Clavero, Carmelo; Shiromani, Ram; Shanthi, Vembu A numerical approach for a two-parameter singularly perturbed weakly-coupled system of 2-D elliptic convection-reaction-diffusion PDEs. (English) Zbl 07738669 J. Comput. Appl. Math. 436, Article ID 115422, 20 p. (2024). MSC: 35J25 35J40 35B25 65N06 65N12 65N15 65N50 PDF BibTeX XML Cite \textit{C. Clavero} et al., J. Comput. Appl. Math. 436, Article ID 115422, 20 p. (2024; Zbl 07738669) Full Text: DOI
Dalla Riva, Matteo; Luzzini, Paolo; Musolino, Paolo Singular behavior for a multi-parameter periodic Dirichlet problem. (English) Zbl 07739272 Asymptotic Anal. 134, No. 1-2, 193-212 (2023). MSC: 35Qxx PDF BibTeX XML Cite \textit{M. Dalla Riva} et al., Asymptotic Anal. 134, No. 1--2, 193--212 (2023; Zbl 07739272) Full Text: DOI arXiv
Führer, Thomas; Videman, Juha First-order system least-squares finite element method for singularly perturbed Darcy equations. (English) Zbl 07739213 ESAIM, Math. Model. Numer. Anal. 57, No. 4, 2283-2300 (2023). MSC: 65N30 65N12 65F08 65F10 76S05 76D07 76M10 35Q35 PDF BibTeX XML Cite \textit{T. Führer} and \textit{J. Videman}, ESAIM, Math. Model. Numer. Anal. 57, No. 4, 2283--2300 (2023; Zbl 07739213) Full Text: DOI arXiv
Danilin, Alekseĭ Rufimovich; Kovrizhnykh, Ol’ga Olegovna Asymptotic expansion of the solution to an optimal control problem for a linear autonomous system with a terminal convex quality index depending on slow and fast variables. (Russian. English summary) Zbl 07724905 Izv. Inst. Mat. Inform., Udmurt. Gos. Univ. 61, 42-56 (2023). MSC: 93C15 93C05 93C70 49N05 PDF BibTeX XML Cite \textit{A. R. Danilin} and \textit{O. O. Kovrizhnykh}, Izv. Inst. Mat. Inform., Udmurt. Gos. Univ. 61, 42--56 (2023; Zbl 07724905) Full Text: DOI MNR
Yan, Li; Wang, Zhoufeng; Cheng, Yao Local discontinuous Galerkin method for a third-order singularly perturbed problem of convection-diffusion type. (English) Zbl 1517.65120 Comput. Methods Appl. Math. 23, No. 3, 751-766 (2023). MSC: 65N30 65N15 65N50 PDF BibTeX XML Cite \textit{L. Yan} et al., Comput. Methods Appl. Math. 23, No. 3, 751--766 (2023; Zbl 1517.65120) Full Text: DOI arXiv
Nikulin, E. I. Contrast structures in the reaction-advection-diffusion problem appearing in a drift-diffusion model of a semiconductor in the case of nonsmooth reaction. (English. Russian original) Zbl 07723435 Theor. Math. Phys. 215, No. 3, 769-783 (2023); translation from Teor. Mat. Fiz. 215, No. 3, 360-376 (2023). MSC: 34E15 34B15 34E05 PDF BibTeX XML Cite \textit{E. I. Nikulin}, Theor. Math. Phys. 215, No. 3, 769--783 (2023; Zbl 07723435); translation from Teor. Mat. Fiz. 215, No. 3, 360--376 (2023) Full Text: DOI
Yadav, Ram Prasad; Rai, Pratima; Sharma, Kapil K. NIPG finite element method for convection-dominated diffusion problems with discontinuous data. (English) Zbl 07714969 Int. J. Comput. Methods 20, No. 5, Article ID 2350001, 25 p. (2023). MSC: 65L11 65L60 65L70 PDF BibTeX XML Cite \textit{R. P. Yadav} et al., Int. J. Comput. Methods 20, No. 5, Article ID 2350001, 25 p. (2023; Zbl 07714969) Full Text: DOI
Sharma, Amit; Rai, Pratima Analysis of a hybrid numerical scheme for singularly perturbed convection-diffusion type delay problems. (English) Zbl 07714939 Int. J. Comput. Methods 20, No. 1, Article ID 2250032, 28 p. (2023). MSC: 65L11 65L12 65L20 65L50 65L70 PDF BibTeX XML Cite \textit{A. Sharma} and \textit{P. Rai}, Int. J. Comput. Methods 20, No. 1, Article ID 2250032, 28 p. (2023; Zbl 07714939) Full Text: DOI
