Yang, Chen; Shi, Qinghe An interval perturbation method for singular value decomposition (SVD) with unknown-but-bounded (UBB) parameters. (English) Zbl 07738679 J. Comput. Appl. Math. 436, Article ID 115436, 16 p. (2024). MSC: 65Fxx 62Pxx 65Mxx PDF BibTeX XML Cite \textit{C. Yang} and \textit{Q. Shi}, J. Comput. Appl. Math. 436, Article ID 115436, 16 p. (2024; Zbl 07738679) Full Text: DOI
Liu, Xiaowei; Yang, Min; Zhang, Jin Supercloseness of weak Galerkin method for a singularly perturbed convection-diffusion problem in 2D. (English) Zbl 07738654 J. Comput. Appl. Math. 436, Article ID 115404, 14 p. (2024). MSC: 65Nxx 35Jxx 65Lxx PDF BibTeX XML Cite \textit{X. Liu} et al., J. Comput. Appl. Math. 436, Article ID 115404, 14 p. (2024; Zbl 07738654) Full Text: DOI
Egger, Herbert; Philippi, Nora A hybrid-DG method for singularly perturbed convection-diffusion equations on pipe networks. (English) Zbl 07739206 ESAIM, Math. Model. Numer. Anal. 57, No. 4, 2077-2095 (2023). MSC: 65-XX 35B25 35B40 35K20 35R02 65N30 76R99 PDF BibTeX XML Cite \textit{H. Egger} and \textit{N. Philippi}, ESAIM, Math. Model. Numer. Anal. 57, No. 4, 2077--2095 (2023; Zbl 07739206) Full Text: DOI arXiv
Tahara, Hidetoshi The Gevrey asymptotics in the initial value problem for singularly perturbed nonlinear differential equations. (English) Zbl 07738443 J. Differ. Equations 373, 283-326 (2023). MSC: 34E05 34E15 34A12 PDF BibTeX XML Cite \textit{H. Tahara}, J. Differ. Equations 373, 283--326 (2023; Zbl 07738443) Full Text: DOI
Borisov, D. I.; Exner, P. Approximation of point interactions by geometric perturbations in two-dimensional domains. (English) Zbl 07735862 Bull. Math. Sci. 13, No. 2, Article ID 2250003, 30 p. (2023). MSC: 35B25 35J10 35J25 35P05 81Q15 PDF BibTeX XML Cite \textit{D. I. Borisov} and \textit{P. Exner}, Bull. Math. Sci. 13, No. 2, Article ID 2250003, 30 p. (2023; Zbl 07735862) Full Text: DOI arXiv
Yadav, Ram Prasad; Rai, Pratima; Sharma, Kapil K. Finite element analysis of singularly perturbed problems with discontinuous diffusion. (English) Zbl 07735373 Comput. Appl. Math. 42, No. 6, Paper No. 257, 25 p. (2023). MSC: 65L11 65L60 65L70 PDF BibTeX XML Cite \textit{R. P. Yadav} et al., Comput. Appl. Math. 42, No. 6, Paper No. 257, 25 p. (2023; Zbl 07735373) Full Text: DOI
Kopteva, Natalia; Rankin, Richard Pointwise a posteriori error estimates for discontinuous Galerkin methods for singularly perturbed reaction-diffusion equations. (English) Zbl 07734834 SIAM J. Numer. Anal. 61, No. 4, 1938-1961 (2023). MSC: 65N15 65N30 PDF BibTeX XML Cite \textit{N. Kopteva} and \textit{R. Rankin}, SIAM J. Numer. Anal. 61, No. 4, 1938--1961 (2023; Zbl 07734834) Full Text: DOI
Marziani, Roberta \( \Gamma \)-convergence and stochastic homogenisation of phase-transition functionals. (English) Zbl 07734416 ESAIM, Control Optim. Calc. Var. 29, Paper No. 44, 37 p. (2023). MSC: 49J45 49Q20 74Q05 PDF BibTeX XML Cite \textit{R. Marziani}, ESAIM, Control Optim. Calc. Var. 29, Paper No. 44, 37 p. (2023; Zbl 07734416) Full Text: DOI arXiv
Priyadarshana, S.; Mohapatra, J. Weighted variable based numerical scheme for time-lagged semilinear parabolic problems including small parameter. (English) Zbl 07734336 J. Appl. Math. Comput. 69, No. 3, 2439-2463 (2023). MSC: 65-XX 35K58 65M06 65M12 PDF BibTeX XML Cite \textit{S. Priyadarshana} and \textit{J. Mohapatra}, J. Appl. Math. Comput. 69, No. 3, 2439--2463 (2023; Zbl 07734336) Full Text: DOI
Prathap, T.; Rao, R. Nageshwar Uniformly convergent finite difference methods for singularly perturbed parabolic partial differential equations with mixed shifts. (English) Zbl 07734301 J. Appl. Math. Comput. 69, No. 2, 1679-1704 (2023). MSC: 65Mxx 92Cxx 92-XX PDF BibTeX XML Cite \textit{T. Prathap} and \textit{R. N. Rao}, J. Appl. Math. Comput. 69, No. 2, 1679--1704 (2023; Zbl 07734301) Full Text: DOI
Choudhary, Monika; Kaushik, Aditya A uniformly convergent defect correction method for parabolic singular perturbation problems with a large delay. (English) Zbl 07734290 J. Appl. Math. Comput. 69, No. 2, 1377-1401 (2023). MSC: 65M06 35K10 PDF BibTeX XML Cite \textit{M. Choudhary} and \textit{A. Kaushik}, J. Appl. Math. Comput. 69, No. 2, 1377--1401 (2023; Zbl 07734290) Full Text: DOI
Gobbino, Massimo; Picenni, Nicola A quantitative variational analysis of the staircasing phenomenon for a second order regularization of the Perona-Malik functional. (English) Zbl 07731958 Trans. Am. Math. Soc. 376, No. 8, 5307-5375 (2023). Reviewer: Alain Brillard (Riedisheim) MSC: 49J45 35B25 49Q20 39B22 PDF BibTeX XML Cite \textit{M. Gobbino} and \textit{N. Picenni}, Trans. Am. Math. Soc. 376, No. 8, 5307--5375 (2023; Zbl 07731958) Full Text: DOI arXiv
Shigaki, Takahiro Exact WKB analysis of eigenvalue problems for an ordinary differential equation arising from the mathematical model of mesons. (English) Zbl 07731276 Funkc. Ekvacioj, Ser. Int. 66, No. 2, 125-157 (2023). MSC: 34M60 34M40 PDF BibTeX XML Cite \textit{T. Shigaki}, Funkc. Ekvacioj, Ser. Int. 66, No. 2, 125--157 (2023; Zbl 07731276) Full Text: DOI
Liu, Xiaowei; Zhang, Jin Uniform convergence of optimal order for a finite element method on a Bakhvalov-type mesh for a singularly perturbed convection-diffusion equation with parabolic layers. (English) Zbl 07730436 Numer. Algorithms 94, No. 1, 459-478 (2023). MSC: 65N12 65N30 65N50 PDF BibTeX XML Cite \textit{X. Liu} and \textit{J. Zhang}, Numer. Algorithms 94, No. 1, 459--478 (2023; Zbl 07730436) Full Text: DOI
Kunets, Ya. I.; Matus, V. V.; Maksymiv, Yu. I.; Rabosh, R. V. Influence of a thin metal interlayer on the propagation of Bleustein-Gulyaev-type waves in peizoelectric bodies. (English. Ukrainian original) Zbl 07729735 J. Math. Sci., New York 273, No. 1, 44-50 (2023); translation from Mat. Metody Fiz.-Mekh. Polya 63, No. 3, 40-45 (2020). MSC: 74J15 74F15 74E30 74H10 PDF BibTeX XML Cite \textit{Ya. I. Kunets} et al., J. Math. Sci., New York 273, No. 1, 44--50 (2023; Zbl 07729735); translation from Mat. Metody Fiz.-Mekh. Polya 63, No. 3, 40--45 (2020) Full Text: DOI
Gunes, B.; Duru, H. A computational method for the singularly perturbed delay pseudo-parabolic differential equations on adaptive mesh. (English) Zbl 07727800 Int. J. Comput. Math. 100, No. 8, 1667-1682 (2023). MSC: 35B25 65M06 65M12 65M15 PDF BibTeX XML Cite \textit{B. Gunes} and \textit{H. Duru}, Int. J. Comput. Math. 100, No. 8, 1667--1682 (2023; Zbl 07727800) Full Text: DOI
Chen, Gong; Su, Qingtang Nonlinear modulational instabililty of the Stokes waves in 2D full water waves. (English) Zbl 07727593 Commun. Math. Phys. 402, No. 2, 1345-1452 (2023). Reviewer: Changxing Miao (Beijing) MSC: 76B15 76E99 76M45 35Q35 35Q55 PDF BibTeX XML Cite \textit{G. Chen} and \textit{Q. Su}, Commun. Math. Phys. 402, No. 2, 1345--1452 (2023; Zbl 07727593) Full Text: DOI arXiv
Ikeda, Hideo Singular perturbation approach to a plankton model generating harmful algal bloom. (English) Zbl 07727538 Discrete Contin. Dyn. Syst., Ser. B 28, No. 12, 6179-6207 (2023). MSC: 35B25 35B32 35B35 35B36 35K51 35K57 35Q92 PDF BibTeX XML Cite \textit{H. Ikeda}, Discrete Contin. Dyn. Syst., Ser. B 28, No. 12, 6179--6207 (2023; Zbl 07727538) Full Text: DOI
Hilhorst, Danielle; Kim, Yongjung; Nguyen, Thanh Nam; Park, Hyunjoon Hyperbolic limit for a biological invasion. (English) Zbl 07727536 Discrete Contin. Dyn. Syst., Ser. B 28, No. 12, 6142-6158 (2023). MSC: 35B25 35C07 35K57 82C24 92D25 PDF BibTeX XML Cite \textit{D. Hilhorst} et al., Discrete Contin. Dyn. Syst., Ser. B 28, No. 12, 6142--6158 (2023; Zbl 07727536) Full Text: DOI
Al-Juaydi, Haifa S.; El-Zahar, Essam R. An effective shooting piecewise analytical integration method for singular perturbation two-point boundary value problems. (English) Zbl 07727246 Adv. Differ. Equ. Control Process. 30, No. 1, 27-52 (2023). MSC: 34E15 65L11 PDF BibTeX XML Cite \textit{H. S. Al-Juaydi} and \textit{E. R. El-Zahar}, Adv. Differ. Equ. Control Process. 30, No. 1, 27--52 (2023; Zbl 07727246) Full Text: DOI
Chawla, Sheetal; Urmil; Singh, Jagbir Fitted mesh numerical method for a coupled system of singularly perturbed reaction-diffusion Robin boundary value problem having boundary and internal layers. (English) Zbl 1517.65069 Indian J. Pure Appl. Math. 54, No. 3, 675-688 (2023). MSC: 65M06 65M12 65M15 PDF BibTeX XML Cite \textit{S. Chawla} et al., Indian J. Pure Appl. Math. 54, No. 3, 675--688 (2023; Zbl 1517.65069) Full Text: DOI
Martinusi, Vladimir Hamiltonian reduction through explicit canonical transformations and resonant canonical variables. (English) Zbl 07725902 Celest. Mech. Dyn. Astron. 135, No. 4, Paper No. 40, 34 p. (2023). MSC: 70H09 70H15 70F05 PDF BibTeX XML Cite \textit{V. Martinusi}, Celest. Mech. Dyn. Astron. 135, No. 4, Paper No. 40, 34 p. (2023; Zbl 07725902) Full Text: DOI
Wang, Li; Bai, Yuzhen Estimation of the boundary of the limit cycle of Brusselator oscillators by the renormalization group method. (English) Zbl 07724043 Qual. Theory Dyn. Syst. 22, No. 4, Paper No. 145, 19 p. (2023). MSC: 34C05 34C15 34A45 92C45 PDF BibTeX XML Cite \textit{L. Wang} and \textit{Y. Bai}, Qual. Theory Dyn. Syst. 22, No. 4, Paper No. 145, 19 p. (2023; Zbl 07724043) Full Text: DOI
Sharma, Amit; Rai, Pratima Analysis of a hybrid numerical scheme for singularly perturbed convection-diffusion type delay problems. (English) Zbl 07714939 Int. J. Comput. Methods 20, No. 1, Article ID 2250032, 28 p. (2023). MSC: 65L11 65L12 65L20 65L50 65L70 PDF BibTeX XML Cite \textit{A. Sharma} and \textit{P. Rai}, Int. J. Comput. Methods 20, No. 1, Article ID 2250032, 28 p. (2023; Zbl 07714939) Full Text: DOI
Patsatzis, Dimitris G.; Goussis, Dimitris A. Algorithmic criteria for the validity of quasi-steady state and partial equilibrium models: the Michaelis-Menten reaction mechanism. (English) Zbl 07713564 J. Math. Biol. 87, No. 2, Paper No. 27, 43 p. (2023). MSC: 34C60 92C45 34C20 34E13 34E15 37M21 PDF BibTeX XML Cite \textit{D. G. Patsatzis} and \textit{D. A. Goussis}, J. Math. Biol. 87, No. 2, Paper No. 27, 43 p. (2023; Zbl 07713564) Full Text: DOI
Langthjem, M. A.; Imura, M.; Yamaguchi, K. The unbalanced rotating cylinder partially filled with fluid; multiple scales analysis of a forced Korteweg-de Vries-Burgers equation. (English) Zbl 07713295 J. Eng. Math. 140, Paper No. 1, 32 p. (2023). MSC: 76U05 76M45 70E99 PDF BibTeX XML Cite \textit{M. A. Langthjem} et al., J. Eng. Math. 140, Paper No. 1, 32 p. (2023; Zbl 07713295) Full Text: DOI
Fedotov, A. A. Close turning points and the Harper operator. (English. Russian original) Zbl 07710629 Math. Notes 113, No. 5, 741-746 (2023); translation from Mat. Zametki 113, No. 5, 785-790 (2023). MSC: 39A70 39A12 34E20 34M60 PDF BibTeX XML Cite \textit{A. A. Fedotov}, Math. Notes 113, No. 5, 741--746 (2023; Zbl 07710629); translation from Mat. Zametki 113, No. 5, 785--790 (2023) Full Text: DOI
Durmaz, Muhammet Enes; Amirali, Ilhame; Mohapatra, Jugal; Amiraliyev, Gabil M. A second-order numerical approximation of a singularly perturbed nonlinear Fredholm integro-differential equation. (English) Zbl 07710423 Appl. Numer. Math. 191, 17-28 (2023). MSC: 65Lxx 65Mxx 65Rxx PDF BibTeX XML Cite \textit{M. E. Durmaz} et al., Appl. Numer. Math. 191, 17--28 (2023; Zbl 07710423) Full Text: DOI
Chaturvedi, Abhay Kumar; Chandra Sekhara Rao, S. Analysis of an LDG-FEM for a two-dimensional singularly perturbed convection-reaction-diffusion problem with interior and boundary layers. (English) Zbl 07710408 Appl. Numer. Math. 190, 84-109 (2023). MSC: 65Nxx 65Lxx 65Mxx PDF BibTeX XML Cite \textit{A. K. Chaturvedi} and \textit{S. Chandra Sekhara Rao}, Appl. Numer. Math. 190, 84--109 (2023; Zbl 07710408) Full Text: DOI
Denisov, A. M. Approximate solution of an inverse problem for a singularly perturbed integro-differential heat equation. (English. Russian original) Zbl 07709485 Comput. Math. Math. Phys. 63, No. 5, 837-844 (2023); translation from Zh. Vychisl. Mat. Mat. Fiz. 63, No. 5, 795-802 (2023). MSC: 35R30 35B25 35K20 35R09 PDF BibTeX XML Cite \textit{A. M. Denisov}, Comput. Math. Math. Phys. 63, No. 5, 837--844 (2023; Zbl 07709485); translation from Zh. Vychisl. Mat. Mat. Fiz. 63, No. 5, 795--802 (2023) Full Text: DOI
Ma, Xiaoqi; Zhang, Jin Supercloseness analysis of the nonsymmetric interior penalty Galerkin method for a singularly perturbed problem on Bakhvalov-type mesh. (English) Zbl 07708920 Appl. Math. Lett. 144, Article ID 108701, 7 p. (2023). MSC: 65Lxx 65Nxx 65Mxx PDF BibTeX XML Cite \textit{X. Ma} and \textit{J. Zhang}, Appl. Math. Lett. 144, Article ID 108701, 7 p. (2023; Zbl 07708920) Full Text: DOI
Duru, Hakki; Gunes, Baransel The stability and convergence analysis for singularly perturbed Sobolev problems with Robin type boundary condition. (English) Zbl 07708349 Georgian Math. J. 30, No. 3, 349-363 (2023). MSC: 65-XX 35B25 65M06 65M12 65M15 PDF BibTeX XML Cite \textit{H. Duru} and \textit{B. Gunes}, Georgian Math. J. 30, No. 3, 349--363 (2023; Zbl 07708349) Full Text: DOI
Ayele, Mulunesh Amsalu; Tiruneh, Awoke Andargie; Derese, Getachew Adamu Fitted cubic spline scheme for two-parameter singularly perturbed time-delay parabolic problems. (English) Zbl 07707594 Results Appl. Math. 18, Article ID 100361, 17 p. (2023). MSC: 65M06 65D07 65M12 65M15 65M22 35B25 35R07 PDF BibTeX XML Cite \textit{M. A. Ayele} et al., Results Appl. Math. 18, Article ID 100361, 17 p. (2023; Zbl 07707594) Full Text: DOI
Cengizci, Süleyman; Kumar, Devendra; Atay, Mehmet Tarık A semi-analytic method for solving singularly perturbed twin-layer problems with a turning point. (English) Zbl 1514.34041 Math. Model. Anal. 28, No. 1, 102-117 (2023). MSC: 34B05 65L11 PDF BibTeX XML Cite \textit{S. Cengizci} et al., Math. Model. Anal. 28, No. 1, 102--117 (2023; Zbl 1514.34041) Full Text: DOI
Priyadarshana, S.; Mohapatra, J.; Pattanaik, S. R. A second order fractional step hybrid numerical algorithm for time delayed singularly perturbed 2D convection-diffusion problems. (English) Zbl 07705793 Appl. Numer. Math. 189, 107-129 (2023). MSC: 65Mxx 35Bxx 65Lxx PDF BibTeX XML Cite \textit{S. Priyadarshana} et al., Appl. Numer. Math. 189, 107--129 (2023; Zbl 07705793) Full Text: DOI
Shiromani, Ram; Shanthi, Vembu; Ramos, Higinio Numerical treatment of a singularly perturbed 2-D convection-diffusion elliptic problem with Robin-type boundary conditions. (English) Zbl 07705770 Appl. Numer. Math. 187, 176-191 (2023). MSC: 65Mxx 65Nxx 65Lxx PDF BibTeX XML Cite \textit{R. Shiromani} et al., Appl. Numer. Math. 187, 176--191 (2023; Zbl 07705770) Full Text: DOI
Sharma, Amit; Rai, Pratima Uniformly convergent hybrid numerical scheme for singularly perturbed turning point problems with delay. (English) Zbl 07705610 Int. J. Comput. Math. 100, No. 5, 1052-1077 (2023). MSC: 65L11 65L12 65L20 65L50 65L70 PDF BibTeX XML Cite \textit{A. Sharma} and \textit{P. Rai}, Int. J. Comput. Math. 100, No. 5, 1052--1077 (2023; Zbl 07705610) Full Text: DOI
Podila, Pramod Chakravarthy; Sundrani, Vishwas A non-uniform Haar wavelet method for a singularly perturbed convection-diffusion type problem with integral boundary condition on an exponentially graded mesh. (English) Zbl 07700523 Comput. Appl. Math. 42, No. 5, Paper No. 216, 17 p. (2023). MSC: 34D15 65L11 65L20 65T60 PDF BibTeX XML Cite \textit{P. C. Podila} and \textit{V. Sundrani}, Comput. Appl. Math. 42, No. 5, Paper No. 216, 17 p. (2023; Zbl 07700523) Full Text: DOI
Durmaz, Muhammet Enes; Yapman, Ömer; Kudu, Mustafa; Amiraliyev, Gabil M. An efficient numerical method for a singularly perturbed Volterra-Fredholm integro-differential equation. (English) Zbl 07700114 Hacet. J. Math. Stat. 52, No. 2, 326-339 (2023). MSC: 45J05 65L11 65L12 65L20 65R20 PDF BibTeX XML Cite \textit{M. E. Durmaz} et al., Hacet. J. Math. Stat. 52, No. 2, 326--339 (2023; Zbl 07700114) Full Text: DOI
Singh, Satpal; Kumar, Devendra; Shanthi, Vembu Uniformly convergent scheme for fourth-order singularly perturbed convection-diffusion ODE. (English) Zbl 07699045 Appl. Numer. Math. 186, 334-357 (2023). MSC: 65Lxx 34Exx 34Bxx PDF BibTeX XML Cite \textit{S. Singh} et al., Appl. Numer. Math. 186, 334--357 (2023; Zbl 07699045) Full Text: DOI
Nhan, Thái Anh; Vulanović, Relja Analysis of a second-order hybrid scheme on Bakhvalov-type meshes: the truncation-error and barrier-function approach. (English) Zbl 07699031 Appl. Numer. Math. 186, 84-99 (2023). MSC: 65Lxx 65Nxx 65Mxx PDF BibTeX XML Cite \textit{T. A. Nhan} and \textit{R. Vulanović}, Appl. Numer. Math. 186, 84--99 (2023; Zbl 07699031) Full Text: DOI
Rathore, Ajay Singh; Shanthi, Vembu; Ramos, Higinio A fitted numerical method for a singularly perturbed Fredholm integro-differential equation with discontinuous source term. (English) Zbl 07699000 Appl. Numer. Math. 185, 88-100 (2023). MSC: 65L11 65R20 45B05 PDF BibTeX XML Cite \textit{A. S. Rathore} et al., Appl. Numer. Math. 185, 88--100 (2023; Zbl 07699000) Full Text: DOI
Johnson, R. S. On the mathematical fluid dynamics of atmospheric gravity (buoyancy) waves. (English) Zbl 07698602 Monatsh. Math. 201, No. 4, 1125-1147 (2023). MSC: 76U60 76N30 76M45 76N06 86A10 PDF BibTeX XML Cite \textit{R. S. Johnson}, Monatsh. Math. 201, No. 4, 1125--1147 (2023; Zbl 07698602) Full Text: DOI
Kai, Yue; Zhang, Kai; Yin, Zhixiang HTR approach to the asymptotic solutions of supersonic boundary layer problem: the case of slow acoustic waves interacting with streamwise isolated wall roughness. (English) Zbl 1516.76070 Math. Sci., Springer 17, No. 1, 21-30 (2023). MSC: 76N20 76J20 76Q05 76M45 76M20 PDF BibTeX XML Cite \textit{Y. Kai} et al., Math. Sci., Springer 17, No. 1, 21--30 (2023; Zbl 1516.76070) Full Text: DOI
Zemlyanova, Anna Y.; White, Lauren M. An axisymmetric problem for a patch loaded material surface attached to the boundary of an elastic semi-space. (English) Zbl 1515.74010 SIAM J. Appl. Math. 83, No. 2, 603-624 (2023). MSC: 74B05 74K35 74G10 PDF BibTeX XML Cite \textit{A. Y. Zemlyanova} and \textit{L. M. White}, SIAM J. Appl. Math. 83, No. 2, 603--624 (2023; Zbl 1515.74010) Full Text: DOI
Tsuchiya, Takashi; Lourenço, Bruno F.; Muramatsu, Masakazu; Okuno, Takayuki A limiting analysis on regularization of singular SDP and its implication to infeasible interior-point algorithms. (English) Zbl 07689170 Math. Program. 200, No. 1 (A), 531-568 (2023). MSC: 90C22 90C25 90C51 90C31 65K05 PDF BibTeX XML Cite \textit{T. Tsuchiya} et al., Math. Program. 200, No. 1 (A), 531--568 (2023; Zbl 07689170) Full Text: DOI arXiv
Panda, Abhilipsa; Mohapatra, Jugal A robust finite difference method for the solutions of singularly perturbed Fredholm integro-differential equations. (English) Zbl 1511.65156 Mediterr. J. Math. 20, No. 4, Paper No. 198, 19 p. (2023). MSC: 65R30 34K26 45J05 PDF BibTeX XML Cite \textit{A. Panda} and \textit{J. Mohapatra}, Mediterr. J. Math. 20, No. 4, Paper No. 198, 19 p. (2023; Zbl 1511.65156) Full Text: DOI
Jelbart, Samuel; Kuehn, Christian Discrete geometric singular perturbation theory. (English) Zbl 07688141 Discrete Contin. Dyn. Syst. 43, No. 1, 57-120 (2023). MSC: 39A12 34D15 34E15 34E20 34C45 34B16 PDF BibTeX XML Cite \textit{S. Jelbart} and \textit{C. Kuehn}, Discrete Contin. Dyn. Syst. 43, No. 1, 57--120 (2023; Zbl 07688141) Full Text: DOI arXiv
Eilertsen, Justin; Schnell, Santiago; Walcher, Sebastian Natural parameter conditions for singular perturbations of chemical and biochemical reaction networks. (English) Zbl 07686719 Bull. Math. Biol. 85, No. 6, Paper No. 48, 75 p. (2023). Reviewer: Kai Wang (Bengbu) MSC: 92E20 92C40 92C42 92C45 34D15 PDF BibTeX XML Cite \textit{J. Eilertsen} et al., Bull. Math. Biol. 85, No. 6, Paper No. 48, 75 p. (2023; Zbl 07686719) Full Text: DOI arXiv
Bezerra Júnior, Elzon C.; da Silva, João Vítor; Ricarte, Gleydson C. Fully nonlinear singularly perturbed models with non-homogeneous degeneracy. (English) Zbl 1514.35014 Rev. Mat. Iberoam. 39, No. 1, 123-164 (2023). MSC: 35B25 35J25 35J62 35J70 PDF BibTeX XML Cite \textit{E. C. Bezerra Júnior} et al., Rev. Mat. Iberoam. 39, No. 1, 123--164 (2023; Zbl 1514.35014) Full Text: DOI
Gomez, Daniel; Wei, Jun-cheng; Yang, Zhangyu Multi-spike solutions to the one-dimensional subcritical fractional Schnakenberg system. (English) Zbl 07683349 Physica D 448, Article ID 133720, 12 p. (2023). MSC: 35B25 35C08 35C20 35K51 35K57 35R11 PDF BibTeX XML Cite \textit{D. Gomez} et al., Physica D 448, Article ID 133720, 12 p. (2023; Zbl 07683349) Full Text: DOI
Nikolaev, Nikita Exact solutions for the singularly perturbed Riccati equation and exact WKB analysis. (English) Zbl 07681887 Nagoya Math. J. 250, 434-469 (2023). Reviewer: Mykola Grygorenko (Kyjiw) MSC: 34M04 34M60 34M30 40G10 PDF BibTeX XML Cite \textit{N. Nikolaev}, Nagoya Math. J. 250, 434--469 (2023; Zbl 07681887) Full Text: DOI arXiv
Nikolaev, Nikita Existence and uniqueness of exact WKB solutions for second-order singularly perturbed linear ODEs. (English) Zbl 07681358 Commun. Math. Phys. 400, No. 1, 463-517 (2023). MSC: 34M60 34M03 PDF BibTeX XML Cite \textit{N. Nikolaev}, Commun. Math. Phys. 400, No. 1, 463--517 (2023; Zbl 07681358) Full Text: DOI arXiv
Iwaki, Kohei; Koike, Tatsuya; Takei, Yumiko Voros coefficients for the hypergeometric differential equations and Eynard-Orantin’s topological recursion. I: For the Weber equation. (English) Zbl 07678833 Ann. Henri Poincaré 24, No. 4, 1305-1353 (2023). MSC: 34M60 81T45 PDF BibTeX XML Cite \textit{K. Iwaki} et al., Ann. Henri Poincaré 24, No. 4, 1305--1353 (2023; Zbl 07678833) Full Text: DOI arXiv
Sharma, Amit; Rai, Pratima Analysis of a higher order uniformly convergent method for singularly perturbed parabolic delay problems. (English) Zbl 1511.65086 Appl. Math. Comput. 448, Article ID 127906, 23 p. (2023). MSC: 65M06 35Q92 65M12 65M15 65M50 PDF BibTeX XML Cite \textit{A. Sharma} and \textit{P. Rai}, Appl. Math. Comput. 448, Article ID 127906, 23 p. (2023; Zbl 1511.65086) Full Text: DOI
Ma, Xiaoqi; Zhang, Jin Supercloseness in a balanced norm of the NIPG method on Shishkin mesh for a reaction diffusion problem. (English) Zbl 1511.65126 Appl. Math. Comput. 444, Article ID 127828, 13 p. (2023). MSC: 65N30 35J05 65D32 PDF BibTeX XML Cite \textit{X. Ma} and \textit{J. Zhang}, Appl. Math. Comput. 444, Article ID 127828, 13 p. (2023; Zbl 1511.65126) Full Text: DOI
Sharma, Nitika; Kaushik, Aditya A uniformly convergent difference method for singularly perturbed parabolic partial differential equations with large delay and integral boundary condition. (English) Zbl 07676697 J. Appl. Math. Comput. 69, No. 1, 1071-1093 (2023). MSC: 65Mxx 65Qxx 35Kxx PDF BibTeX XML Cite \textit{N. Sharma} and \textit{A. Kaushik}, J. Appl. Math. Comput. 69, No. 1, 1071--1093 (2023; Zbl 07676697) Full Text: DOI
Durmaz, Muhammet Enes; Amirali, Ilhame; Amiraliyev, Gabil M. An efficient numerical method for a singularly perturbed Fredholm integro-differential equation with integral boundary condition. (English) Zbl 1512.65301 J. Appl. Math. Comput. 69, No. 1, 505-528 (2023). MSC: 65R20 65L11 45J05 45B05 65L12 PDF BibTeX XML Cite \textit{M. E. Durmaz} et al., J. Appl. Math. Comput. 69, No. 1, 505--528 (2023; Zbl 1512.65301) Full Text: DOI
Zhang, Jin; Liu, Xiaowei Supercloseness and postprocessing for linear finite element method on Bakhvalov-type meshes. (English) Zbl 07676493 Numer. Algorithms 92, No. 3, 1553-1570 (2023). MSC: 65L60 65L10 65L50 65L20 65L70 PDF BibTeX XML Cite \textit{J. Zhang} and \textit{X. Liu}, Numer. Algorithms 92, No. 3, 1553--1570 (2023; Zbl 07676493) Full Text: DOI
Maltese, David; Ogabi, Chokri On some new results on anisotropic singular perturbations of second-order elliptic operators. (English) Zbl 1514.35196 Commun. Pure Appl. Anal. 22, No. 2, 639-667 (2023). MSC: 35J61 35J25 65N30 PDF BibTeX XML Cite \textit{D. Maltese} and \textit{C. Ogabi}, Commun. Pure Appl. Anal. 22, No. 2, 639--667 (2023; Zbl 1514.35196) Full Text: DOI arXiv
Kunets, Ya. I.; Matus, V. V. Asymptotic approach in the dynamic problems of the theory of elasticity for bodies with thin elastic inclusions. (English. Ukrainian original) Zbl 1512.74008 J. Math. Sci., New York 270, No. 1, 87-106 (2023); translation from Mat. Metody Fiz.-Mekh. Polya 63, No. 1, 75-93 (2020). MSC: 74B05 74E30 74H10 74E05 74J20 74J25 PDF BibTeX XML Cite \textit{Ya. I. Kunets} and \textit{V. V. Matus}, J. Math. Sci., New York 270, No. 1, 87--106 (2023; Zbl 1512.74008); translation from Mat. Metody Fiz.-Mekh. Polya 63, No. 1, 75--93 (2020) Full Text: DOI
Iwaki, Kohei; Kidwai, Omar Topological recursion and uncoupled BPS structures. II: Voros symbols and the \(\tau\)-function. (English) Zbl 07673005 Commun. Math. Phys. 399, No. 1, 519-572 (2023). MSC: 81T60 81T18 03D80 82B20 14H10 35Q15 34M60 11B68 PDF BibTeX XML Cite \textit{K. Iwaki} and \textit{O. Kidwai}, Commun. Math. Phys. 399, No. 1, 519--572 (2023; Zbl 07673005) Full Text: DOI arXiv
Aoki, Takashi; Uchida, Shofu Degeneration structure of the Voros coefficients of the generalized hypergeometric differential equations with a large parameter. (English) Zbl 07672793 Filipuk, Galina (ed.) et al., Recent trends in formal and analytic solutions of diff. equations. Virtual conference, University of Alcalá, Alcalá de Henares, Spain, June 28 – July 2, 2021. Providence, RI: American Mathematical Society (AMS). Contemp. Math. 782, 43-56 (2023). Reviewer: Yoshitsugu Takei (Kyoto) MSC: 34M40 34M60 33C05 PDF BibTeX XML Cite \textit{T. Aoki} and \textit{S. Uchida}, Contemp. Math. 782, 43--56 (2023; Zbl 07672793) Full Text: DOI
Yang, L.; Wu, Y. J. Rational spectral collocation combined with singularity separation method for second-order singular perturbation problems. (English) Zbl 1512.65158 J. Math. Sci., New York 270, No. 2, 294-306 (2023) and Neliniĭni Kolyvannya 24, No. 2, 197-209 (2021). MSC: 65L11 65L60 PDF BibTeX XML Cite \textit{L. Yang} and \textit{Y. J. Wu}, J. Math. Sci., New York 270, No. 2, 294--306 (2023; Zbl 1512.65158) Full Text: DOI
Clark, William A.; Gomes, Mario W.; Rodriguez-Gonzalez, Arnaldo; Stein, Leo C.; Strogatz, Steven H. Surprises in a classic boundary-layer problem. (English) Zbl 07669675 SIAM Rev. 65, No. 1, 291-315 (2023). MSC: 34B16 34E05 34E15 37M20 65L11 PDF BibTeX XML Cite \textit{W. A. Clark} et al., SIAM Rev. 65, No. 1, 291--315 (2023; Zbl 07669675) Full Text: DOI arXiv
Holdom, Bob Cosmologies with turning points. (English) Zbl 07665765 Phys. Lett., B 839, Article ID 137802, 5 p. (2023). MSC: 83F05 34M60 81P55 83C20 PDF BibTeX XML Cite \textit{B. Holdom}, Phys. Lett., B 839, Article ID 137802, 5 p. (2023; Zbl 07665765) Full Text: DOI arXiv
Raji, Reddy Narahari; Mohapatra, Jugal A robust numerical scheme for singularly perturbed delay parabolic initial-boundary-value problems involving mixed space shifts. (English) Zbl 07665293 Comput. Methods Differ. Equ. 11, No. 1, 42-51 (2023). MSC: 65M06 65M12 65M50 PDF BibTeX XML Cite \textit{R. N. Raji} and \textit{J. Mohapatra}, Comput. Methods Differ. Equ. 11, No. 1, 42--51 (2023; Zbl 07665293) Full Text: DOI
Guo, Wenxuan; Zhang, Qiang; He, Dongdong On the nonlinear behaviour of the Rayleigh-Taylor instability with a tangential electric field for inviscid and perfect dielectric fluids. (English) Zbl 07662933 J. Fluid Mech. 958, Paper No. A36, 50 p. (2023). MSC: 76E17 76E25 76E30 76M45 76M23 PDF BibTeX XML Cite \textit{W. Guo} et al., J. Fluid Mech. 958, Paper No. A36, 50 p. (2023; Zbl 07662933) Full Text: DOI
Ishii, Yuta Multi-peak solutions for the Schnakenberg model with heterogeneity on star shaped graphs. (English) Zbl 1511.35356 Physica D 446, Article ID 133679, 21 p. (2023). MSC: 35R02 35B25 35K51 35K57 PDF BibTeX XML Cite \textit{Y. Ishii}, Physica D 446, Article ID 133679, 21 p. (2023; Zbl 1511.35356) Full Text: DOI
Yapman, Ömer; Kudu, Mustafa; Amiraliyev, Gabil M. Method of exact difference schemes for the numerical solution of parameterized singularly perturbed problem. (English) Zbl 1506.65115 Mediterr. J. Math. 20, No. 3, Paper No. 146, 18 p. (2023). MSC: 65L11 65L12 65L20 65R20 PDF BibTeX XML Cite \textit{Ö. Yapman} et al., Mediterr. J. Math. 20, No. 3, Paper No. 146, 18 p. (2023; Zbl 1506.65115) Full Text: DOI
Saini, Sumit; Das, Pratibhamoy; Kumar, Sunil Computational cost reduction for coupled system of multiple scale reaction diffusion problems with mixed type boundary conditions having boundary layers. (English) Zbl 1506.65068 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 117, No. 2, Paper No. 66, 27 p. (2023). MSC: 65H10 65J10 65L11 65M50 35K40 35K51 PDF BibTeX XML Cite \textit{S. Saini} et al., Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 117, No. 2, Paper No. 66, 27 p. (2023; Zbl 1506.65068) Full Text: DOI
Singh, Satpal; Choudhary, Renu; Kumar, Devendra An efficient numerical technique for two-parameter singularly perturbed problems having discontinuity in convection coefficient and source term. (English) Zbl 07657531 Comput. Appl. Math. 42, No. 1, Paper No. 62, 30 p. (2023). MSC: 41A15 34E20 35B25 65L50 35K10 65M06 65M12 65M15 65N06 65N12 PDF BibTeX XML Cite \textit{S. Singh} et al., Comput. Appl. Math. 42, No. 1, Paper No. 62, 30 p. (2023; Zbl 07657531) Full Text: DOI
Daoues, Adel; Hammami, Amani; Saoudi, Kamel Multiplicity results of nonlocal singular PDEs with critical Sobolev-Hardy exponent. (English) Zbl 1509.35343 Electron. J. Differ. Equ. 2023, Paper No. 10, 19 p. (2023). MSC: 35R11 35J25 35J75 35J92 46E35 PDF BibTeX XML Cite \textit{A. Daoues} et al., Electron. J. Differ. Equ. 2023, Paper No. 10, 19 p. (2023; Zbl 1509.35343) Full Text: Link
Cheng, Sixue; Liu, Haijiang Weakly nonlinear waves over the bottom disturbed topography: Korteweg-de Vries equation with variable coefficients. (English) Zbl 1507.76023 Eur. J. Mech., B, Fluids 98, 238-246 (2023). MSC: 76B15 76B25 76M45 PDF BibTeX XML Cite \textit{S. Cheng} and \textit{H. Liu}, Eur. J. Mech., B, Fluids 98, 238--246 (2023; Zbl 1507.76023) Full Text: DOI
Housiadas, Kostas D.; Tsangaris, Christos Channel flow with variable geometry and Navier slip at the walls using high-order lubrication theory. (English) Zbl 1507.76045 Eur. J. Mech., B, Fluids 98, 194-207 (2023). MSC: 76D08 76M45 PDF BibTeX XML Cite \textit{K. D. Housiadas} and \textit{C. Tsangaris}, Eur. J. Mech., B, Fluids 98, 194--207 (2023; Zbl 1507.76045) Full Text: DOI
Zhao, Jianguo; Yang, Chunyu; Gao, Weinan; Modares, Hamidreza; Chen, Xinkai; Dai, Wei Linear quadratic tracking control of unknown systems: a two-phase reinforcement learning method. (English) Zbl 1507.93158 Automatica 148, Article ID 110761, 10 p. (2023). MSC: 93C70 93C05 49N10 PDF BibTeX XML Cite \textit{J. Zhao} et al., Automatica 148, Article ID 110761, 10 p. (2023; Zbl 1507.93158) Full Text: DOI
Lee, Chiun-Chang Uniqueness and asymptotics of singularly perturbed equations involving implicit boundary conditions. (English) Zbl 1503.34062 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 117, No. 1, Paper No. 51, 18 p. (2023). MSC: 34B10 34D15 34E05 34K26 35J25 PDF BibTeX XML Cite \textit{C.-C. Lee}, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 117, No. 1, Paper No. 51, 18 p. (2023; Zbl 1503.34062) Full Text: DOI
Plesa, Tomislav Stochastic approximations of higher-molecular by bi-molecular reactions. (English) Zbl 1506.92044 J. Math. Biol. 86, No. 2, Paper No. 28, 33 p. (2023). MSC: 92C45 92C42 60G99 PDF BibTeX XML Cite \textit{T. Plesa}, J. Math. Biol. 86, No. 2, Paper No. 28, 33 p. (2023; Zbl 1506.92044) Full Text: DOI arXiv
Altunkaya, Ayse Nur; Aydin, Orhan; Avci, Mete Pulsating flow and heat transfer of power-law fluid in a circular pipe. (English) Zbl 1508.76005 Nonlinear Anal., Model. Control 28, No. 1, 56-73 (2023). MSC: 76A05 76M45 80A19 PDF BibTeX XML Cite \textit{A. N. Altunkaya} et al., Nonlinear Anal., Model. Control 28, No. 1, 56--73 (2023; Zbl 1508.76005) Full Text: DOI
Fan, Lili; Liu, Ruonan; Gao, Hongjun Hamiltonian model for coupled surface and internal waves over currents and uneven bottom. (English) Zbl 1508.76030 Physica D 443, Article ID 133558, 18 p. (2023). MSC: 76B55 76B15 76M45 86A05 PDF BibTeX XML Cite \textit{L. Fan} et al., Physica D 443, Article ID 133558, 18 p. (2023; Zbl 1508.76030) Full Text: DOI arXiv
Lastra, Alberto; Michalik, Sławomir; Suwińska, Maria Multisummability of formal solutions for a family of generalized singularly perturbed moment differential equations. (English) Zbl 1511.34088 Result. Math. 78, No. 2, Paper No. 49, 31 p. (2023). MSC: 34M03 34M60 34M30 26A33 PDF BibTeX XML Cite \textit{A. Lastra} et al., Result. Math. 78, No. 2, Paper No. 49, 31 p. (2023; Zbl 1511.34088) Full Text: DOI arXiv
Qiao, Qi; Zhang, Xiang Traveling waves and their spectral stability in Keller-Segel system with large cell diffusion. (English) Zbl 1503.35241 J. Differ. Equations 344, 807-845 (2023). MSC: 35Q92 92C17 35C07 35B25 35P99 PDF BibTeX XML Cite \textit{Q. Qiao} and \textit{X. Zhang}, J. Differ. Equations 344, 807--845 (2023; Zbl 1503.35241) Full Text: DOI
Li, Chen; Liu, Jiang; Zengji, Du Asymptotic behaviors and existence of traveling wave solutions to the Keller-Segel model with logarithmic sensitivity. (English) Zbl 1505.35041 Discrete Contin. Dyn. Syst., Ser. B 28, No. 3, 1771-1786 (2023). Reviewer: Lingeshwaran Shangerganesh (Ponda) MSC: 35B40 35C07 35K45 35K59 34D15 92C17 PDF BibTeX XML Cite \textit{C. Li} et al., Discrete Contin. Dyn. Syst., Ser. B 28, No. 3, 1771--1786 (2023; Zbl 1505.35041) Full Text: DOI
Singh, Mayank; Arora, Rajan Converging strong shock wave from a cylindrical piston in a van der Waals magnetogasdynamics with dust particles. (English) Zbl 1506.76213 Commun. Nonlinear Sci. Numer. Simul. 116, Article ID 106870, 17 p. (2023). MSC: 76W05 76L05 76T15 76M45 76M55 PDF BibTeX XML Cite \textit{M. Singh} and \textit{R. Arora}, Commun. Nonlinear Sci. Numer. Simul. 116, Article ID 106870, 17 p. (2023; Zbl 1506.76213) Full Text: DOI
Gie, Gung-Min; Jung, Chang-Yeol; Lee, Hoyeon Semi-analytic shooting methods for Burgers’ equation. (English) Zbl 1496.65085 J. Comput. Appl. Math. 418, Article ID 114694, 18 p. (2023). MSC: 65L04 34E15 76R50 PDF BibTeX XML Cite \textit{G.-M. Gie} et al., J. Comput. Appl. Math. 418, Article ID 114694, 18 p. (2023; Zbl 1496.65085) Full Text: DOI
Nhan, Thái Anh; Mai, Vinh Quang; Mohapatra, Jugal; Hammouch, Zakia A new upwind difference analysis of an exponentially graded Bakhvalov-type mesh for singularly perturbed elliptic convection-diffusion problems. (English) Zbl 1497.65113 J. Comput. Appl. Math. 418, Article ID 114622, 14 p. (2023). MSC: 65L10 65L12 65L20 65L70 PDF BibTeX XML Cite \textit{T. A. Nhan} et al., J. Comput. Appl. Math. 418, Article ID 114622, 14 p. (2023; Zbl 1497.65113) Full Text: DOI
Elango, Sekar Second order singularly perturbed delay differential equations with non-local boundary condition. (English) Zbl 1502.65040 J. Comput. Appl. Math. 417, Article ID 114498, 13 p. (2023). MSC: 65L03 65L11 65L12 65L20 PDF BibTeX XML Cite \textit{S. Elango}, J. Comput. Appl. Math. 417, Article ID 114498, 13 p. (2023; Zbl 1502.65040) Full Text: DOI
Ingel’, L. Kh. On the theory of slope flows over a thermally inhomogeneous surface. (English. Russian original) Zbl 07730162 J. Appl. Mech. Tech. Phys. 63, No. 5, 843-850 (2022); translation from Prikl. Mekh. Tekh. Fiz. 63, No. 5, 131-139 (2022). MSC: 76R10 76D50 76M45 80A19 PDF BibTeX XML Cite \textit{L. Kh. Ingel'}, J. Appl. Mech. Tech. Phys. 63, No. 5, 843--850 (2022; Zbl 07730162); translation from Prikl. Mekh. Tekh. Fiz. 63, No. 5, 131--139 (2022) Full Text: DOI
Mokhtari, Hanifa; Rahmani, Leila Asymptotic modeling of a reinforced plate with a thin layer of variable thickness. (English) Zbl 07700089 Meccanica 57, No. 9, 2155-2172 (2022). MSC: 74K20 74G10 35B25 35Q74 PDF BibTeX XML Cite \textit{H. Mokhtari} and \textit{L. Rahmani}, Meccanica 57, No. 9, 2155--2172 (2022; Zbl 07700089) Full Text: DOI
Negero, Naol Tufa; Duressa, Gemechis File An efficient numerical approach for singularly perturbed parabolic convection-diffusion problems with large time-lag. (English) Zbl 07694600 J. Math. Model. 10, No. 2, 173-110 (2022). MSC: 65M06 65M12 65M15 PDF BibTeX XML Cite \textit{N. T. Negero} and \textit{G. F. Duressa}, J. Math. Model. 10, No. 2, 173--110 (2022; Zbl 07694600) Full Text: DOI
Kumar Mishra, Hradyesh; Lodhi, Ram Kishun Two-parameter singular perturbation boundary value problems via quintic B-spline method. (English) Zbl 1515.65201 Proc. Natl. Acad. Sci. India, Sect. A, Phys. Sci. 92, No. 4, 541-553 (2022). MSC: 65L10 34E15 65L12 65D07 PDF BibTeX XML Cite \textit{H. Kumar Mishra} and \textit{R. K. Lodhi}, Proc. Natl. Acad. Sci. India, Sect. A, Phys. Sci. 92, No. 4, 541--553 (2022; Zbl 1515.65201) Full Text: DOI
Saha, Tanay; Rakshit, Suman; Khare, Swanand R. Nearest linearly structured polynomial matrix with some prescribed distinct eigenvalues. (English) Zbl 1514.15025 Linear Multilinear Algebra 70, No. 21, 7000-7026 (2022). Reviewer: Tin Yau Tam (Reno) MSC: 15A29 15A18 15A22 47A55 65K10 PDF BibTeX XML Cite \textit{T. Saha} et al., Linear Multilinear Algebra 70, No. 21, 7000--7026 (2022; Zbl 1514.15025) Full Text: DOI
Yu, Jianduo; Li, Chuanzhong; Zhu, Mengkun; Chen, Yang Asymptotics for a singularly perturbed GUE, Painlevé III, double-confluent Heun equations, and small eigenvalues. (English) Zbl 1508.34121 J. Math. Phys. 63, No. 6, Article ID 063504, 25 p. (2022). MSC: 34M60 34M55 15B05 33C47 33C45 PDF BibTeX XML Cite \textit{J. Yu} et al., J. Math. Phys. 63, No. 6, Article ID 063504, 25 p. (2022; Zbl 1508.34121) Full Text: DOI
Kurina, G. A.; Kalashnikova, M. A. Singularly perturbed problems with multi-tempo fast variables. (English. Russian original) Zbl 1508.93210 Autom. Remote Control 83, No. 11, 1679-1723 (2022); translation from Avtom. Telemekh. 2022, No. 11, 3-61 (2022). MSC: 93C70 93C15 34B15 34D15 PDF BibTeX XML Cite \textit{G. A. Kurina} and \textit{M. A. Kalashnikova}, Autom. Remote Control 83, No. 11, 1679--1723 (2022; Zbl 1508.93210); translation from Avtom. Telemekh. 2022, No. 11, 3--61 (2022) Full Text: DOI
Cherry, Jake; Lindsay, Alan E.; Navarro Hernández, Adrián; Quaife, Bryan Trapping of planar Brownian motion: full first passage time distributions by kinetic Monte Carlo, asymptotic, and boundary integral methods. (English) Zbl 1509.35021 Multiscale Model. Simul. 20, No. 4, 1284-1314 (2022). MSC: 35B25 35C20 35J05 35J08 PDF BibTeX XML Cite \textit{J. Cherry} et al., Multiscale Model. Simul. 20, No. 4, 1284--1314 (2022; Zbl 1509.35021) Full Text: DOI arXiv
Andrushchenko, V. A.; Goloveshkin, V. A.; Murashkin, I. V.; Kholin, N. N. Formation of vortex structures in an area of strong explosion in a nonuniform atmosphere at its early stage. (English. Russian original) Zbl 1509.76055 Fluid Dyn. 57, No. 7, 944-953 (2022); translation from Prikl. Mat. Mekh. 86, No. 3, 753-764 (2022). MSC: 76L05 76N15 76M45 PDF BibTeX XML Cite \textit{V. A. Andrushchenko} et al., Fluid Dyn. 57, No. 7, 944--953 (2022; Zbl 1509.76055); translation from Prikl. Mat. Mekh. 86, No. 3, 753--764 (2022) Full Text: DOI
Uskov, V. I. Singular perturbations in first-order partial differential equations with matrix differential operators. (English. Russian original) Zbl 1509.35024 J. Math. Sci., New York 268, No. 1, 130-137 (2022); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 173, 132-139 (2019). MSC: 35B25 35F40 35R20 PDF BibTeX XML Cite \textit{V. I. Uskov}, J. Math. Sci., New York 268, No. 1, 130--137 (2022; Zbl 1509.35024); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 173, 132--139 (2019) Full Text: DOI
Okun, Pavel; Burke, Kieron Asymptotics of eigenvalue sums when some turning points are complex. (English) Zbl 07649088 J. Phys. A, Math. Theor. 55, No. 39, Article ID 394003, 26 p. (2022). MSC: 34M60 34M30 34M46 PDF BibTeX XML Cite \textit{P. Okun} and \textit{K. Burke}, J. Phys. A, Math. Theor. 55, No. 39, Article ID 394003, 26 p. (2022; Zbl 07649088) Full Text: DOI arXiv
Rajan, M. P.; Reddy, G. D. Regularized Lardy scheme for solving singularly perturbed elliptic and parabolic PDEs. (English) Zbl 1504.65212 Mediterr. J. Math. 19, No. 6, Paper No. 282, 25 p. (2022). MSC: 65M60 65M15 65M12 PDF BibTeX XML Cite \textit{M. P. Rajan} and \textit{G. D. Reddy}, Mediterr. J. Math. 19, No. 6, Paper No. 282, 25 p. (2022; Zbl 1504.65212) Full Text: DOI
Qayyum, Mubashir; Ismail, Farnaz; Shah, Syed Inayat Ali; Sohail, Muhammad; Asogwa, Kanayo Kenneth; Zohra, Fatema Tuz Analysis of fractional thin film flow of third grade fluid in lifting and drainage via homotopy perturbation procedure. (English) Zbl 1507.76015 Adv. Math. Phys. 2022, Article ID 2847993, 10 p. (2022). MSC: 76A20 76A05 76M45 26A33 PDF BibTeX XML Cite \textit{M. Qayyum} et al., Adv. Math. Phys. 2022, Article ID 2847993, 10 p. (2022; Zbl 1507.76015) Full Text: DOI