (English) Zbl 07285709 J. Differ. Equations 272, 1015-1049 (2021). MSC: 35B40 35K51 35K55 35K65 35Q92 34B15 PDF BibTeX XML Cite \textit{G. M. Coclite} and \textit{M. M. Coclite}, J. Differ. Equations 272, 1015--1049 (2021; Zbl 07285709) Full Text: DOI
Arora, Rakesh; Shmarev, Sergey Strong solutions of evolution equations with \(p(x,t)\)-Laplacian: existence, global higher integrability of the gradients and second-order regularity. (English) Zbl 1450.35153 J. Math. Anal. Appl. 493, No. 1, Article ID 124506, 31 p. (2021). MSC: 35K92 35D35 35K65 35K67 35B65 PDF BibTeX XML Cite \textit{R. Arora} and \textit{S. Shmarev}, J. Math. Anal. Appl. 493, No. 1, Article ID 124506, 31 p. (2021; Zbl 1450.35153) Full Text: DOI
Graf, M.; Kunzinger, M.; Mitrovic, D.; Vujadinovic, D. A vanishing dynamic capillarity limit equation with discontinuous flux. (English) Zbl 07298437 Z. Angew. Math. Phys. 71, No. 6, Paper No. 201, 22 p. (2020). MSC: 35B25 35Q35 35K65 35K70 42B37 76S05 PDF BibTeX XML Cite \textit{M. Graf} et al., Z. Angew. Math. Phys. 71, No. 6, Paper No. 201, 22 p. (2020; Zbl 07298437) Full Text: DOI
Coclite, G. M.; Coclite, M. M. Long time behavior of a model for the evolution of morphogens in a growing tissue. (English) Zbl 07286424 SN Partial Differ. Equ. Appl. 1, No. 1, Paper No. 4, 39 p. (2020). MSC: 35B40 35K51 35K55 35K65 35Q92 34B15 PDF BibTeX XML Cite \textit{G. M. Coclite} and \textit{M. M. Coclite}, SN Partial Differ. Equ. Appl. 1, No. 1, Paper No. 4, 39 p. (2020; Zbl 07286424) Full Text: DOI
Ciani, Simone; Vespri, Vincenzo A new short proof of regularity for local weak solutions for a certain class of singular parabolic equations. (English) Zbl 07283048 Rend. Mat. Appl., VII. Ser. 41, No. 3-4, 251-264 (2020). MSC: 35B65 35K92 35K67 35K65 PDF BibTeX XML Cite \textit{S. Ciani} and \textit{V. Vespri}, Rend. Mat. Appl., VII. Ser. 41, No. 3--4, 251--264 (2020; Zbl 07283048) Full Text: Link
El Haji, Badr; El Moumni, Mostafa; Talha, Abdeslam Entropy solutions for nonlinear parabolic equations in Musilak-Orlicz spaces without \(\Delta_2\)-condition. (English) Zbl 1452.35079 Gulf J. Math. 9, No. 1, 1-26 (2020). MSC: 35K59 35K20 35K65 35K67 35D30 PDF BibTeX XML Cite \textit{B. El Haji} et al., Gulf J. Math. 9, No. 1, 1--26 (2020; Zbl 1452.35079) Full Text: Link
Ichida, Yu; Sakamoto, Takashi Okuda Correction to: “Traveling wave solutions for degenerate nonlinear parabolic equations”. (English) Zbl 07270570 J. Elliptic Parabol. Equ. 6, No. 2, 833 (2020). MSC: 35C07 35K65 35B40 34C05 34C08 PDF BibTeX XML Cite \textit{Y. Ichida} and \textit{T. O. Sakamoto}, J. Elliptic Parabol. Equ. 6, No. 2, 833 (2020; Zbl 07270570) Full Text: DOI
Ichida, Yu; Sakamoto, Takashi Okuda Traveling wave solutions for degenerate nonlinear parabolic equations. (English) Zbl 1451.35045 J. Elliptic Parabol. Equ. 6, No. 2, 795-832 (2020); correction ibid. 6, No. 2, 833 (2020). MSC: 35C07 35K65 35B40 34C05 34C08 PDF BibTeX XML Cite \textit{Y. Ichida} and \textit{T. O. Sakamoto}, J. Elliptic Parabol. Equ. 6, No. 2, 795--832 (2020; Zbl 1451.35045) Full Text: DOI
Giga, Yoshikazu; Nakayashiki, Ryota; Rybka, Piotr; Shirakawa, Ken On boundary detachment phenomena for the total variation flow with dynamic boundary conditions. (English) Zbl 1450.35147 J. Differ. Equations 269, No. 12, 10587-10629 (2020). MSC: 35K67 35K65 35K20 35A21 35A15 PDF BibTeX XML Cite \textit{Y. Giga} et al., J. Differ. Equations 269, No. 12, 10587--10629 (2020; Zbl 1450.35147) Full Text: DOI
Attouchi, Amal Local regularity for quasi-linear parabolic equations in non-divergence form. (English) Zbl 1447.35087 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 199, Article ID 112051, 27 p. (2020). MSC: 35B65 35K65 35B45 35D40 35K92 35K67 PDF BibTeX XML Cite \textit{A. Attouchi}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 199, Article ID 112051, 27 p. (2020; Zbl 1447.35087) Full Text: DOI
Iagar, Razvan Gabriel; Sánchez, Ariel Instantaneous and finite time blow-up of solutions to a reaction-diffusion equation with Hardy-type singular potential. (English) Zbl 1448.35053 J. Math. Anal. Appl. 491, No. 1, Article ID 124244, 10 p. (2020). Reviewer: Piotr Biler (Wrocław) MSC: 35B44 35K65 35K67 35K15 PDF BibTeX XML Cite \textit{R. G. Iagar} and \textit{A. Sánchez}, J. Math. Anal. Appl. 491, No. 1, Article ID 124244, 10 p. (2020; Zbl 1448.35053) Full Text: DOI
Dao, Nguyen Anh Instantaneous shrinking of the support of solutions to parabolic equations with a singular absorption. (English) Zbl 1445.35226 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 114, No. 4, Paper No. 165, 5 p. (2020). MSC: 35K67 35K65 35K58 35K15 PDF BibTeX XML Cite \textit{N. A. Dao}, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 114, No. 4, Paper No. 165, 5 p. (2020; Zbl 1445.35226) Full Text: DOI
Fila, Marek; Macková, Petra; Takahashi, Jin; Yanagida, Eiji Moving singularities for nonlinear diffusion equations in two space dimensions. (English) Zbl 1443.35084 J. Elliptic Parabol. Equ. 6, No. 1, 155-169 (2020). MSC: 35K65 35A02 35A21 35B40 35K67 PDF BibTeX XML Cite \textit{M. Fila} et al., J. Elliptic Parabol. Equ. 6, No. 1, 155--169 (2020; Zbl 1443.35084) Full Text: DOI
Canale, Anna; Pappalardo, Francesco; Tarantino, Ciro A class of weighted Hardy inequalities and applications to evolution problems. (English) Zbl 1445.35015 Ann. Mat. Pura Appl. (4) 199, No. 3, 1171-1181 (2020). MSC: 35A23 35K15 35K65 35B25 34G10 47D03 PDF BibTeX XML Cite \textit{A. Canale} et al., Ann. Mat. Pura Appl. (4) 199, No. 3, 1171--1181 (2020; Zbl 1445.35015) Full Text: DOI
Davoli, Elisa; Ranetbauer, Helene; Scarpa, Luca; Trussardi, Lara Degenerate nonlocal Cahn-Hilliard equations: well-posedness, regularity and local asymptotics. (English) Zbl 07199573 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 37, No. 3, 627-651 (2020). Reviewer: Rodica Luca (Iaşi) MSC: 45K05 35K25 35K55 35B40 76R05 PDF BibTeX XML Cite \textit{E. Davoli} et al., Ann. Inst. Henri Poincaré, Anal. Non Linéaire 37, No. 3, 627--651 (2020; Zbl 07199573) Full Text: DOI
Nguyen Anh Dao; Díaz, Jesus Ildefonso; Nguyen, Quan Ba Hong Pointwise gradient estimates in multi-dimensional slow diffusion equations with a singular quenching term. (English) Zbl 07198843 Adv. Nonlinear Stud. 20, No. 2, 477-502 (2020). Reviewer: Jesús Hernández (Madrid) MSC: 35K65 35K59 35K67 35B45 35D30 PDF BibTeX XML Cite \textit{Nguyen Anh Dao} et al., Adv. Nonlinear Stud. 20, No. 2, 477--502 (2020; Zbl 07198843) Full Text: DOI
Henriques, Eurica Local Hölder regularity for a doubly singular PDE. (English) Zbl 1439.35111 Commun. Contemp. Math. 22, No. 3, Article ID 1850054, 30 p. (2020). MSC: 35B65 35K65 35K67 35D30 PDF BibTeX XML Cite \textit{E. Henriques}, Commun. Contemp. Math. 22, No. 3, Article ID 1850054, 30 p. (2020; Zbl 1439.35111) Full Text: DOI
Oliva, Francescantonio; Petitta, Francesco A nonlinear parabolic problem with singular terms and nonregular data. (English) Zbl 1439.35197 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 194, Article ID 111472, 13 p. (2020). MSC: 35K10 35K20 35K65 35K67 35R06 PDF BibTeX XML Cite \textit{F. Oliva} and \textit{F. Petitta}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 194, Article ID 111472, 13 p. (2020; Zbl 1439.35197) Full Text: DOI
Bertsch, Michiel; Hilhorst, Danielle; Izuhara, Hirofumi; Mimura, Masayasu; Wakasa, Tohru A nonlinear parabolic-hyperbolic system for contact inhibition and a degenerate parabolic Fisher-KPP equation. (English) Zbl 1435.35126 Discrete Contin. Dyn. Syst. 40, No. 6, 3117-3142 (2020). MSC: 35G55 35A01 35K57 35C07 35K65 92D25 PDF BibTeX XML Cite \textit{M. Bertsch} et al., Discrete Contin. Dyn. Syst. 40, No. 6, 3117--3142 (2020; Zbl 1435.35126) Full Text: DOI
Liao, Naian A unified approach to the Hölder regularity of solutions to degenerate and singular parabolic equations. (English) Zbl 1436.35245 J. Differ. Equations 268, No. 10, 5704-5750 (2020). Reviewer: Vincenzo Vespri (Firenze) MSC: 35K59 35B45 35B65 35K65 35K67 PDF BibTeX XML Cite \textit{N. Liao}, J. Differ. Equations 268, No. 10, 5704--5750 (2020; Zbl 1436.35245) Full Text: DOI
Shakhmurov, Veli B. Linear and nonlinear degenerate differential operators and applications. (English) Zbl 1433.35128 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 191, Article ID 111633, 23 p. (2020). MSC: 35J70 35J75 35K65 35K90 35J25 PDF BibTeX XML Cite \textit{V. B. Shakhmurov}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 191, Article ID 111633, 23 p. (2020; Zbl 1433.35128) Full Text: DOI
Adimurthi, Karthik; Hwang, Sukjung Uniform boundedness for weak solutions of quasilinear parabolic equations. (English) Zbl 1433.35184 Proc. Am. Math. Soc. 148, No. 2, 653-665 (2020). Reviewer: Philippe Laurençot (Toulouse) MSC: 35K65 35K67 35B45 35K59 PDF BibTeX XML Cite \textit{K. Adimurthi} and \textit{S. Hwang}, Proc. Am. Math. Soc. 148, No. 2, 653--665 (2020; Zbl 1433.35184) Full Text: DOI arXiv
Zhang, Yuming Paul On a class of diffusion-aggregation equations. (English) Zbl 1427.35116 Discrete Contin. Dyn. Syst. 40, No. 2, 907-932 (2020). MSC: 35K55 45G05 35K65 35B65 PDF BibTeX XML Cite \textit{Y. P. Zhang}, Discrete Contin. Dyn. Syst. 40, No. 2, 907--932 (2020; Zbl 1427.35116) Full Text: DOI
Carrillo, José A.; Hopf, Katharina; Rodrigo, José L. On the singularity formation and relaxation to equilibrium in 1D Fokker-Planck model with superlinear drift. (English) Zbl 1433.35408 Adv. Math. 360, Article ID 106883, 66 p. (2020). MSC: 35Q84 35K55 35K65 35K67 82C31 35B65 35B40 35A01 35A02 35D30 35D40 35B44 35R06 82C10 PDF BibTeX XML Cite \textit{J. A. Carrillo} et al., Adv. Math. 360, Article ID 106883, 66 p. (2020; Zbl 1433.35408) Full Text: DOI arXiv
Díaz, Jesús Ildefonso; Hernández, Jesús Linearized stability for degenerate and singular semilinear and quasilinear parabolic problems: the linearized singular equation. (English) Zbl 07314057 Topol. Methods Nonlinear Anal. 54, No. 2B, 937-966 (2019). MSC: 35P05 35P30 35B35 35K59 35K65 35K67 PDF BibTeX XML Cite \textit{J. I. Díaz} and \textit{J. Hernández}, Topol. Methods Nonlinear Anal. 54, No. 2B, 937--966 (2019; Zbl 07314057) Full Text: DOI Euclid
Pukal’s’kyi, I. D.; Yashan, B. O. Nonlocal multipoint (in time) problem for parabolic equations with degeneration. (English. Russian original) Zbl 1439.35211 J. Math. Sci., New York 243, No. 1, 34-44 (2019); translation from Mat. Metody Fiz.-Mekh. Polya 60, No. 2, 32-40 (2017). MSC: 35K20 35K65 35K67 PDF BibTeX XML Cite \textit{I. D. Pukal's'kyi} and \textit{B. O. Yashan}, J. Math. Sci., New York 243, No. 1, 34--44 (2019; Zbl 1439.35211); translation from Mat. Metody Fiz.-Mekh. Polya 60, No. 2, 32--40 (2017) Full Text: DOI
Pukal’skii, I. D.; Yashan, B. O. The Cauchy problem with impulse action and degeneration for parabolic equations. (English) Zbl 1431.35081 Mat. Stud. 52, No. 1, 63-70 (2019). MSC: 35K65 35K67 PDF BibTeX XML Cite \textit{I. D. Pukal'skii} and \textit{B. O. Yashan}, Mat. Stud. 52, No. 1, 63--70 (2019; Zbl 1431.35081) Full Text: DOI
Bulatova, Regina R.; Samokhin, V. N.; Chechkin, G. A. System of boundary layer equations for a rheologically complicated medium: Crocco variables. (English. Russian original) Zbl 1429.35018 Dokl. Math. 100, No. 1, 332-338 (2019); translation from Dokl. Akad. Nauk, Ross. Akad. Nauk 487, No. 2, 119-125 (2019). MSC: 35B25 35Q35 35K59 35K65 PDF BibTeX XML Cite \textit{R. R. Bulatova} et al., Dokl. Math. 100, No. 1, 332--338 (2019; Zbl 1429.35018); translation from Dokl. Akad. Nauk, Ross. Akad. Nauk 487, No. 2, 119--125 (2019) Full Text: DOI
Tran, Minh-Phuong; Nguyen, Thanh-Nhan An application of global gradient estimates in Lorentz-Morrey spaces for the existence of stationary solutions to degenerate diffusive Hamilton-Jacobi equations. (English) Zbl 1425.35091 Electron. J. Differ. Equ. 2019, Paper No. 118, 12 p. (2019). MSC: 35K55 35K67 35K65 42B35 PDF BibTeX XML Cite \textit{M.-P. Tran} and \textit{T.-N. Nguyen}, Electron. J. Differ. Equ. 2019, Paper No. 118, 12 p. (2019; Zbl 1425.35091) Full Text: Link
Fragnelli, Genni; Mugnai, Dimitri Controllability of degenerate and singular parabolic problems: the double strong case with Neumann boundary conditions. (English) Zbl 1428.35640 Opusc. Math. 39, No. 2, 207-225 (2019). MSC: 35Q93 93B05 35K65 35K67 PDF BibTeX XML Cite \textit{G. Fragnelli} and \textit{D. Mugnai}, Opusc. Math. 39, No. 2, 207--225 (2019; Zbl 1428.35640) Full Text: DOI
Jia, Zhe; Yang, Zuodong; Wang, Changying Non-simultaneous quenching in a semilinear parabolic system with multi-singular reaction terms. (English) Zbl 1423.35182 Electron. J. Differ. Equ. 2019, Paper No. 100, 13 p. (2019). MSC: 35K55 35K65 35A01 PDF BibTeX XML Cite \textit{Z. Jia} et al., Electron. J. Differ. Equ. 2019, Paper No. 100, 13 p. (2019; Zbl 1423.35182) Full Text: Link
Daus, Esther S.; Milišić, Pina; Zamponi, Nicola Analysis of a degenerate and singular volume-filling cross-diffusion system modeling biofilm growth. (English) Zbl 1419.35086 SIAM J. Math. Anal. 51, No. 4, 3569-3605 (2019). MSC: 35K51 35K65 35K67 35Q92 PDF BibTeX XML Cite \textit{E. S. Daus} et al., SIAM J. Math. Anal. 51, No. 4, 3569--3605 (2019; Zbl 1419.35086) Full Text: DOI
Sukwong, Nitithorn; Sawangtong, Panumart; Koonprasert, Sanoe; Sawangtong, Wannika Blow-up for a degenerate and singular parabolic equation with a nonlocal source. (English) Zbl 07078740 Adv. Difference Equ. 2019, Paper No. 264, 15 p. (2019). MSC: 35B44 35K67 PDF BibTeX XML Cite \textit{N. Sukwong} et al., Adv. Difference Equ. 2019, Paper No. 264, 15 p. (2019; Zbl 07078740) Full Text: DOI
Amaral, Marcelo D.; da Silva, João Vitor; Ricarte, Gleydson C.; Teymurazyan, Rafayel Sharp regularity estimates for quasilinear evolution equations. (English) Zbl 1433.35192 Isr. J. Math. 231, No. 1, 25-45 (2019). Reviewer: Vincenzo Vespri (Firenze) MSC: 35K92 35B65 35D30 35K65 35K67 PDF BibTeX XML Cite \textit{M. D. Amaral} et al., Isr. J. Math. 231, No. 1, 25--45 (2019; Zbl 1433.35192) Full Text: DOI arXiv
Imbert, Cyril; Jin, Tianling; Silvestre, Luis Hölder gradient estimates for a class of singular or degenerate parabolic equations. (English) Zbl 1418.35250 Adv. Nonlinear Anal. 8, 845-867 (2019). MSC: 35K92 35B65 35K65 35K67 PDF BibTeX XML Cite \textit{C. Imbert} et al., Adv. Nonlinear Anal. 8, 845--867 (2019; Zbl 1418.35250) Full Text: DOI arXiv
Antontsev, Stanislav; Shmarev, Sergey On a class of fully nonlinear parabolic equations. (English) Zbl 1412.35169 Adv. Nonlinear Anal. 8, 79-100 (2019). Reviewer: Vincenzo Vespri (Firenze) MSC: 35K55 35K65 35K67 PDF BibTeX XML Cite \textit{S. Antontsev} and \textit{S. Shmarev}, Adv. Nonlinear Anal. 8, 79--100 (2019; Zbl 1412.35169) Full Text: DOI
Adimurthi, Karthik; Byun, Sun-Sig Gradient weighted estimates at the natural exponent for quasilinear parabolic equations. (English) Zbl 1412.35157 Adv. Math. 348, 456-511 (2019). Reviewer: Dian K. Palagachev (Bari) MSC: 35K10 35K59 35K65 35K67 PDF BibTeX XML Cite \textit{K. Adimurthi} and \textit{S.-S. Byun}, Adv. Math. 348, 456--511 (2019; Zbl 1412.35157) Full Text: DOI arXiv
Liu, Fang; Jiang, Feida Parabolic biased infinity Laplacian equation related to the biased tug-of-war. (English) Zbl 1412.35163 Adv. Nonlinear Stud. 19, No. 1, 89-112 (2019). MSC: 35K20 35D40 35K67 35Q91 49K20 35J57 35J70 49N60 PDF BibTeX XML Cite \textit{F. Liu} and \textit{F. Jiang}, Adv. Nonlinear Stud. 19, No. 1, 89--112 (2019; Zbl 1412.35163) Full Text: DOI
Canale, A.; Gregorio, F.; Rhandi, A.; Tacelli, C. Weighted Hardy’s inequalities and Kolmogorov-type operators. (English) Zbl 1412.35160 Appl. Anal. 98, No. 7, 1236-1254 (2019). MSC: 35K15 35K65 35B25 34G10 47D03 PDF BibTeX XML Cite \textit{A. Canale} et al., Appl. Anal. 98, No. 7, 1236--1254 (2019; Zbl 1412.35160) Full Text: DOI
Bonforte, Matteo; Simonov, Nikita Quantitative a priori estimates for fast diffusion equations with Caffarelli-Kohn-Nirenberg weights. Harnack inequalities and Hölder continuity. (English) Zbl 1408.35073 Adv. Math. 345, 1075-1161 (2019). Reviewer: Vincenzo Vespri (Firenze) MSC: 35K55 35B45 35B65 35K67 35K65 PDF BibTeX XML Cite \textit{M. Bonforte} and \textit{N. Simonov}, Adv. Math. 345, 1075--1161 (2019; Zbl 1408.35073) Full Text: DOI arXiv
Fila, Marek; Takahashi, Jin; Yanagida, Eiji Solutions with moving singularities for equations of porous medium type. (English) Zbl 1404.35270 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 179, 237-253 (2019). MSC: 35K65 35K67 35A01 35B40 PDF BibTeX XML Cite \textit{M. Fila} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 179, 237--253 (2019; Zbl 1404.35270) Full Text: DOI
Adimurthi, Karthik; Byun, Sun-Sig Boundary higher integrability for very weak solutions of quasilinear parabolic equations. (English. French summary) Zbl 1403.35121 J. Math. Pures Appl. (9) 121, 244-285 (2019). Reviewer: Andrey Zahariev (Plovdiv) MSC: 35K10 35K59 35K65 35K67 PDF BibTeX XML Cite \textit{K. Adimurthi} and \textit{S.-S. Byun}, J. Math. Pures Appl. (9) 121, 244--285 (2019; Zbl 1403.35121) Full Text: DOI arXiv
Hwang, Hyung Ju; Jang, Juhi; Velázquez, Juan J. L. On the structure of the singular set for the kinetic Fokker-Planck equations in domains with boundaries. (English) Zbl 1404.35446 Q. Appl. Math. 77, No. 1, 19-70 (2019). MSC: 35Q84 35K65 35A20 35Q70 35R60 35R06 60H15 60H30 47D07 PDF BibTeX XML Cite \textit{H. J. Hwang} et al., Q. Appl. Math. 77, No. 1, 19--70 (2019; Zbl 1404.35446) Full Text: DOI arXiv
Benkirane, Abdelmoujib; El Haji, Badr; El Moumni, Mostafa On the existence of solution for degenerate parabolic equations with singular terms. (English) Zbl 07311998 Pure Appl. Math. Q. 14, No. 3-4, 591-606 (2018). MSC: 35K92 35K20 35K55 35K65 35K67 PDF BibTeX XML Cite \textit{A. Benkirane} et al., Pure Appl. Math. Q. 14, No. 3--4, 591--606 (2018; Zbl 07311998) Full Text: DOI
Martin, Philippe; Rosier, Lionel; Rouchon, Pierre Controllability of parabolic equations by the flatness approach. (English) Zbl 1436.35304 Ammari, Kaïs (ed.) et al., Evolution equations. Long time behavior and control. Proceedings of the summer school, Université Savoie Mont Blanc, Chambéry, France, June 15–18, 2015. Cambridge: Cambridge University Press. Lond. Math. Soc. Lect. Note Ser. 439, 161-178 (2018). MSC: 35Q93 35K05 35K65 93C20 35R05 PDF BibTeX XML Cite \textit{P. Martin} et al., Lond. Math. Soc. Lect. Note Ser. 439, 161--178 (2018; Zbl 1436.35304) Full Text: DOI
Liu, Dengming Global existence and blow-up behavior for a degenerate and singular parabolic equation with nonlocal boundary condition. (English) Zbl 1438.35209 J. Nonlinear Sci. Appl. 11, No. 12, 1363-1373 (2018). MSC: 35K20 35A01 35B44 35K65 35K67 35R09 PDF BibTeX XML Cite \textit{D. Liu}, J. Nonlinear Sci. Appl. 11, No. 12, 1363--1373 (2018; Zbl 1438.35209) Full Text: DOI
Khodja, Farid Ammar; Dupaix, Cédric Essential spectrum and null controllability of some parabolic equations. (English) Zbl 1414.35102 Doubova, Anna (ed.) et al., Recent advances in PDEs: analysis, numerics and control. In honor of Prof. Fernández-Cara’s 60th birthday. Based on talks given at the workshop, Sevilla, Spain, January 25–27, 2017. Cham: Springer. SEMA SIMAI Springer Ser. 17, 1-15 (2018). MSC: 35K20 93B05 PDF BibTeX XML Cite \textit{F. A. Khodja} and \textit{C. Dupaix}, SEMA SIMAI Springer Ser. 17, 1--15 (2018; Zbl 1414.35102) Full Text: DOI
Porzio, Maria Michaela A new approach to decay estimates - application to a nonlinear and degenerate parabolic PDE. (English) Zbl 1408.35062 Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl. 29, No. 4, 635-659 (2018). MSC: 35K10 35K55 35K65 PDF BibTeX XML Cite \textit{M. M. Porzio}, Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl. 29, No. 4, 635--659 (2018; Zbl 1408.35062) Full Text: DOI
Nakayasu, Atsushi; Rybka, Piotr Integrability of the derivative of solutions to a singular one-dimensional parabolic problem. (English) Zbl 1407.35120 Topol. Methods Nonlinear Anal. 52, No. 1, 239-257 (2018). MSC: 35K65 35K67 PDF BibTeX XML Cite \textit{A. Nakayasu} and \textit{P. Rybka}, Topol. Methods Nonlinear Anal. 52, No. 1, 239--257 (2018; Zbl 1407.35120) Full Text: DOI Euclid arXiv
Gusachenko, V. V. Asymptotic integration of a linear parabolic problem of arbitrary order with high-frequency coefficients in the critical case. (Russian. English summary) Zbl 1415.35147 Vestn. Voronezh. Gos. Univ., Ser. Fiz. Mat. 2018, No. 3, 126-142 (2018). MSC: 35K20 35B25 35C20 PDF BibTeX XML Cite \textit{V. V. Gusachenko}, Vestn. Voronezh. Gos. Univ., Ser. Fiz. Mat. 2018, No. 3, 126--142 (2018; Zbl 1415.35147)
Beloshapko, Vera Special properties of the stationary solution for two-dimensional singularly perturbed parabolic problem, stability, and attraction domain. (English) Zbl 1406.35025 Math. Methods Appl. Sci. 41, No. 18, 9264-9275 (2018). MSC: 35B25 35K20 35C20 35K58 PDF BibTeX XML Cite \textit{V. Beloshapko}, Math. Methods Appl. Sci. 41, No. 18, 9264--9275 (2018; Zbl 1406.35025) Full Text: DOI
Faye, Ibrahima; Ndiaye, Mariama; Seck, Diaraf Coupling the Navier-Stokes equations with a short term dynamic of sand dunes. (English) Zbl 1405.35100 Schulz, Volker (ed.) et al., Shape optimization, homogenization and optimal control. DFG-AIMS workshop held at the AIMS Center Sénégal, Mbour, Sénégal, March 13–16, 2017. Cham: Birkhäuser (ISBN 978-3-319-90468-9/hbk; 978-3-319-90469-6/ebook). ISNM. International Series of Numerical Mathematics 169, 191-211 (2018). MSC: 35K65 35B25 35B40 35B10 86A60 49M30 PDF BibTeX XML Cite \textit{I. Faye} et al., ISNM, Int. Ser. Numer. Math. 169, 191--211 (2018; Zbl 1405.35100) Full Text: DOI
Baldé, Mouhamadou A. M. T.; Seck, Diaraf Numerical simulation for a dimensionless coupled system of shallow water equation with long term dynamic of sand dunes equation. (English) Zbl 1407.65252 Schulz, Volker (ed.) et al., Shape optimization, homogenization and optimal control. DFG-AIMS workshop held at the AIMS Center Sénégal, Mbour, Sénégal, March 13–16, 2017. Cham: Birkhäuser. ISNM, Int. Ser. Numer. Math. 169, 165-190 (2018). MSC: 65N08 35Q35 35L02 35K67 65M06 35K65 PDF BibTeX XML Cite \textit{M. A. M. T. Baldé} and \textit{D. Seck}, ISNM, Int. Ser. Numer. Math. 169, 165--190 (2018; Zbl 1407.65252) Full Text: DOI
Xu, Jianing; Wang, Chunpeng; Nie, Yuanyuan Carleman estimate and null controllability of a cascade degenerate parabolic system with general convection terms. (English) Zbl 1405.93043 Electron. J. Differ. Equ. 2018, Paper No. 195, 20 p. (2018). MSC: 93B05 93C20 35K67 93B07 93C10 PDF BibTeX XML Cite \textit{J. Xu} et al., Electron. J. Differ. Equ. 2018, Paper No. 195, 20 p. (2018; Zbl 1405.93043) Full Text: Link
Boccardo, Lucio; Orsina, Luigi; Porzio, Maria Michaela T-minima for nonlinear parabolic problems: a variational approach for \(L^1\) data. (English) Zbl 1405.35078 J. Evol. Equ. 18, No. 4, 1843-1852 (2018). MSC: 35K55 35K65 35K67 35R05 PDF BibTeX XML Cite \textit{L. Boccardo} et al., J. Evol. Equ. 18, No. 4, 1843--1852 (2018; Zbl 1405.35078) Full Text: DOI
Zhang, Kangqun Nonexistence of global weak solutions of nonlinear Keldysh type equation with one derivative term. (English) Zbl 1404.35067 Adv. Math. Phys. 2018, Article ID 3931297, 7 p. (2018). MSC: 35B44 35K65 PDF BibTeX XML Cite \textit{K. Zhang}, Adv. Math. Phys. 2018, Article ID 3931297, 7 p. (2018; Zbl 1404.35067) Full Text: DOI
Henriques, Eurica; Laleoglu, Rojbin Boundedness for some doubly nonlinear parabolic equations in measure spaces. (English) Zbl 1401.35164 J. Dyn. Differ. Equations 30, No. 3, 1029-1051 (2018). Reviewer: Vincenzo Vespri (Firenze) MSC: 35K55 35K65 35B50 35K20 35K67 PDF BibTeX XML Cite \textit{E. Henriques} and \textit{R. Laleoglu}, J. Dyn. Differ. Equations 30, No. 3, 1029--1051 (2018; Zbl 1401.35164) Full Text: DOI
Butuzov, V. F. On asymptotics for the solution of a singularly perturbed parabolic problem with a multizone internal transition layer. (English. Russian original) Zbl 1397.35011 Comput. Math. Math. Phys. 58, No. 6, 925-949 (2018); translation from Zh. Vychisl. Mat. Mat. Fiz. 58, No. 6, 961-987 (2018). MSC: 35B25 35K20 35B10 35C20 PDF BibTeX XML Cite \textit{V. F. Butuzov}, Comput. Math. Math. Phys. 58, No. 6, 925--949 (2018; Zbl 1397.35011); translation from Zh. Vychisl. Mat. Mat. Fiz. 58, No. 6, 961--987 (2018) Full Text: DOI
Mouhamed, Badahi Ould; Faye, Ibrahima; Seck, Diaraf Homogenization and transport equations: the case of desert and sand piles. (English) Zbl 1396.35039 Nonlinear Stud. 25, No. 2, 251-271 (2018). MSC: 35K65 35Q85 35Q35 76T25 35B25 35B10 92F05 86A60 PDF BibTeX XML Cite \textit{B. O. Mouhamed} et al., Nonlinear Stud. 25, No. 2, 251--271 (2018; Zbl 1396.35039) Full Text: Link
Abdellaoui, Boumediene; Attar, Ahmed; Bentifour, Rachid; Peral, Ireneo On a fractional quasilinear parabolic problem: the influence of the Hardy potential. (English) Zbl 1397.35140 NoDEA, Nonlinear Differ. Equ. Appl. 25, No. 4, Paper No. 30, 34 p. (2018). MSC: 35K59 35K65 35K67 35K92 35B09 PDF BibTeX XML Cite \textit{B. Abdellaoui} et al., NoDEA, Nonlinear Differ. Equ. Appl. 25, No. 4, Paper No. 30, 34 p. (2018; Zbl 1397.35140) Full Text: DOI
Salhi, Jawad Null controllability for a coupled system of degenerate/singular parabolic equations in nondivergence form. (English) Zbl 1413.35269 Electron. J. Qual. Theory Differ. Equ. 2018, Paper No. 31, 28 p. (2018). MSC: 35K67 35K65 93C20 93B07 93B05 PDF BibTeX XML Cite \textit{J. Salhi}, Electron. J. Qual. Theory Differ. Equ. 2018, Paper No. 31, 28 p. (2018; Zbl 1413.35269) Full Text: DOI
Ji, Shanming; Yin, Jingxue; Li, Yutian Positive periodic solutions of the weighted \(p\)-Laplacian with nonlinear sources. (English) Zbl 1396.35043 Discrete Contin. Dyn. Syst. 38, No. 5, 2411-2439 (2018). MSC: 35K92 35B10 35K10 35K65 PDF BibTeX XML Cite \textit{S. Ji} et al., Discrete Contin. Dyn. Syst. 38, No. 5, 2411--2439 (2018; Zbl 1396.35043) Full Text: DOI
Celik, Emine; Hoang, Luan; Kieu, Thinh Doubly nonlinear parabolic equations for a general class of Forchheimer gas flows in porous media. (English) Zbl 1391.76716 Nonlinearity 31, No. 8, 3617-3650 (2018). MSC: 76S05 35Q35 35B45 35K20 35K55 35K65 35K67 PDF BibTeX XML Cite \textit{E. Celik} et al., Nonlinearity 31, No. 8, 3617--3650 (2018; Zbl 1391.76716) Full Text: DOI arXiv
Liaskos, Konstantinos B.; Stratis, Ioannis G.; Pantelous, Athanasios A. Stochastic degenerate Sobolev equations: well posedness and exact controllability. (English) Zbl 1390.60242 Math. Methods Appl. Sci. 41, No. 3, 1025-1032 (2018). MSC: 60H15 35R60 35K65 PDF BibTeX XML Cite \textit{K. B. Liaskos} et al., Math. Methods Appl. Sci. 41, No. 3, 1025--1032 (2018; Zbl 1390.60242) Full Text: DOI
Winkler, Michael; Yokota, Tomomi Stabilization in the logarithmic Keller-Segel system. (English) Zbl 1391.35066 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 170, 123-141 (2018). MSC: 35B40 35K65 92C17 35K51 PDF BibTeX XML Cite \textit{M. Winkler} and \textit{T. Yokota}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 170, 123--141 (2018; Zbl 1391.35066) Full Text: DOI
Duy, Nguyen Tuan; Dao, Anh Nguyen Blow-up of solutions to singular parabolic equations with nonlinear sources. (English) Zbl 1387.35342 Electron. J. Differ. Equ. 2018, Paper No. 48, 12 p. (2018). MSC: 35K55 35K67 35K65 PDF BibTeX XML Cite \textit{N. T. Duy} and \textit{A. N. Dao}, Electron. J. Differ. Equ. 2018, Paper No. 48, 12 p. (2018; Zbl 1387.35342) Full Text: Link
Shmarev, Sergey On the continuity of solutions of the nonhomogeneous evolution \(p(x, t)\)-Laplace equation. (English) Zbl 1375.35263 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 167, 67-84 (2018). MSC: 35K65 35B65 35K67 PDF BibTeX XML Cite \textit{S. Shmarev}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 167, 67--84 (2018; Zbl 1375.35263) Full Text: DOI
Majumdar, Anirban; Natesan, Srinivasan Alternating direction numerical scheme for singularly perturbed 2D degenerate parabolic convection-diffusion problems. (English) Zbl 1427.65176 Appl. Math. Comput. 313, 453-473 (2017). MSC: 65M06 35B25 35K20 65M12 65M22 65M50 PDF BibTeX XML Cite \textit{A. Majumdar} and \textit{S. Natesan}, Appl. Math. Comput. 313, 453--473 (2017; Zbl 1427.65176) Full Text: DOI
Kumar, Sunil; Kumar, B. V. Rathish A domain decomposition Taylor Galerkin finite element approximation of a parabolic singularly perturbed differential equation. (English) Zbl 1411.65129 Appl. Math. Comput. 293, 508-522 (2017). MSC: 65M60 65M12 35B25 35K20 35K65 65M55 PDF BibTeX XML Cite \textit{S. Kumar} and \textit{B. V. R. Kumar}, Appl. Math. Comput. 293, 508--522 (2017; Zbl 1411.65129) Full Text: DOI
Popov, S. V. The Gevrey boundary value problem for a third order equation. (Russian. English summary) Zbl 1413.35267 Mat. Zamet. SVFU 24, No. 1, 43-56 (2017). MSC: 35K65 35K35 35M10 PDF BibTeX XML Cite \textit{S. V. Popov}, Mat. Zamet. SVFU 24, No. 1, 43--56 (2017; Zbl 1413.35267) Full Text: MNR
Dao, Anh Nguyen Instantaneous shrinking of compact support of solutions of semi-linear parabolic equations with singular absorption. (English) Zbl 1413.35250 An. Univ. Craiova, Ser. Mat. Inf. 44, No. 1, 156-168 (2017). MSC: 35K55 35K67 35K65 PDF BibTeX XML Cite \textit{A. N. Dao}, An. Univ. Craiova, Ser. Mat. Inf. 44, No. 1, 156--168 (2017; Zbl 1413.35250)
Frigeri, Sergio; Lam, Kei Fong; Rocca, Elisabetta On a diffuse interface model for tumour growth with non-local interactions and degenerate mobilities. (English) Zbl 1382.35311 Colli, Pierluigi (ed.) et al., Solvability, regularity, and optimal control of boundary value problems for PDEs. In honour of Prof. Gianni Gilardi. Cham: Springer (ISBN 978-3-319-64488-2/hbk; 978-3-319-64489-9/ebook). Springer INdAM Series 22, 217-254 (2017). MSC: 35Q92 35D30 35K55 35K65 35K57 PDF BibTeX XML Cite \textit{S. Frigeri} et al., Springer INdAM Ser. 22, 217--254 (2017; Zbl 1382.35311) Full Text: DOI arXiv
Agosti, Abramo; Antonietti, Paola Francesca; Ciarletta, Pasquale; Grasselli, Maurizio; Verani, Marco A Cahn-Hilliard-type equation with application to tumor growth dynamics. (English) Zbl 1387.35584 Math. Methods Appl. Sci. 40, No. 18, 7598-7626 (2017). MSC: 35Q92 35K35 35K65 35K67 35K87 65M60 PDF BibTeX XML Cite \textit{A. Agosti} et al., Math. Methods Appl. Sci. 40, No. 18, 7598--7626 (2017; Zbl 1387.35584) Full Text: DOI
Li, Qingwei; Gao, Wenjie; Han, Yuzhu Existence of solution for a singular elliptic equation of Kirchhoff type. (English) Zbl 1387.35344 Mediterr. J. Math. 14, No. 6, Paper No. 231, 13 p. (2017). MSC: 35K55 35J60 35J70 PDF BibTeX XML Cite \textit{Q. Li} et al., Mediterr. J. Math. 14, No. 6, Paper No. 231, 13 p. (2017; Zbl 1387.35344) Full Text: DOI
Nguyen, Truyen Interior Calderón-Zygmund estimates for solutions to general parabolic equations of \(p\)-Laplacian type. (English) Zbl 1398.35132 Calc. Var. Partial Differ. Equ. 56, No. 6, Paper No. 173, 42 p. (2017). MSC: 35K92 35B45 35B65 35K65 35K67 PDF BibTeX XML Cite \textit{T. Nguyen}, Calc. Var. Partial Differ. Equ. 56, No. 6, Paper No. 173, 42 p. (2017; Zbl 1398.35132) Full Text: DOI
Dao, Nguyen Anh; Díaz, Jesus Ildefonso Existence and uniqueness of singular solutions of \(p\)-Laplacian with absorption for Dirichlet boundary condition. (English) Zbl 1386.35232 Proc. Am. Math. Soc. 145, No. 12, 5235-5245 (2017). MSC: 35K65 35K15 PDF BibTeX XML Cite \textit{N. A. Dao} and \textit{J. I. Díaz}, Proc. Am. Math. Soc. 145, No. 12, 5235--5245 (2017; Zbl 1386.35232) Full Text: DOI
Giacomelli, Lorenzo; Moll, Salvador; Petitta, Francesco Optimal waiting time bounds for some flux-saturated diffusion equations. (English) Zbl 06803164 Commun. Partial Differ. Equations 42, No. 4, 556-578 (2017). MSC: 35B99 35K65 35K67 35D99 35B51 35L65 PDF BibTeX XML Cite \textit{L. Giacomelli} et al., Commun. Partial Differ. Equations 42, No. 4, 556--578 (2017; Zbl 06803164) Full Text: DOI
Wang, Yifu; Yin, Jingxue; Ke, Yuanyuan Coexistence solutions for a periodic competition model with singular-degenerate diffusion. (English) Zbl 1386.35241 Proc. Edinb. Math. Soc., II. Ser. 60, No. 4, 1065-1075 (2017). Reviewer: Vincenzo Vespri (Firenze) MSC: 35K65 35B10 47H10 PDF BibTeX XML Cite \textit{Y. Wang} et al., Proc. Edinb. Math. Soc., II. Ser. 60, No. 4, 1065--1075 (2017; Zbl 1386.35241) Full Text: DOI
Lu, Guofu Very singular solution and short time asymptotic behaviors of nonnegative singular solutions for heat equation with nonlinear convection. (English) Zbl 1373.35156 J. Differ. Equations 263, No. 12, 7985-8031 (2017). MSC: 35K15 35K55 35K65 PDF BibTeX XML Cite \textit{G. Lu}, J. Differ. Equations 263, No. 12, 7985--8031 (2017; Zbl 1373.35156) Full Text: DOI
Nguyen Anh Dao; Díaz, Jesus Ildefonso The extinction versus the blow-up: global and non-global existence of solutions of source types of degenerate parabolic equations with a singular absorption. (English) Zbl 1433.35182 J. Differ. Equations 263, No. 10, 6764-6804 (2017). MSC: 35K59 35B44 35A01 35K65 35K67 PDF BibTeX XML Cite \textit{Nguyen Anh Dao} and \textit{J. I. Díaz}, J. Differ. Equations 263, No. 10, 6764--6804 (2017; Zbl 1433.35182) Full Text: DOI
Björn, Anders; Björn, Jana; Gianazza, Ugo The Petrovskiĭ criterion and barriers for degenerate and singular \(p\)-parabolic equations. (English) Zbl 1387.35376 Math. Ann. 368, No. 3-4, 885-904 (2017). Reviewer: Wu Qiguang (Beijing) MSC: 35K61 35B65 35K20 35K65 35K67 35K92 PDF BibTeX XML Cite \textit{A. Björn} et al., Math. Ann. 368, No. 3--4, 885--904 (2017; Zbl 1387.35376) Full Text: DOI
Atifi, Khalid; Essoufi, El-Hassan Data assimilation and null controllability of degenerate/singular parabolic problems. (English) Zbl 1372.65187 Electron. J. Differ. Equ. 2017, Paper No. 135, 17 p. (2017). MSC: 65K10 93B05 93C20 35K65 PDF BibTeX XML Cite \textit{K. Atifi} and \textit{E.-H. Essoufi}, Electron. J. Differ. Equ. 2017, Paper No. 135, 17 p. (2017; Zbl 1372.65187) Full Text: Link
Tersenov, Alkis S.; Tersenov, Aris S. Existence of Lipschitz continuous solutions to the Cauchy-Dirichlet problem for anisotropic parabolic equations. (English) Zbl 1386.35152 J. Funct. Anal. 272, No. 10, 3965-3986 (2017). MSC: 35K20 35K65 35B45 PDF BibTeX XML Cite \textit{A. S. Tersenov} and \textit{A. S. Tersenov}, J. Funct. Anal. 272, No. 10, 3965--3986 (2017; Zbl 1386.35152) Full Text: DOI
Butuzov, Valentin F. Asymptotic behaviour and stability of solutions of a singularly perturbed elliptic problem with a triple root of the degenerate equation. (English. Russian original) Zbl 1373.35026 Izv. Math. 81, No. 3, 481-504 (2017); translation from Izv. Ross. Akad. Nauk, Ser. Mat. 81, No. 3, 21-44 (2017). Reviewer: Denise Huet (Nancy) MSC: 35B25 35K20 35K58 35J61 35J25 35B40 35B35 35C10 PDF BibTeX XML Cite \textit{V. F. Butuzov}, Izv. Math. 81, No. 3, 481--504 (2017; Zbl 1373.35026); translation from Izv. Ross. Akad. Nauk, Ser. Mat. 81, No. 3, 21--44 (2017) Full Text: DOI
Punzo, Fabio; Strani, Marta Dirichlet boundary conditions for degenerate and singular nonlinear parabolic equations. (English) Zbl 1386.35141 Potential Anal. 47, No. 2, 151-168 (2017). MSC: 35K15 35K20 35K55 35K65 35K67 PDF BibTeX XML Cite \textit{F. Punzo} and \textit{M. Strani}, Potential Anal. 47, No. 2, 151--168 (2017; Zbl 1386.35141) Full Text: DOI arXiv
Hui, Kin Ming; Kim, Soojung Asymptotic large time behavior of singular solutions of the fast diffusion equation. (English) Zbl 1368.35031 Discrete Contin. Dyn. Syst. 37, No. 11, 5943-5977 (2017). MSC: 35B35 35B44 35K55 35K65 PDF BibTeX XML Cite \textit{K. M. Hui} and \textit{S. Kim}, Discrete Contin. Dyn. Syst. 37, No. 11, 5943--5977 (2017; Zbl 1368.35031) Full Text: DOI arXiv
Sturm, Stefan Existence of weak solutions of doubly nonlinear parabolic equations. (English) Zbl 1433.35183 J. Math. Anal. Appl. 455, No. 1, 842-863 (2017). MSC: 35K59 35D30 35K20 PDF BibTeX XML Cite \textit{S. Sturm}, J. Math. Anal. Appl. 455, No. 1, 842--863 (2017; Zbl 1433.35183) Full Text: DOI
Abdellaoui, Boumediene; Aguilar, Juan Antonio; Barrios, Begoña; Colorado, Eduardo; Charro, Fernando; García Azorero, Jesús; Medina, Maria; Merchán, Susana; Montoro, Luigi; Primo, Ana Ireneo peral: forty years as mentor. (English) Zbl 1368.35129 Adv. Nonlinear Stud. 17, No. 2, 217-243 (2017). MSC: 35J62 35J70 35J75 35K65 35K67 35K92 35J92 35J96 35B33 45K05 01A99 PDF BibTeX XML Cite \textit{B. Abdellaoui} et al., Adv. Nonlinear Stud. 17, No. 2, 217--243 (2017; Zbl 1368.35129) Full Text: DOI
Ion, Stelian; Marinoschi, Gabriela A self-organizing criticality mathematical model for contamination and epidemic spreading. (English) Zbl 1360.35103 Discrete Contin. Dyn. Syst., Ser. B 22, No. 2, 383-405 (2017). MSC: 35K61 35K67 35Q92 35K65 37B15 68Q80 PDF BibTeX XML Cite \textit{S. Ion} and \textit{G. Marinoschi}, Discrete Contin. Dyn. Syst., Ser. B 22, No. 2, 383--405 (2017; Zbl 1360.35103) Full Text: DOI
Baroni, Paolo; Lindfors, Casimir The Cauchy-Dirichlet problem for a general class of parabolic equations. (English) Zbl 1366.35056 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 34, No. 3, 593-624 (2017). MSC: 35K20 35B65 35K92 PDF BibTeX XML Cite \textit{P. Baroni} and \textit{C. Lindfors}, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 34, No. 3, 593--624 (2017; Zbl 1366.35056) Full Text: DOI arXiv
Ping, Li; Stinga, Pablo Raúl; Torrea, José Luis On weighted mixed-norm Sobolev estimates for some basic parabolic equations. (English) Zbl 1359.35090 Commun. Pure Appl. Anal. 16, No. 3, 855-882 (2017). MSC: 35K10 35B45 42B37 58J35 42B20 PDF BibTeX XML Cite \textit{L. Ping} et al., Commun. Pure Appl. Anal. 16, No. 3, 855--882 (2017; Zbl 1359.35090) Full Text: DOI
Baroni, Paolo Singular parabolic equations, measures satisfying density conditions, and gradient integrability. (English) Zbl 1365.35193 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 153, 89-116 (2017). MSC: 35R06 35K65 35B65 PDF BibTeX XML Cite \textit{P. Baroni}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 153, 89--116 (2017; Zbl 1365.35193) Full Text: DOI
Hao, Aijing; Zhou, Jun A new blow-up condition for semi-linear edge degenerate parabolic equation with singular potentials. (English) Zbl 1366.35077 Appl. Anal. 96, No. 3, 363-374 (2017). MSC: 35K55 35B33 35K65 35R01 PDF BibTeX XML Cite \textit{A. Hao} and \textit{J. Zhou}, Appl. Anal. 96, No. 3, 363--374 (2017; Zbl 1366.35077) Full Text: DOI
Fragnelli, Genni; Mugnai, Dimitri Carleman estimates for singular parabolic equations with interior degeneracy and non-smooth coefficients. (English) Zbl 1358.35219 Adv. Nonlinear Anal. 6, No. 1, 61-84 (2017). MSC: 35Q93 93B05 93B07 35A23 35B99 35K65 35K67 PDF BibTeX XML Cite \textit{G. Fragnelli} and \textit{D. Mugnai}, Adv. Nonlinear Anal. 6, No. 1, 61--84 (2017; Zbl 1358.35219) Full Text: DOI arXiv
Ji, Shanming; Li, Yutian; Huang, Rui; Yin, Jingxue Singular periodic solutions for the \(p\)-Laplacian in a punctured domain. (English) Zbl 1377.35181 Commun. Pure Appl. Anal. 16, No. 2, 373-392 (2017). MSC: 35K92 35B10 35B33 35K65 PDF BibTeX XML Cite \textit{S. Ji} et al., Commun. Pure Appl. Anal. 16, No. 2, 373--392 (2017; Zbl 1377.35181) Full Text: DOI
Popov, S. V. On behavior of the Cauchy-type integral at the endpoints of the integration contour and its application to boundary value problems for parabolic equations with changing direction of time. (Russian. English summary) Zbl 1399.35247 Mat. Zamet. SVFU 23, No. 2, 90-107 (2016). MSC: 35K65 35K25 35B65 PDF BibTeX XML Cite \textit{S. V. Popov}, Mat. Zamet. SVFU 23, No. 2, 90--107 (2016; Zbl 1399.35247) Full Text: MNR
Antontsev, S. N.; Kuznetsov, I. V. Singular perturbations of forward-backward \(p\)-parabolic equations. (English) Zbl 1378.35179 J. Elliptic Parabol. Equ. 2, No. 1-2, 357-370 (2016). MSC: 35K92 35K65 28A33 35B25 35B50 35K55 35R06 35R25 PDF BibTeX XML Cite \textit{S. N. Antontsev} and \textit{I. V. Kuznetsov}, J. Elliptic Parabol. Equ. 2, No. 1--2, 357--370 (2016; Zbl 1378.35179) Full Text: DOI
Wang, Shengqing; He, Wansheng; Peng, Congming Blow-up profiles for a degenerate and singular nonlinear parabolic system with nonlocal source. (Chinese. English summary) Zbl 1374.35090 Pure Appl. Math. 32, No. 5, 448-456 (2016). MSC: 35B44 35K65 35K67 PDF BibTeX XML Cite \textit{S. Wang} et al., Pure Appl. Math. 32, No. 5, 448--456 (2016; Zbl 1374.35090) Full Text: DOI