Hailu, Wondimagegnehu Simon; Duressa, Gemechis File Accelerated parameter-uniform numerical method for singularly perturbed parabolic convection-diffusion problems with a large negative shift and integral boundary condition. (English) Zbl 1515.65218 Results Appl. Math. 18, Article ID 100364, 18 p. (2023). MSC: 65M06 65L11 65M12 PDF BibTeX XML Cite \textit{W. S. Hailu} and \textit{G. F. Duressa}, Results Appl. Math. 18, Article ID 100364, 18 p. (2023; Zbl 1515.65218) Full Text: DOI
Garima; Sharma, Kapil K. Parameter uniform fitted mesh finite difference scheme for elliptical singularly perturbed problems with mixed shifts in two dimensions. (English) Zbl 07705620 Int. J. Comput. Math. 100, No. 6, 1264-1283 (2023). MSC: 65N22 35J25 39A06 39A14 PDF BibTeX XML Cite \textit{Garima} and \textit{K. K. Sharma}, Int. J. Comput. Math. 100, No. 6, 1264--1283 (2023; Zbl 07705620) Full Text: DOI
Sharma, Amit; Rai, Pratima Uniformly convergent hybrid numerical scheme for singularly perturbed turning point problems with delay. (English) Zbl 07705610 Int. J. Comput. Math. 100, No. 5, 1052-1077 (2023). MSC: 65L11 65L12 65L20 65L50 65L70 PDF BibTeX XML Cite \textit{A. Sharma} and \textit{P. Rai}, Int. J. Comput. Math. 100, No. 5, 1052--1077 (2023; Zbl 07705610) Full Text: DOI
Singh, Gautam; Natesan, Srinivasan; Sendur, Ali Superconvergence error analysis of discontinuous Galerkin method with interior penalties for 2D elliptic convection-diffusion-reaction problems. (English) Zbl 07705605 Int. J. Comput. Math. 100, No. 5, 948-967 (2023). MSC: 65N12 65N15 65N30 PDF BibTeX XML Cite \textit{G. Singh} et al., Int. J. Comput. Math. 100, No. 5, 948--967 (2023; Zbl 07705605) Full Text: DOI
Mrityunjoy, B.; Natesan, S.; Sendur, A. Alternating direction implicit method for singularly perturbed 2D parabolic convection-diffusion-reaction problem with two small parameters. (English) Zbl 07699191 Int. J. Comput. Math. 100, No. 2, 253-282 (2023). MSC: 65M06 65M12 65M15 PDF BibTeX XML Cite \textit{B. Mrityunjoy} et al., Int. J. Comput. Math. 100, No. 2, 253--282 (2023; Zbl 07699191) Full Text: DOI
Brdar, Mirjana; Franz, Sebastian; Ludwig, Lars; Roos, Hans-Görg Numerical analysis of a singularly perturbed convection diffusion problem with shift in space. (English) Zbl 07699034 Appl. Numer. Math. 186, 129-142 (2023). MSC: 65Lxx 65Mxx 34Kxx PDF BibTeX XML Cite \textit{M. Brdar} et al., Appl. Numer. Math. 186, 129--142 (2023; Zbl 07699034) Full Text: DOI arXiv
Singh, Satpal; Kumar, Devendra; Vigo-Aguiar, J. A robust numerical technique for weakly coupled system of parabolic singularly perturbed reaction-diffusion equations. (English) Zbl 07695650 J. Math. Chem. 61, No. 6, 1313-1350 (2023). MSC: 65-XX 35B25 35B50 35K51 35K57 65L70 65M12 65M15 65M22 65M50 PDF BibTeX XML Cite \textit{S. Singh} et al., J. Math. Chem. 61, No. 6, 1313--1350 (2023; Zbl 07695650) Full Text: DOI
Simakov, R. E. Asymptotics of the solution of a singularly perturbed system of equations with a single-scale internal layer. (English. Russian original) Zbl 07694833 Differ. Equ. 59, No. 3, 332-350 (2023); translation from Differ. Uravn. 59, No. 3, 333-349 (2023). Reviewer: Dilmurat Tursunov (Osh) MSC: 34B15 34E15 34E05 PDF BibTeX XML Cite \textit{R. E. Simakov}, Differ. Equ. 59, No. 3, 332--350 (2023; Zbl 07694833); translation from Differ. Uravn. 59, No. 3, 333--349 (2023) Full Text: DOI
Sahoo, Sanjay Ku; Gupta, Vikas A robust uniformly convergent finite difference scheme for the time-fractional singularly perturbed convection-diffusion problem. (English) Zbl 07674330 Comput. Math. Appl. 137, 126-146 (2023). MSC: 65-XX 76-XX PDF BibTeX XML Cite \textit{S. K. Sahoo} and \textit{V. Gupta}, Comput. Math. Appl. 137, 126--146 (2023; Zbl 07674330) Full Text: DOI
Yang, L.; Wu, Y. J. Rational spectral collocation combined with singularity separation method for second-order singular perturbation problems. (English) Zbl 1512.65158 J. Math. Sci., New York 270, No. 2, 294-306 (2023) and Neliniĭni Kolyvannya 24, No. 2, 197-209 (2021). MSC: 65L11 65L60 PDF BibTeX XML Cite \textit{L. Yang} and \textit{Y. J. Wu}, J. Math. Sci., New York 270, No. 2, 294--306 (2023; Zbl 1512.65158) Full Text: DOI
Yapman, Ömer; Kudu, Mustafa; Amiraliyev, Gabil M. Method of exact difference schemes for the numerical solution of parameterized singularly perturbed problem. (English) Zbl 1506.65115 Mediterr. J. Math. 20, No. 3, Paper No. 146, 18 p. (2023). MSC: 65L11 65L12 65L20 65R20 PDF BibTeX XML Cite \textit{Ö. Yapman} et al., Mediterr. J. Math. 20, No. 3, Paper No. 146, 18 p. (2023; Zbl 1506.65115) Full Text: DOI
Yadav, Swati; Rai, Pratima A parameter uniform higher order scheme for 2D singularly perturbed parabolic convection-diffusion problem with turning point. (English) Zbl 07628006 Math. Comput. Simul. 205, 507-531 (2023). MSC: 65-XX 76-XX PDF BibTeX XML Cite \textit{S. Yadav} and \textit{P. Rai}, Math. Comput. Simul. 205, 507--531 (2023; Zbl 07628006) Full Text: DOI
Elango, Sekar Second order singularly perturbed delay differential equations with non-local boundary condition. (English) Zbl 1502.65040 J. Comput. Appl. Math. 417, Article ID 114498, 13 p. (2023). MSC: 65L03 65L11 65L12 65L20 PDF BibTeX XML Cite \textit{S. Elango}, J. Comput. Appl. Math. 417, Article ID 114498, 13 p. (2023; Zbl 1502.65040) Full Text: DOI
Daba, Imiru T.; Duressa, Gemechis F. Fitted numerical method for singularly perturbed burger-Huxley equation. (English) Zbl 07699521 Bound. Value Probl. 2022, Paper No. 102, 16 p. (2022). MSC: 65-XX 35B25 35K67 65M12 PDF BibTeX XML Cite \textit{I. T. Daba} and \textit{G. F. Duressa}, Bound. Value Probl. 2022, Paper No. 102, 16 p. (2022; Zbl 07699521) Full Text: DOI
Derzie, Eshetu Belete; Munyakazi, Justin B.; Gemechu Dinka, Tekle Parameter-uniform fitted operator method for singularly perturbed Burgers-Huxley equation. (English) Zbl 07695061 J. Math. Model. 10, No. 4, 515-534 (2022). MSC: 65M06 65M12 65M15 65M22 PDF BibTeX XML Cite \textit{E. B. Derzie} et al., J. Math. Model. 10, No. 4, 515--534 (2022; Zbl 07695061) Full Text: DOI
Tefera, D. M.; Tiruneh, A. A.; Derese, G. A. Fitted operator method over Gaussian quadrature formula for parabolic singularly perturbed convection-diffusion problem. (Russian. English summary) Zbl 07668680 Sib. Zh. Vychisl. Mat. 25, No. 3, 315-328 (2022). MSC: 65Mxx 65Dxx PDF BibTeX XML Cite \textit{D. M. Tefera} et al., Sib. Zh. Vychisl. Mat. 25, No. 3, 315--328 (2022; Zbl 07668680) Full Text: DOI MNR
Semisalov, Boris Vladimirovich Application of rational interpolations for solving boundary value problems with singularities. (Russian. English summary) Zbl 1507.65259 Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat. Model. Program. 15, No. 4, 5-19 (2022). MSC: 65N35 41A10 41A20 PDF BibTeX XML Cite \textit{B. V. Semisalov}, Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat. Model. Program. 15, No. 4, 5--19 (2022; Zbl 1507.65259) Full Text: DOI MNR
Negero, Naol Tufa; Duressa, Gemechis File Parameter-uniform robust scheme for singularly perturbed parabolic convection-diffusion problems with large time-lag. (English) Zbl 07665278 Comput. Methods Differ. Equ. 10, No. 4, 954-968 (2022). MSC: 65M06 65M12 65M15 PDF BibTeX XML Cite \textit{N. T. Negero} and \textit{G. F. Duressa}, Comput. Methods Differ. Equ. 10, No. 4, 954--968 (2022; Zbl 07665278) Full Text: DOI
Tsapko, Ekaterina Dmitrievna Numerical solution of a singularly perturbed boundary value problem of supersonic flow transformed to the modified best argument. (Russian. English summary) Zbl 07663127 Zh. Sredn. Mat. Obshch. 24, No. 3, 304-316 (2022). MSC: 65L11 PDF BibTeX XML Cite \textit{E. D. Tsapko}, Zh. Sredn. Mat. Obshch. 24, No. 3, 304--316 (2022; Zbl 07663127) Full Text: DOI MNR
Davydova, M. A.; Chkhetiani, O. G.; Levashova, N. T.; Nechaeva, A. L. On estimation of the contribution of secondary vortex structures to the transport of aerosols in the atmospheric boundary layer. (English. Russian original) Zbl 1510.76190 Fluid Dyn. 57, No. 8, 998-1007 (2022); translation from Prikl. Mat. Mekh. 86, No. 5, 765-778 (2022). MSC: 76T15 76R99 76M45 76M99 86A10 PDF BibTeX XML Cite \textit{M. A. Davydova} et al., Fluid Dyn. 57, No. 8, 998--1007 (2022; Zbl 1510.76190); translation from Prikl. Mat. Mekh. 86, No. 5, 765--778 (2022) Full Text: DOI
Eliseev, Aleksandr Georgievich Example of solution of a singularly perturbed Cauchy problem for a parabolic eqiuation in the presence of “strong” turning point. (Russian. English summary) Zbl 1504.35033 Differ. Uravn. Protsessy Upr. 2022, No. 3, 46-58 (2022). MSC: 35B25 35C10 35C20 35K15 PDF BibTeX XML Cite \textit{A. G. Eliseev}, Differ. Uravn. Protsessy Upr. 2022, No. 3, 46--58 (2022; Zbl 1504.35033) Full Text: Link
Volkov, V. T.; Nefedov, N. N. Asymptotic solution of the boundary control problem for a Burgers-type equation with modular advection and linear gain. (English. Russian original) Zbl 1504.35036 Comput. Math. Math. Phys. 62, No. 11, 1849-1858 (2022); translation from Zh. Vychisl. Mat. Mat. Fiz. 62, No. 11, 1851-1860 (2022). MSC: 35B25 35C10 35K20 35K58 35R30 PDF BibTeX XML Cite \textit{V. T. Volkov} and \textit{N. N. Nefedov}, Comput. Math. Math. Phys. 62, No. 11, 1849--1858 (2022; Zbl 1504.35036); translation from Zh. Vychisl. Mat. Mat. Fiz. 62, No. 11, 1851--1860 (2022) Full Text: DOI
Srinivas, E.; Lalu, M.; Phaneendra, K. A numerical approach for singular perturbation problems with an interior layer using an adaptive spline. (English) Zbl 1499.65331 Iran. J. Numer. Anal. Optim. 12, No. 2, 355-370 (2022). MSC: 65L10 65L11 65L12 65L20 PDF BibTeX XML Cite \textit{E. Srinivas} et al., Iran. J. Numer. Anal. Optim. 12, No. 2, 355--370 (2022; Zbl 1499.65331) Full Text: DOI
Yadav, Swati; Rai, Pratima An almost second order parameter uniform scheme for 2D singularly perturbed boundary turning point problem. (English) Zbl 1501.65044 Calcolo 59, No. 4, Paper No. 44, 27 p. (2022). MSC: 65M06 65N06 65N50 65M12 65M15 35B25 PDF BibTeX XML Cite \textit{S. Yadav} and \textit{P. Rai}, Calcolo 59, No. 4, Paper No. 44, 27 p. (2022; Zbl 1501.65044) Full Text: DOI
Ramesh, V. P.; Janakiraman, S.; Prithvi, M.; Narayani, G. A new a priori estimation for singularly perturbed problems with discontinuous data. (English) Zbl 1498.65125 Indian J. Pure Appl. Math. 53, No. 4, 813-825 (2022). MSC: 65L11 34E15 65L10 65L12 65L50 PDF BibTeX XML Cite \textit{V. P. Ramesh} et al., Indian J. Pure Appl. Math. 53, No. 4, 813--825 (2022; Zbl 1498.65125) Full Text: DOI
Liu, Zhisu; Wei, Juncheng; Zhang, Jianjun A new type of nodal solutions to singularly perturbed elliptic equations with supercritical growth. (English) Zbl 1500.35175 J. Differ. Equations 339, 509-554 (2022). MSC: 35J91 35J05 35J25 35A01 PDF BibTeX XML Cite \textit{Z. Liu} et al., J. Differ. Equations 339, 509--554 (2022; Zbl 1500.35175) Full Text: DOI arXiv
Chaikovskii, Dmitrii; Zhang, Ye Convergence analysis for forward and inverse problems in singularly perturbed time-dependent reaction-advection-diffusion equations. (English) Zbl 07599633 J. Comput. Phys. 470, Article ID 111609, 32 p. (2022). MSC: 65Mxx 35Kxx 35Rxx PDF BibTeX XML Cite \textit{D. Chaikovskii} and \textit{Y. Zhang}, J. Comput. Phys. 470, Article ID 111609, 32 p. (2022; Zbl 07599633) Full Text: DOI arXiv
Yang, Xuemin; Niu, Jing; Yao, Chunhua Broken reproducing kernel method for elliptic type interface problems. (Chinese. English summary) Zbl 1513.65265 Math. Numer. Sin. 44, No. 2, 217-232 (2022). MSC: 65L70 65L10 65L11 65L20 PDF BibTeX XML Cite \textit{X. Yang} et al., Math. Numer. Sin. 44, No. 2, 217--232 (2022; Zbl 1513.65265) Full Text: DOI
Volkov, V. T.; Nefedov, N. N. Boundary control of fronts in a Burgers-type equation with modular adhesion and periodic amplification. (English. Russian original) Zbl 1516.35043 Theor. Math. Phys. 212, No. 2, 1044-1052 (2022); translation from Teor. Mat. Fiz. 212, No. 2, 179-189 (2022). MSC: 35B25 35B40 35B35 35K57 PDF BibTeX XML Cite \textit{V. T. Volkov} and \textit{N. N. Nefedov}, Theor. Math. Phys. 212, No. 2, 1044--1052 (2022; Zbl 1516.35043); translation from Teor. Mat. Fiz. 212, No. 2, 179--189 (2022) Full Text: DOI
Mahendran, Rajendran; Subburayan, Veerasamy Uniformly convergent finite difference method for reaction-diffusion type third order singularly perturbed delay differential equation. (English) Zbl 1495.65099 Turk. J. Math. 46, No. 2, SI-1, 360-376 (2022). MSC: 65L03 34K10 65L11 65L12 65L20 PDF BibTeX XML Cite \textit{R. Mahendran} and \textit{V. Subburayan}, Turk. J. Math. 46, No. 2, 360--376 (2022; Zbl 1495.65099) Full Text: DOI
Woldaregay, Mesfin Mekuria; Duressa, Gemechis File Fitted numerical scheme for singularly perturbed differential equations having two small delays. (English) Zbl 1495.65192 Casp. J. Math. Sci. 11, No. 1, 98-114 (2022). MSC: 65N06 65N12 PDF BibTeX XML Cite \textit{M. M. Woldaregay} and \textit{G. F. Duressa}, Casp. J. Math. Sci. 11, No. 1, 98--114 (2022; Zbl 1495.65192) Full Text: DOI
Mohammadi, K.; Alipanah, A.; Ghasemi, M. A non-classical sinc-collocation method for the solution of singular boundary value problems arising in physiology. (English) Zbl 1513.65253 Int. J. Comput. Math. 99, No. 10, 1941-1967 (2022). MSC: 65L60 41A30 65L10 65L11 65L20 92C30 PDF BibTeX XML Cite \textit{K. Mohammadi} et al., Int. J. Comput. Math. 99, No. 10, 1941--1967 (2022; