Raji, Reddy Narahari; Mohapatra, Jugal A robust numerical scheme for singularly perturbed delay parabolic initial-boundary-value problems involving mixed space shifts. (English) Zbl 07665293 Comput. Methods Differ. Equ. 11, No. 1, 42-51 (2023). MSC: 65M06 65M12 65M50 PDF BibTeX XML Cite \textit{R. N. Raji} and \textit{J. Mohapatra}, Comput. Methods Differ. Equ. 11, No. 1, 42--51 (2023; Zbl 07665293) Full Text: DOI OpenURL
Yapman, Ömer; Kudu, Mustafa; Amiraliyev, Gabil M. Method of exact difference schemes for the numerical solution of parameterized singularly perturbed problem. (English) Zbl 07660428 Mediterr. J. Math. 20, No. 3, Paper No. 146, 18 p. (2023). MSC: 65L11 65L12 65L20 65R20 PDF BibTeX XML Cite \textit{Ö. Yapman} et al., Mediterr. J. Math. 20, No. 3, Paper No. 146, 18 p. (2023; Zbl 07660428) Full Text: DOI OpenURL
Daoues, Adel; Hammami, Amani; Saoudi, Kamel Multiplicity results of nonlocal singular PDEs with critical Sobolev-Hardy exponent. (English) Zbl 07653412 Electron. J. Differ. Equ. 2023, Paper No. 10, 19 p. (2023). MSC: 35R11 35J25 35J75 35J92 46E35 PDF BibTeX XML Cite \textit{A. Daoues} et al., Electron. J. Differ. Equ. 2023, Paper No. 10, 19 p. (2023; Zbl 07653412) Full Text: Link OpenURL
Papageorgiou, Nikolaos S.; Rădulescu, Vicenţiu D.; Wen, Lixi Strongly singular nonhomogeneous eigenvalue problems. (English) Zbl 07647297 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 117, No. 1, Paper No. 32, 17 p. (2023). MSC: 35J20 35J75 PDF BibTeX XML Cite \textit{N. S. Papageorgiou} et al., Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 117, No. 1, Paper No. 32, 17 p. (2023; Zbl 07647297) Full Text: DOI OpenURL
Liu, Xiaolin; Shen, Chun Stability of delta shock solution for the simplified magnetohydrodynamics equations under the linear flux-function perturbation. (English) Zbl 07637362 Acta Appl. Math. 183, Paper No. 1, 28 p. (2023). MSC: 35L65 35L67 76N15 76W05 PDF BibTeX XML Cite \textit{X. Liu} and \textit{C. Shen}, Acta Appl. Math. 183, Paper No. 1, 28 p. (2023; Zbl 07637362) Full Text: DOI OpenURL
Qiao, Qi; Zhang, Xiang Traveling waves and their spectral stability in Keller-Segel system with large cell diffusion. (English) Zbl 07624000 J. Differ. Equations 344, 807-845 (2023). MSC: 35Q92 92C17 35C07 35B25 35P99 PDF BibTeX XML Cite \textit{Q. Qiao} and \textit{X. Zhang}, J. Differ. Equations 344, 807--845 (2023; Zbl 07624000) Full Text: DOI OpenURL
Singh, Mayank; Arora, Rajan Converging strong shock wave from a cylindrical piston in a van der Waals magnetogasdynamics with dust particles. (English) Zbl 07609367 Commun. Nonlinear Sci. Numer. Simul. 116, Article ID 106870, 17 p. (2023). MSC: 76W05 76L05 76T15 76M45 76M55 PDF BibTeX XML Cite \textit{M. Singh} and \textit{R. Arora}, Commun. Nonlinear Sci. Numer. Simul. 116, Article ID 106870, 17 p. (2023; Zbl 07609367) Full Text: DOI OpenURL
Elango, Sekar Second order singularly perturbed delay differential equations with non-local boundary condition. (English) Zbl 1502.65040 J. Comput. Appl. Math. 417, Article ID 114498, 13 p. (2023). MSC: 65L03 65L11 65L12 65L20 PDF BibTeX XML Cite \textit{S. Elango}, J. Comput. Appl. Math. 417, Article ID 114498, 13 p. (2023; Zbl 1502.65040) Full Text: DOI OpenURL
Kurina, G. A.; Kalashnikova, M. A. Singularly perturbed problems with multi-tempo fast variables. (English. Russian original) Zbl 07662527 Autom. Remote Control 83, No. 11, 1679-1723 (2022); translation from Avtom. Telemekh. 2022, No. 11, 3-61 (2022). MSC: 93C70 93C15 34B15 34D15 PDF BibTeX XML Cite \textit{G. A. Kurina} and \textit{M. A. Kalashnikova}, Autom. Remote Control 83, No. 11, 1679--1723 (2022; Zbl 07662527); translation from Avtom. Telemekh. 2022, No. 11, 3--61 (2022) Full Text: DOI OpenURL
Alam, Mohammad Prawesh; Khan, Arshad A new numerical algorithm for time-dependent singularly perturbed differential-difference convection-diffusion equation arising in computational neuroscience. (English) Zbl 07645481 Comput. Appl. Math. 41, No. 8, Paper No. 402, 32 p. (2022). MSC: 65M99 65N35 65N55 65L10 65L60 34B16 PDF BibTeX XML Cite \textit{M. P. Alam} and \textit{A. Khan}, Comput. Appl. Math. 41, No. 8, Paper No. 402, 32 p. (2022; Zbl 07645481) Full Text: DOI OpenURL
Allouch, Samar; Milišić, Vuk Friction mediated by transient elastic linkages: extension to loads of bounded variation. (English) Zbl 07636563 J. Integral Equations Appl. 34, No. 3, 267-294 (2022). MSC: 45K05 45M05 35Q92 74M10 92C17 PDF BibTeX XML Cite \textit{S. Allouch} and \textit{V. Milišić}, J. Integral Equations Appl. 34, No. 3, 267--294 (2022; Zbl 07636563) Full Text: DOI OpenURL
Negero, Naol Tufa A uniformly convergent numerical scheme for two parameters singularly perturbed parabolic convection-diffusion problems with a large temporal lag. (English) Zbl 07630837 Results Appl. Math. 16, Article ID 100338, 15 p. (2022). MSC: 65M06 65N06 65D07 65M12 35B25 35K57 76R50 35R07 PDF BibTeX XML Cite \textit{N. T. Negero}, Results Appl. Math. 16, Article ID 100338, 15 p. (2022; Zbl 07630837) Full Text: DOI OpenURL
Srinivas, E.; Lalu, M.; Phaneendra, K. A numerical approach for singular perturbation problems with an interior layer using an adaptive spline. (English) Zbl 1499.65331 Iran. J. Numer. Anal. Optim. 12, No. 2, 355-370 (2022). MSC: 65L10 65L11 65L12 65L20 PDF BibTeX XML Cite \textit{E. Srinivas} et al., Iran. J. Numer. Anal. Optim. 12, No. 2, 355--370 (2022; Zbl 1499.65331) Full Text: DOI OpenURL
Mohapatra, J.; Govindarao, L. A fourth-order optimal numerical approximation and its convergence for singularly perturbed time delayed parabolic problems. (English) Zbl 1499.65418 Iran. J. Numer. Anal. Optim. 12, No. 2, 250-276 (2022). MSC: 65M06 65M12 PDF BibTeX XML Cite \textit{J. Mohapatra} and \textit{L. Govindarao}, Iran. J. Numer. Anal. Optim. 12, No. 2, 250--276 (2022; Zbl 1499.65418) Full Text: DOI OpenURL
Buckingham, Robert J.; Miller, Peter D. Large-degree asymptotics of rational Painlevé-IV solutions by the isomonodromy method. (English) Zbl 07620685 Constr. Approx. 56, No. 2, 233-443 (2022). Reviewer: Tsvetana Stoyanova (Sofia) MSC: 34M55 34M50 33E17 34E05 34M56 34M60 PDF BibTeX XML Cite \textit{R. J. Buckingham} and \textit{P. D. Miller}, Constr. Approx. 56, No. 2, 233--443 (2022; Zbl 07620685) Full Text: DOI arXiv OpenURL
Coman, Ciprian D. Self-weight buckling of thin elastic shells: the case of a spherical equatorial segment. (English) Zbl 07604074 Z. Angew. Math. Phys. 73, No. 6, Paper No. 228, 24 p. (2022). MSC: 74G60 74K25 74G10 PDF BibTeX XML Cite \textit{C. D. Coman}, Z. Angew. Math. Phys. 73, No. 6, Paper No. 228, 24 p. (2022; Zbl 07604074) Full Text: DOI OpenURL
Priyadarshana, S.; Mohapatra, J.; Govindrao, L. An efficient uniformly convergent numerical scheme for singularly perturbed semilinear parabolic problems with large delay in time. (English) Zbl 1496.65126 J. Appl. Math. Comput. 68, No. 4, 2617-2639 (2022). MSC: 65M06 65M12 35K58 PDF BibTeX XML Cite \textit{S. Priyadarshana} et al., J. Appl. Math. Comput. 68, No. 4, 2617--2639 (2022; Zbl 1496.65126) Full Text: DOI OpenURL
Huang, Bo; Peng, Linping; Cui, Yong On the number of limit cycles bifurcating from a quartic reversible center. (English) Zbl 07592511 Mediterr. J. Math. 19, No. 5, Paper No. 220, 26 p. (2022). MSC: 37G15 34C07 34C05 34C29 PDF BibTeX XML Cite \textit{B. Huang} et al., Mediterr. J. Math. 19, No. 5, Paper No. 220, 26 p. (2022; Zbl 07592511) Full Text: DOI OpenURL
Cakir, Musa; Ekinci, Yilmaz; Cimen, Erkan A numerical approach for solving nonlinear Fredholm integro-differential equation with boundary layer. (English) Zbl 07575617 Comput. Appl. Math. 41, No. 6, Paper No. 259, 14 p. (2022). MSC: 65L05 65L11 65L12 65L20 65R20 PDF BibTeX XML Cite \textit{M. Cakir} et al., Comput. Appl. Math. 41, No. 6, Paper No. 259, 14 p. (2022; Zbl 07575617) Full Text: DOI OpenURL
Priyadarshana, S.; Mohapatra, J.; Pattanaik, S. R. Parameter uniform optimal order numerical approximations for time-delayed parabolic convection diffusion problems involving two small parameters. (English) Zbl 07575591 Comput. Appl. Math. 41, No. 6, Paper No. 233, 32 p. (2022). MSC: 65M06 65M12 PDF BibTeX XML Cite \textit{S. Priyadarshana} et al., Comput. Appl. Math. 41, No. 6, Paper No. 233, 32 p. (2022; Zbl 07575591) Full Text: DOI OpenURL
Gunes, Baransel; Demirbas, Mutlu A uniform discretization for solving singularly perturbed convection-diffusion boundary value problems. (English) Zbl 1491.65071 Mem. Differ. Equ. Math. Phys. 86, 69-84 (2022). MSC: 65L11 65L10 65L12 65L20 65L70 PDF BibTeX XML Cite \textit{B. Gunes} and \textit{M. Demirbas}, Mem. Differ. Equ. Math. Phys. 86, 69--84 (2022; Zbl 1491.65071) Full Text: Link OpenURL
Guglielmi, Nicola; Mehrmann, Volker Computation of the nearest structured matrix triplet with common null space. (English) Zbl 1493.37101 ETNA, Electron. Trans. Numer. Anal. 55, 508-531 (2022). MSC: 37M99 15A22 15A18 15A21 65K05 PDF BibTeX XML Cite \textit{N. Guglielmi} and \textit{V. Mehrmann}, ETNA, Electron. Trans. Numer. Anal. 55, 508--531 (2022; Zbl 1493.37101) Full Text: DOI arXiv Link OpenURL
Scott, Julian F. Dynamic and static stability of a drop attached to an inhomogeneous plane wall. (English) Zbl 1492.76057 J. Eng. Math. 135, Paper No. 4, 32 p. (2022). MSC: 76E17 76T30 76D05 76D45 76M45 35Q35 PDF BibTeX XML Cite \textit{J. F. Scott}, J. Eng. Math. 135, Paper No. 4, 32 p. (2022; Zbl 1492.76057) Full Text: DOI OpenURL
Debela, Habtamu G.; Woldaregay, Mesfin M.; Duressa, Gemechis F. Robust numerical method for singularly perturbed convection-diffusion type problems with non-local boundary condition. (English) Zbl 1489.65106 Math. Model. Anal. 27, No. 2, 199-214 (2022). MSC: 65L10 65L11 65L12 65L20 65L70 PDF BibTeX XML Cite \textit{H. G. Debela} et al., Math. Model. Anal. 27, No. 2, 199--214 (2022; Zbl 1489.65106) Full Text: DOI OpenURL
Iuorio, Annalisa; Kuehn, Christian Single-spike solutions to the 1D shadow Gierer-Meinhardt problem. (English) Zbl 1500.34001 Appl. Math. Lett. 132, Article ID 108147, 5 p. (2022). MSC: 34A05 34B15 34B18 34E15 PDF BibTeX XML Cite \textit{A. Iuorio} and \textit{C. Kuehn}, Appl. Math. Lett. 132, Article ID 108147, 5 p. (2022; Zbl 1500.34001) Full Text: DOI arXiv OpenURL
Rajeev Ranjan, Kumar; Gowrisankar, S. Uniformly convergent NIPG method for singularly perturbed convection diffusion problem on Shishkin type meshes. (English) Zbl 1492.65217 Appl. Numer. Math. 179, 125-148 (2022). MSC: 65L11 65L60 65L20 PDF BibTeX XML Cite \textit{K. Rajeev Ranjan} and \textit{S. Gowrisankar}, Appl. Numer. Math. 179, 125--148 (2022; Zbl 1492.65217) Full Text: DOI OpenURL
Du, Shaohong; Lin, Runchang; Zhang, Zhimin Residual-based a posteriori error estimators for mixed finite element methods for fourth order elliptic singularly perturbed problems. (English) Zbl 1493.65196 J. Comput. Appl. Math. 412, Article ID 114323, 16 p. (2022). MSC: 65N30 65N15 35B25 35J30 74K20 PDF BibTeX XML Cite \textit{S. Du} et al., J. Comput. Appl. Math. 412, Article ID 114323, 16 p. (2022; Zbl 1493.65196) Full Text: DOI OpenURL
Gunes, B.; Duru, Hakki A second-order difference scheme for the singularly perturbed Sobolev problems with third type boundary conditions on Bakhvalov mesh. (English) Zbl 1486.65103 J. Difference Equ. Appl. 28, No. 3, 385-405 (2022). MSC: 65M06 65N06 65M12 65M15 35B25 35B40 PDF BibTeX XML Cite \textit{B. Gunes} and \textit{H. Duru}, J. Difference Equ. Appl. 28, No. 3, 385--405 (2022; Zbl 1486.65103) Full Text: DOI OpenURL
Sbaiz, Gabriele Fast rotation limit for the 2-D non-homogeneous incompressible Euler equations. (English) Zbl 07496971 J. Math. Anal. Appl. 512, No. 1, Article ID 126140, 41 p. (2022). MSC: 35Q31 35Q86 76U65 76B03 86A05 35B25 35B65 35A01 35A02 PDF BibTeX XML Cite \textit{G. Sbaiz}, J. Math. Anal. Appl. 512, No. 1, Article ID 126140, 41 p. (2022; Zbl 07496971) Full Text: DOI arXiv OpenURL
Huzak, Renato Cyclicity of canard cycles with hyperbolic saddles located away from the critical curve. (English) Zbl 1493.34163 J. Differ. Equations 320, 479-509 (2022). MSC: 34E17 34C07 34C23 34C05 34E15 34C26 34E20 PDF BibTeX XML Cite \textit{R. Huzak}, J. Differ. Equations 320, 479--509 (2022; Zbl 1493.34163) Full Text: DOI OpenURL
Danilin, A. R. Asymptotic expansion for the solution of an optimal boundary control problem in a doubly connected domain with different control intensity on boundary segments. (English. Russian original) Zbl 1490.49017 Comput. Math. Math. Phys. 62, No. 2, 218-231 (2022); translation from Zh. Vychisl. Mat. Mat. Fiz. 62, No. 2, 217-231 (2022). Reviewer: Juan Casado-Díaz (Sevilla) MSC: 49K20 35B40 35B25 PDF BibTeX XML Cite \textit{A. R. Danilin}, Comput. Math. Math. Phys. 62, No. 2, 218--231 (2022; Zbl 1490.49017); translation from Zh. Vychisl. Mat. Mat. Fiz. 62, No. 2, 217--231 (2022) Full Text: DOI OpenURL
Shivhare, Meenakshi; Podila, Pramod Chakravarthy Numerical study of two-parameter singularly perturbed problem in two dimensions on an exponentially graded mesh. (English) Zbl 1499.65613 Comput. Appl. Math. 41, No. 2, Paper No. 81, 17 p. (2022). MSC: 65N06 65N50 65N15 65N12 35B25 35J15 PDF BibTeX XML Cite \textit{M. Shivhare} and \textit{P. C. Podila}, Comput. Appl. Math. 41, No. 2, Paper No. 81, 17 p. (2022; Zbl 1499.65613) Full Text: DOI OpenURL
Lin, Matthew M.; Chu, Moody T. Rank-1 approximation for entangled multipartite real systems. (English) Zbl 1486.81033 J. Sci. Comput. 91, No. 1, Paper No. 24, 20 p. (2022). MSC: 81P40 81P42 81Q15 35P30 81P45 81P68 81V70 46A32 81-10 PDF BibTeX XML Cite \textit{M. M. Lin} and \textit{M. T. Chu}, J. Sci. Comput. 91, No. 1, Paper No. 24, 20 p. (2022; Zbl 1486.81033) Full Text: DOI OpenURL
Iuorio, Annalisa; Jankowiak, Gaspard; Szmolyan, Peter; Wolfram, Marie-Therese A PDE model for unidirectional flows: stationary profiles and asymptotic behaviour. (English) Zbl 1497.34086 J. Math. Anal. Appl. 510, No. 2, Article ID 126018, 33 p. (2022). Reviewer: Jörg Härterich (Bochum) MSC: 34E15 34B15 35B40 34C20 34C45 34E17 PDF BibTeX XML Cite \textit{A. Iuorio} et al., J. Math. Anal. Appl. 510, No. 2, Article ID 126018, 33 p. (2022; Zbl 1497.34086) Full Text: DOI arXiv OpenURL
Itikawa, Jackson; Oliveira, Regilene; Torregrosa, Joan First-order perturbation for multi-parameter center families. (English) Zbl 1493.34106 J. Differ. Equations 309, 291-310 (2022). Reviewer: Changjian Liu (Zhuhai) MSC: 34C07 34C29 34E10 34C05 PDF BibTeX XML Cite \textit{J. Itikawa} et al., J. Differ. Equations 309, 291--310 (2022; Zbl 1493.34106) Full Text: DOI OpenURL
Kudu, Mustafa; Amirali, Ilhame; Amiraliyev, Gabil M. A second order accurate method for a parameterized singularly perturbed problem with integral boundary condition. (English) Zbl 1483.65125 J. Comput. Appl. Math. 404, Article ID 113894, 9 p. (2022). MSC: 65L11 65L12 65L20 65L70 PDF BibTeX XML Cite \textit{M. Kudu} et al., J. Comput. Appl. Math. 404, Article ID 113894, 9 p. (2022; Zbl 1483.65125) Full Text: DOI OpenURL
Sarakhsi, Alireza; Ashrafi, Siamak Investigation of the boundary layers of the singular perturbation problem including the Cauchy-Euler differential equation. (English) Zbl 07618885 Sahand Commun. Math. Anal. 18, No. 4, 73-96 (2021). MSC: 34E15 34A30 34B15 34B10 34B05 PDF BibTeX XML Cite \textit{A. Sarakhsi} and \textit{S. Ashrafi}, Sahand Commun. Math. Anal. 18, No. 4, 73--96 (2021; Zbl 07618885) Full Text: DOI OpenURL
Elango, Sekar; Tamilselvan, Ayyadurai; Vadivel, R.; Gunasekaran, Nallappan; Zhu, Haitao; Cao, Jinde; Li, Xiaodi Finite difference scheme for singularly perturbed reaction diffusion problem of partial delay differential equation with nonlocal boundary condition. (English) Zbl 1494.65069 Adv. Difference Equ. 2021, Paper No. 151, 20 p. (2021). MSC: 65M06 65M12 35K20 35K15 PDF BibTeX XML Cite \textit{S. Elango} et al., Adv. Difference Equ. 2021, Paper No. 151, 20 p. (2021; Zbl 1494.65069) Full Text: DOI OpenURL
Daba, Imiru Takele; Duressa, Gemechis File Uniformly convergent numerical scheme for a singularly perturbed differential-difference equations arising in computational neuroscience. (English) Zbl 07567505 J. Appl. Math. Inform. 39, No. 5-6, 655-676 (2021). MSC: 35B25 65M06 65N12 PDF BibTeX XML Cite \textit{I. T. Daba} and \textit{G. F. Duressa}, J. Appl. Math. Inform. 39, No. 5--6, 655--676 (2021; Zbl 07567505) Full Text: DOI OpenURL
Yumagulov, Marat Gayazovich; Ibragimova, Liliya Sunagatovna; Belova, Anna Sergeevna Perturbation theory methods in problem of parametric resonance for linear periodic Hamiltonian systems. (Russian. English summary) Zbl 1502.70041 Ufim. Mat. Zh. 13, No. 3, 178-195 (2021); translation in Ufa Math. J. 13, No. 3, 174-190 (2021). MSC: 70H09 70H12 70F07 37J25 34D15 37J40 PDF BibTeX XML Cite \textit{M. G. Yumagulov} et al., Ufim. Mat. Zh. 13, No. 3, 178--195 (2021; Zbl 1502.70041); translation in Ufa Math. J. 13, No. 3, 174--190 (2021) Full Text: DOI MNR OpenURL
Sun, Dan; Peng, Linping Limit cycles appearing from piecewise smooth perturbations to a reversible nonlinear center. (English) Zbl 1496.34074 Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 16, Article ID 2150250, 13 p. (2021). Reviewer: Zhengdong Du (Chengdu) MSC: 34C23 34C05 34A36 34C14 34C29 34E10 34C07 PDF BibTeX XML Cite \textit{D. Sun} and \textit{L. Peng}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 16, Article ID 2150250, 13 p. (2021; Zbl 1496.34074) Full Text: DOI OpenURL
Chawla, Sheetal; Urmil; Singh, Jagbir A parameter-robust convergence scheme for a coupled system of singularly perturbed first order differential equations with discontinuous source term. (English) Zbl 1499.65376 Int. J. Appl. Comput. Math. 7, No. 3, Paper No. 118, 18 p. (2021). MSC: 65M06 65M12 65M15 35B25 65L05 65L11 PDF BibTeX XML Cite \textit{S. Chawla} et al., Int. J. Appl. Comput. Math. 7, No. 3, Paper No. 118, 18 p. (2021; Zbl 1499.65376) Full Text: DOI OpenURL
Podila, Pramod Chakravarthy; Gupta, Trun A nonstandard method for a coupled system of singularly perturbed delay differential equations. (English) Zbl 1499.34378 Int. J. Appl. Comput. Math. 7, No. 3, Paper No. 105, 11 p. (2021). MSC: 34K26 34K10 34K06 65L03 PDF BibTeX XML Cite \textit{P. C. Podila} and \textit{T. Gupta}, Int. J. Appl. Comput. Math. 7, No. 3, Paper No. 105, 11 p. (2021; Zbl 1499.34378) Full Text: DOI OpenURL
Liu, Anning; Huang, Zhongyi Asymptotic analysis and a uniformly convergent numerical method for singular perturbation problems. (English) Zbl 1482.65219 East Asian J. Appl. Math. 11, No. 4, 755-787 (2021). MSC: 65N35 35C20 PDF BibTeX XML Cite \textit{A. Liu} and \textit{Z. Huang}, East Asian J. Appl. Math. 11, No. 4, 755--787 (2021; Zbl 1482.65219) Full Text: DOI OpenURL
Shavlakadze, Nugzar; Jamaspishvili, Tsiala The contact problem for piecewise homogeneous viscoelastic plate reinforced with a finite rigid patch. (English) Zbl 1484.74063 Trans. A. Razmadze Math. Inst. 175, No. 3, 467-473 (2021). MSC: 74M15 74K20 74D05 74S70 74G10 PDF BibTeX XML Cite \textit{N. Shavlakadze} and \textit{T. Jamaspishvili}, Trans. A. Razmadze Math. Inst. 175, No. 3, 467--473 (2021; Zbl 1484.74063) Full Text: Link OpenURL
Hoai, Nguyen Thi Asymptotic approximation to a solution of a singularly perturbed linear-quadratic optimal control problem with second-order linear ordinary differential equation of state variable. (English) Zbl 1476.49041 Numer. Algebra Control Optim. 11, No. 4, 495-512 (2021). MSC: 49N10 34E15 93C70 PDF BibTeX XML Cite \textit{N. T. Hoai}, Numer. Algebra Control Optim. 11, No. 4, 495--512 (2021; Zbl 1476.49041) Full Text: DOI OpenURL
Tsaousis, Theodosis D.; Chatjigeorgiou, Ioannis K. Higher order phenomena connected with the two-dimensional breaking wave impact on a vertical impermeable wall with air entrapment. (English) Zbl 1493.76020 Eur. J. Mech., B, Fluids 89, 180-190 (2021). MSC: 76B15 76M45 86A05 PDF BibTeX XML Cite \textit{T. D. Tsaousis} and \textit{I. K. Chatjigeorgiou}, Eur. J. Mech., B, Fluids 89, 180--190 (2021; Zbl 1493.76020) Full Text: DOI OpenURL
Biswal, Uddhaba; Chakraverty, S.; Ojha, B. K. Application of homotopy perturbation method in inverse analysis of Jeffery-Hamel flow problem. (English) Zbl 1494.76059 Eur. J. Mech., B, Fluids 86, 107-112 (2021). MSC: 76M21 76M45 PDF BibTeX XML Cite \textit{U. Biswal} et al., Eur. J. Mech., B, Fluids 86, 107--112 (2021; Zbl 1494.76059) Full Text: DOI OpenURL
Ranjan, Rakesh; Prasad, Hari Shankar A novel approach for the numerical approximation to the solution of singularly perturbed differential-difference equations with small shifts. (English) Zbl 1475.65057 J. Appl. Math. Comput. 65, No. 1-2, 403-427 (2021). MSC: 65L10 65L11 65L12 65L20 PDF BibTeX XML Cite \textit{R. Ranjan} and \textit{H. S. Prasad}, J. Appl. Math. Comput. 65, No. 1--2, 403--427 (2021; Zbl 1475.65057) Full Text: DOI OpenURL
Georgievskii, D. V. Asymptotics of eigenvalues in the Orr-Sommerfeld problem for low velocities of unperturbed flow. (English. Russian original) Zbl 1481.76094 Dokl. Math. 103, No. 1, 19-22 (2021); translation from Dokl. Ross. Akad. Nauk, Mat. Inform. Protsessy Upr. 496, 26-29 (2021). MSC: 76E05 76M45 76D05 PDF BibTeX XML Cite \textit{D. V. Georgievskii}, Dokl. Math. 103, No. 1, 19--22 (2021; Zbl 1481.76094); translation from Dokl. Ross. Akad. Nauk, Mat. Inform. Protsessy Upr. 496, 26--29 (2021) Full Text: DOI OpenURL
Bansal, Komal; Sharma, Kapil K. A high order robust numerical scheme for the generalized Stein’s model of neuronal variability. (English) Zbl 07409802 J. Difference Equ. Appl. 27, No. 5, 637-663 (2021). MSC: 65L11 65M12 35K20 PDF BibTeX XML Cite \textit{K. Bansal} and \textit{K. K. Sharma}, J. Difference Equ. Appl. 27, No. 5, 637--663 (2021; Zbl 07409802) Full Text: DOI OpenURL
Tursunov, D. A.; Omaralieva, G. A. Asymptotics of the solution to a two-band two-point boundary value problem. (Russian. English summary) Zbl 1483.34076 Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat., Mekh., Fiz. 13, No. 2, 46-52 (2021). Reviewer: Robert Vrabel (Trnava) MSC: 34E05 34B05 34E15 PDF BibTeX XML Cite \textit{D. A. Tursunov} and \textit{G. A. Omaralieva}, Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat., Mekh., Fiz. 13, No. 2, 46--52 (2021; Zbl 1483.34076) Full Text: DOI MNR OpenURL
Zegeling, André; Kooij, Robert E. Several bifurcation mechanisms for limit cycles in a predator-prey system. (English) Zbl 1477.34075 Qual. Theory Dyn. Syst. 20, No. 3, Paper No. 65, 48 p. (2021). MSC: 34C60 92D25 34C05 34C23 34C07 34E15 PDF BibTeX XML Cite \textit{A. Zegeling} and \textit{R. E. Kooij}, Qual. Theory Dyn. Syst. 20, No. 3, Paper No. 65, 48 p. (2021; Zbl 1477.34075) Full Text: DOI OpenURL
Ganai, Tinku; Adhikari, Bibhas Preserving spectral properties of structured matrices under structured perturbations. (English) Zbl 1476.15013 Linear Algebra Appl. 629, 168-191 (2021). Reviewer: Bojan Kuzma (Ljubljana) MSC: 15A18 15A63 15A67 15A20 15A10 47A15 47A55 PDF BibTeX XML Cite \textit{T. Ganai} and \textit{B. Adhikari}, Linear Algebra Appl. 629, 168--191 (2021; Zbl 1476.15013) Full Text: DOI arXiv OpenURL
Daba, Imiru Takele; Duressa, Gemechis File Hybrid algorithm for singularly perturbed delay parabolic partial differential equations. (English) Zbl 1486.65099 Appl. Appl. Math. 16, No. 1, 397-416 (2021). MSC: 65M06 65N06 65D07 35B25 35K67 35R07 PDF BibTeX XML Cite \textit{I. T. Daba} and \textit{G. F. Duressa}, Appl. Appl. Math. 16, No. 1, 397--416 (2021; Zbl 1486.65099) Full Text: Link OpenURL
Huang, Xuehai; Shi, Yuling; Wang, Wenqing A Morley-Wang-Xu element method for a fourth order elliptic singular perturbation problem. (English) Zbl 1476.65302 J. Sci. Comput. 87, No. 3, Paper No. 84, 24 p. (2021). MSC: 65N30 65N12 65F08 65F10 35B25 35J30 35J05 76D07 76S05 76M10 PDF BibTeX XML Cite \textit{X. Huang} et al., J. Sci. Comput. 87, No. 3, Paper No. 84, 24 p. (2021; Zbl 1476.65302) Full Text: DOI arXiv OpenURL
Truhar, Ninoslav; Li, Ren-Cang On an eigenvector-dependent nonlinear eigenvalue problem from the perspective of relative perturbation theory. (English) Zbl 1473.15018 J. Comput. Appl. Math. 395, Article ID 113596, 11 p. (2021). Reviewer: Manouchehr Misaghian (Prairie View) MSC: 15A18 65F15 65H17 47J10 47H09 PDF BibTeX XML Cite \textit{N. Truhar} and \textit{R.-C. Li}, J. Comput. Appl. Math. 395, Article ID 113596, 11 p. (2021; Zbl 1473.15018) Full Text: DOI OpenURL
Butuzov, V. F.; Simakov, R. E. Asymptotics of the solution of a singularly perturbed system of equations with a multizone internal layer. (English. Russian original) Zbl 1469.34077 Differ. Equ. 57, No. 4, 415-445 (2021); translation from Differ. Uravn. 57, No. 4, 435-465 (2021). Reviewer: Robert Vrabel (Trnava) MSC: 34E15 34B15 34E05 PDF BibTeX XML Cite \textit{V. F. Butuzov} and \textit{R. E. Simakov}, Differ. Equ. 57, No. 4, 415--445 (2021; Zbl 1469.34077); translation from Differ. Uravn. 57, No. 4, 435--465 (2021) Full Text: DOI OpenURL
Kudu, Mustafa; Amirali, Ilhame; Amiraliyev, Gabil M. A fitted second-order difference method for a parameterized problem with integral boundary condition exhibiting initial layer. (English) Zbl 1471.65091 Mediterr. J. Math. 18, No. 3, Paper No. 106, 17 p. (2021). MSC: 65L11 65L12 65L20 34K26 PDF BibTeX XML Cite \textit{M. Kudu} et al., Mediterr. J. Math. 18, No. 3, Paper No. 106, 17 p. (2021; Zbl 1471.65091) Full Text: DOI OpenURL
Del Santo, Daniele; Fanelli, Francesco; Sbaiz, Gabriele; Wróblewska-Kamińska, Aneta A multiscale problem for viscous heat-conducting fluids in fast rotation. (English) Zbl 1462.35404 J. Nonlinear Sci. 31, No. 1, Paper No. 21, 64 p. (2021). MSC: 35Q86 35B25 76U60 35B40 76M45 86A05 76D05 80A19 PDF BibTeX XML Cite \textit{D. Del Santo} et al., J. Nonlinear Sci. 31, No. 1, Paper No. 21, 64 p. (2021; Zbl 1462.35404) Full Text: DOI arXiv OpenURL
Cobb, Dimitri; Fanelli, Francesco On the fast rotation asymptotics of a non-homogeneous incompressible MHD system. (English) Zbl 1464.35215 Nonlinearity 34, No. 4, 2483-2526 (2021). MSC: 35Q35 35B25 76U05 35B40 76W05 76U65 PDF BibTeX XML Cite \textit{D. Cobb} and \textit{F. Fanelli}, Nonlinearity 34, No. 4, 2483--2526 (2021; Zbl 1464.35215) Full Text: DOI arXiv OpenURL
Hernandez, Taylor M.; Van Beeumen, Roel; Caprio, Mark A.; Yang, Chao A greedy algorithm for computing eigenvalues of a symmetric matrix with localized eigenvectors. (English) Zbl 07332755 Numer. Linear Algebra Appl. 28, No. 2, e2341, 16 p. (2021). MSC: 65F15 15A18 PDF BibTeX XML Cite \textit{T. M. Hernandez} et al., Numer. Linear Algebra Appl. 28, No. 2, e2341, 16 p. (2021; Zbl 07332755) Full Text: DOI arXiv OpenURL
Lian, Wen; Bai, Zhanbing A class of fourth order nonlinear boundary value problem with singular perturbation. (English) Zbl 1477.34082 Appl. Math. Lett. 115, Article ID 106965, 10 p. (2021). Reviewer: Fatih Say (Ordu) MSC: 34E15 34B15 44A10 34E05 PDF BibTeX XML Cite \textit{W. Lian} and \textit{Z. Bai}, Appl. Math. Lett. 115, Article ID 106965, 10 p. (2021; Zbl 1477.34082) Full Text: DOI OpenURL
Gu, Jiaxi; Jung, Jae-Hun Consistent, non-oscillatory RBF finite difference solutions to boundary layer problems for any degree on uniform grids. (English) Zbl 1461.65217 Appl. Math. Lett. 115, Article ID 106944, 9 p. (2021). MSC: 65L11 65D12 PDF BibTeX XML Cite \textit{J. Gu} and \textit{J.-H. Jung}, Appl. Math. Lett. 115, Article ID 106944, 9 p. (2021; Zbl 1461.65217) Full Text: DOI OpenURL
Felli, Veronica; Noris, Benedetta; Ognibene, Roberto Eigenvalues of the Laplacian with moving mixed boundary conditions: the case of disappearing Dirichlet region. (English) Zbl 1464.35086 Calc. Var. Partial Differ. Equ. 60, No. 1, Paper No. 12, 33 p. (2021). Reviewer: Rodica Luca (Iaşi) MSC: 35J25 35P20 35B25 PDF BibTeX XML Cite \textit{V. Felli} et al., Calc. Var. Partial Differ. Equ. 60, No. 1, Paper No. 12, 33 p. (2021; Zbl 1464.35086) Full Text: DOI arXiv OpenURL
Huang, Jian; Cen, Zhongdi; Xu, Aimin An improved a posteriori error estimation for a parameterized singular perturbation problem. (English) Zbl 1460.65091 Appl. Math. Lett. 114, Article ID 106912, 8 p. (2021). MSC: 65L11 65L70 65L50 PDF BibTeX XML Cite \textit{J. Huang} et al., Appl. Math. Lett. 114, Article ID 106912, 8 p. (2021; Zbl 1460.65091) Full Text: DOI OpenURL
Durmaz, Muhammet Enes; Amiraliyev, Gabil M. A robust numerical method for a singularly perturbed Fredholm integro-differential equation. (English) Zbl 1461.65216 Mediterr. J. Math. 18, No. 1, Paper No. 24, 17 p. (2021). MSC: 65L11 65L12 65L20 45J05 PDF BibTeX XML Cite \textit{M. E. Durmaz} and \textit{G. M. Amiraliyev}, Mediterr. J. Math. 18, No. 1, Paper No. 24, 17 p. (2021; Zbl 1461.65216) Full Text: DOI OpenURL
Gómez, Delfina; Nazarov, Sergei A.; Pérez-Martínez, Maria-Eugenia Localization effects for Dirichlet problems in domains surrounded by thin stiff and heavy bands. (English) Zbl 1451.35016 J. Differ. Equations 270, 1160-1195 (2021). MSC: 35B25 35P05 35P20 35J25 47A55 47A75 49R05 74K15 PDF BibTeX XML Cite \textit{D. Gómez} et al., J. Differ. Equations 270, 1160--1195 (2021; Zbl 1451.35016) Full Text: DOI OpenURL
Glizer, Valery Y.; Kelis, Oleg Finite-horizon \(H_{\infty}\) control problem with singular control cost. (English) Zbl 07627214 Gusikhin, Oleg (ed.) et al., Informatics in control, automation and robotics. 14th international conference, ICINCO 2017 Madrid, Spain, July 26–28, 2017 Revised selected papers. Cham: Springer. Lect. Notes Electr. Eng. 495, 23-46 (2020). MSC: 93B36 93C70 93C05 93C41 PDF BibTeX XML Cite \textit{V. Y. Glizer} and \textit{O. Kelis}, Lect. Notes Electr. Eng. 495, 23--46 (2020; Zbl 07627214) Full Text: DOI OpenURL
Lastra, A.; Malek, S. Boundary layer expansions for initial value problems with two complex time variables. (English) Zbl 1487.35182 Adv. Difference Equ. 2020, Paper No. 20, 24 p. (2020). MSC: 35C10 35C20 PDF BibTeX XML Cite \textit{A. Lastra} and \textit{S. Malek}, Adv. Difference Equ. 2020, Paper No. 20, 24 p. (2020; Zbl 1487.35182) Full Text: DOI arXiv OpenURL
Chen, G.; Lastra, A.; Malek, S. Parametric Gevrey asymptotics in two complex time variables through truncated Laplace transforms. (English) Zbl 1485.35116 Adv. Difference Equ. 2020, Paper No. 307, 31 p. (2020). MSC: 35C10 35C20 44A10 PDF BibTeX XML Cite \textit{G. Chen} et al., Adv. Difference Equ. 2020, Paper No. 307, 31 p. (2020; Zbl 1485.35116) Full Text: DOI OpenURL
Cen, Zhongdi; Xu, Aimin; Le, Anbo; Liu, Li-Bin A uniformly convergent hybrid difference scheme for a system of singularly perturbed initial value problems. (English) Zbl 1480.65185 Int. J. Comput. Math. 97, No. 5, 1058-1086 (2020). MSC: 65L11 65L05 65L12 65L50 PDF BibTeX XML Cite \textit{Z. Cen} et al., Int. J. Comput. Math. 97, No. 5, 1058--1086 (2020; Zbl 1480.65185) Full Text: DOI OpenURL
Golovaty, Yuriy On spectrum of strings with \(\delta'\)-like perturbations of mass density. (English) Zbl 1474.34193 Visn. L’viv. Univ., Ser. Mekh.-Mat. 89, 60-79 (2020). MSC: 34B24 34L05 34L10 34L20 PDF BibTeX XML Cite \textit{Y. Golovaty}, Visn. L'viv. Univ., Ser. Mekh.-Mat. 89, 60--79 (2020; Zbl 1474.34193) Full Text: DOI arXiv OpenURL
Okrasińska-Płociniczak, Hanna; Płociniczak, Łukasz Asymptotic solution of a boundary value problem for a spring-mass model of legged locomotion. (English) Zbl 1466.34049 J. Nonlinear Sci. 30, No. 6, 2971-2988 (2020). MSC: 34C60 34B15 34E10 92C10 34E05 PDF BibTeX XML Cite \textit{H. Okrasińska-Płociniczak} and \textit{Ł. Płociniczak}, J. Nonlinear Sci. 30, No. 6, 2971--2988 (2020; Zbl 1466.34049) Full Text: DOI OpenURL
Zhu, Ya’nan; Wen, Guanghui Continuous-time algorithm design for distributed constrained optimization over weight-balanced directed networks. (Chinese. English summary) Zbl 1488.90226 J. Nanjing Univ. Inf. Sci. Technol., Nat. Sci. 12, No. 5, 549-555 (2020). MSC: 90C35 68W15 90B10 90C25 PDF BibTeX XML Cite \textit{Y. Zhu} and \textit{G. Wen}, J. Nanjing Univ. Inf. Sci. Technol., Nat. Sci. 12, No. 5, 549--555 (2020; Zbl 1488.90226) Full Text: DOI OpenURL
Puvaneswari, A.; Babu, A. Ramesh; Valanarasu, T. Cubic spline scheme on variable mesh for singularly perturbed periodical boundary value problem. (English) Zbl 1462.65089 Novi Sad J. Math. 50, No. 1, 157-172 (2020). MSC: 65L11 65L10 65L60 PDF BibTeX XML Cite \textit{A. Puvaneswari} et al., Novi Sad J. Math. 50, No. 1, 157--172 (2020; Zbl 1462.65089) Full Text: DOI OpenURL
Huang, Jianfeng; Torregrosa, Joan; Villadelprat, Jordi On the number of limit cycles in generalized Abel equations. (English) Zbl 1472.34065 SIAM J. Appl. Dyn. Syst. 19, No. 4, 2343-2370 (2020). Reviewer: Klaus R. Schneider (Berlin) MSC: 34C07 34C05 37C60 PDF BibTeX XML Cite \textit{J. Huang} et al., SIAM J. Appl. Dyn. Syst. 19, No. 4, 2343--2370 (2020; Zbl 1472.34065) Full Text: DOI OpenURL
Lin, Runchang; Ye, Xiu; Zhang, Shangyou; Zhu, Peng Analysis of a DG method for singularly perturbed convection-diffusion problems. (English) Zbl 1468.65198 J. Appl. Anal. Comput. 10, No. 3, 830-841 (2020). MSC: 65N30 65N15 PDF BibTeX XML Cite \textit{R. Lin} et al., J. Appl. Anal. Comput. 10, No. 3, 830--841 (2020; Zbl 1468.65198) Full Text: DOI OpenURL
Perjan, A.; Rusu, G. Abstract second order differential equations with two small parameters and Lipschitzian nonlinearities. (English) Zbl 1474.34391 Bukovyn. Mat. Zh. 8, No. 1, 29-40 (2020). MSC: 34E15 34G20 34A12 34E10 PDF BibTeX XML Cite \textit{A. Perjan} and \textit{G. Rusu}, Bukovyn. Mat. Zh. 8, No. 1, 29--40 (2020; Zbl 1474.34391) Full Text: DOI OpenURL
Musoke, Elle; Krauskopf, Bernd; Osinga, Hinke M. A surface of heteroclinic connections between two saddle slow manifolds in the Olsen model. (English) Zbl 1461.34072 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 16, Article ID 2030048, 33 p. (2020). MSC: 34C60 34C45 92C45 34E20 34C05 34C37 37M21 PDF BibTeX XML Cite \textit{E. Musoke} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 16, Article ID 2030048, 33 p. (2020; Zbl 1461.34072) Full Text: DOI OpenURL
Basha, Pathan Mahabub; Shanthi, Vembu A robust second order numerical method for a weakly coupled system of singularly perturbed reaction-diffusion problem with discontinuous source term. (English) Zbl 1453.65176 Int. J. Comput. Sci. Math. 11, No. 1, 63-80 (2020). MSC: 65L11 65L12 PDF BibTeX XML Cite \textit{P. M. Basha} and \textit{V. Shanthi}, Int. J. Comput. Sci. Math. 11, No. 1, 63--80 (2020; Zbl 1453.65176) Full Text: DOI OpenURL
Deng, Rui; Li, Baoyi; Zhang, Yongkang Estimation of number of limit cycles for a class of continuous piecewise linear Hamiltonian systems under linear perturbation. (Chinese. English summary) Zbl 1463.34138 J. Tianjin Norm. Univ., Nat. Sci. Ed. 40, No. 3, 1-5 (2020). MSC: 34C07 34C05 34E10 34A36 PDF BibTeX XML Cite \textit{R. Deng} et al., J. Tianjin Norm. Univ., Nat. Sci. Ed. 40, No. 3, 1--5 (2020; Zbl 1463.34138) Full Text: DOI OpenURL
Lotz, Martin; Noferini, Vanni Wilkinson’s bus: weak condition numbers, with an application to singular polynomial eigenproblems. (English) Zbl 1455.65056 Found. Comput. Math. 20, No. 6, 1439-1473 (2020). MSC: 65F15 65F35 15A18 15B52 60H99 PDF BibTeX XML Cite \textit{M. Lotz} and \textit{V. Noferini}, Found. Comput. Math. 20, No. 6, 1439--1473 (2020; Zbl 1455.65056) Full Text: DOI arXiv OpenURL
Ni, M. K.; Qi, X. T.; Levashova, N. T. Internal layer for a singularly perturbed equation with discontinuous right-hand side. (English. Russian original) Zbl 1458.34104 Differ. Equ. 56, No. 10, 1276-1284 (2020); translation from Differ. Uravn. 56, No. 10, 1310-1317 (2020). Reviewer: Robert Vrabel (Trnava) MSC: 34E15 34B15 34E05 34A36 PDF BibTeX XML Cite \textit{M. K. Ni} et al., Differ. Equ. 56, No. 10, 1276--1284 (2020; Zbl 1458.34104); translation from Differ. Uravn. 56, No. 10, 1310--1317 (2020) Full Text: DOI OpenURL
Shakti, D.; Mohapatra, J. Uniformly convergent second order numerical method for a class of parameterized singular perturbation problems. (English) Zbl 1451.65095 Differ. Equ. Dyn. Syst. 28, No. 4, 1033-1043 (2020). MSC: 65L10 65L11 65L12 65L20 PDF BibTeX XML Cite \textit{D. Shakti} and \textit{J. Mohapatra}, Differ. Equ. Dyn. Syst. 28, No. 4, 1033--1043 (2020; Zbl 1451.65095) Full Text: DOI OpenURL
Lastra, A.; Malek, S. On parametric Gevrey asymptotics for some nonlinear initial value problems in symmetric complex time variables. (English) Zbl 1454.35404 Asymptotic Anal. 118, No. 1-2, 49-79 (2020). Reviewer: Rodica Luca (Iaşi) MSC: 35Q99 35R09 35B40 35C20 35B25 44A10 42A38 PDF BibTeX XML Cite \textit{A. Lastra} and \textit{S. Malek}, Asymptotic Anal. 118, No. 1--2, 49--79 (2020; Zbl 1454.35404) Full Text: DOI arXiv OpenURL
Cui, Wenzhe; Li, Baoyi; Zhang, Yongkang Lowest upper bounds of number of limit cycles on Bogdanov-Takens system under piecewise \(n\)-degree polynomial perturbation. (Chinese. English summary) Zbl 1463.34137 J. Tianjin Norm. Univ., Nat. Sci. Ed. 40, No. 2, 1-7 (2020). MSC: 34C07 34C05 34E10 34A36 PDF BibTeX XML Cite \textit{W. Cui} et al., J. Tianjin Norm. Univ., Nat. Sci. Ed. 40, No. 2, 1--7 (2020; Zbl 1463.34137) Full Text: DOI OpenURL
Kozhobekov, K. G.; Erkebaev, U. Z.; Tursunov, D. A. Asymptotics of the solution to the boundary-value problems when limited equation has singular point. (English) Zbl 1456.34066 Lobachevskii J. Math. 41, No. 1, 96-101 (2020). Reviewer: Robert Vrabel (Trnava) MSC: 34E05 34E15 34B05 PDF BibTeX XML Cite \textit{K. G. Kozhobekov} et al., Lobachevskii J. Math. 41, No. 1, 96--101 (2020; Zbl 1456.34066) Full Text: DOI OpenURL
Vira, M. B. Asymptotics of the solutions of boundary-value problems for linear singularly perturbed systems of differential equations in the case of multiple spectrum of the boundary matrix. (English. Ukrainian original) Zbl 1454.34085 J. Math. Sci., New York 246, No. 3, 303-316 (2020); translation from Neliniĭni Kolyvannya 21, No. 4, 444-456 (2018). Reviewer: Robert Vrabel (Trnava) MSC: 34E15 34B05 34E05 34A30 PDF BibTeX XML Cite \textit{M. B. Vira}, J. Math. Sci., New York 246, No. 3, 303--316 (2020; Zbl 1454.34085); translation from Neliniĭni Kolyvannya 21, No. 4, 444--456 (2018) Full Text: DOI OpenURL
Fialkovsky, Ignat; Perel, Maria Mode transformation for a Schrödinger type equation: avoided and unavoidable level crossings. (English) Zbl 1461.81031 J. Math. Phys. 61, No. 4, 043506, 30 p. (2020). Reviewer: Vatsal Dwivedi (Köln) MSC: 81Q05 81Q15 81Q37 35C20 34E20 PDF BibTeX XML Cite \textit{I. Fialkovsky} and \textit{M. Perel}, J. Math. Phys. 61, No. 4, 043506, 30 p. (2020; Zbl 1461.81031) Full Text: arXiv OpenURL
Cakir, Musa; Cimen, Erkan; Amiraliyev, Gabil M. The difference schemes for solving singularly perturbed three-point boundary value problem. (English) Zbl 1458.65094 Lith. Math. J. 60, No. 2, 147-160 (2020). MSC: 65L11 65L10 65L12 65L20 65L70 PDF BibTeX XML Cite \textit{M. Cakir} et al., Lith. Math. J. 60, No. 2, 147--160 (2020; Zbl 1458.65094) Full Text: DOI OpenURL
Sandu, Adrian Convergence results for implicit-explicit general linear methods. (English) Zbl 1453.65167 Appl. Numer. Math. 156, 242-264 (2020). MSC: 65L06 65L20 PDF BibTeX XML Cite \textit{A. Sandu}, Appl. Numer. Math. 156, 242--264 (2020; Zbl 1453.65167) Full Text: DOI arXiv OpenURL
Ramesh, V. P.; Kadalbajoo, M. K.; Prithvi, M.; Priyanga, B. Exponentially refined mesh for singularly perturbed interior layer problem. (English) Zbl 1442.65138 Int. J. Appl. Comput. Math. 6, No. 3, Paper No. 82, 18 p. (2020). Reviewer: Kanakadurga Sivakumar (Chennai) MSC: 65L11 65L12 65L50 65L60 34E15 PDF BibTeX XML Cite \textit{V. P. Ramesh} et al., Int. J. Appl. Comput. Math. 6, No. 3, Paper No. 82, 18 p. (2020; Zbl 1442.65138) Full Text: DOI OpenURL
Ahmad, Sk. Safique; Kanhya, Prince Structured perturbation analysis of sparse matrix pencils with \(s\)-specified eigenpairs. (English) Zbl 1445.65014 Linear Algebra Appl. 602, 93-119 (2020). Reviewer: Raffaella Pavani (Milano) MSC: 65F50 65F15 15A18 65F35 15A22 PDF BibTeX XML Cite \textit{Sk. S. Ahmad} and \textit{P. Kanhya}, Linear Algebra Appl. 602, 93--119 (2020; Zbl 1445.65014) Full Text: DOI OpenURL
Zegeling, André; Kooij, Robert E. Singular perturbations of the Holling I predator-prey system with a focus. (English) Zbl 1457.34085 J. Differ. Equations 269, No. 6, 5434-5462 (2020). Reviewer: Paul Georgescu (Iaşi) MSC: 34C60 34A36 34C05 34C23 34E15 92D25 34C07 PDF BibTeX XML Cite \textit{A. Zegeling} and \textit{R. E. Kooij}, J. Differ. Equations 269, No. 6, 5434--5462 (2020; Zbl 1457.34085) Full Text: DOI OpenURL
Płociniczak, Łukasz; Wróblewska, Zofia Solution and asymptotic analysis of a boundary value problem in the spring-mass model of running. (English) Zbl 1434.34052 Nonlinear Dyn. 99, No. 4, 2693-2705 (2020). MSC: 34E10 34B15 70K60 PDF BibTeX XML Cite \textit{Ł. Płociniczak} and \textit{Z. Wróblewska}, Nonlinear Dyn. 99, No. 4, 2693--2705 (2020; Zbl 1434.34052) Full Text: DOI arXiv OpenURL
Iliev, Iliya D.; Li, Chengzhi; Yu, Jiang On the cubic perturbations of the symmetric 8-loop Hamiltonian. (English) Zbl 1443.34040 J. Differ. Equations 269, No. 4, 3387-3413 (2020). MSC: 34C23 34C05 34E10 34C07 34C08 37J40 PDF BibTeX XML Cite \textit{I. D. Iliev} et al., J. Differ. Equations 269, No. 4, 3387--3413 (2020; Zbl 1443.34040) Full Text: DOI arXiv OpenURL
Gil’, Michael Conservation of the number of the eigenvalues of two-parameter matrix problems in bounded domains under perturbations. (English) Zbl 1437.15012 Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 66, No. 1, 41-49 (2020). MSC: 15A18 15A22 47A55 PDF BibTeX XML Cite \textit{M. Gil'}, Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 66, No. 1, 41--49 (2020; Zbl 1437.15012) Full Text: DOI OpenURL
Zhang, Bei; Zhao, Jikun; Chen, Shaochun The nonconforming virtual element method for fourth-order singular perturbation problem. (English) Zbl 1436.65191 Adv. Comput. Math. 46, No. 2, Paper No. 19, 23 p. (2020). MSC: 65N30 65N12 35B25 PDF BibTeX XML Cite \textit{B. Zhang} et al., Adv. Comput. Math. 46, No. 2, Paper No. 19, 23 p. (2020; Zbl 1436.65191) Full Text: DOI OpenURL
Nakashima, Kimie Multiple existence of indefinite nonlinear diffusion problem in population genetics. (English) Zbl 1439.35210 J. Differ. Equations 268, No. 12, 7803-7842 (2020). Reviewer: Guglielmo Feltrin (Spilimbergo) MSC: 35K20 34B08 34B15 34B18 35K58 35K57 PDF BibTeX XML Cite \textit{K. Nakashima}, J. Differ. Equations 268, No. 12, 7803--7842 (2020; Zbl 1439.35210) Full Text: DOI OpenURL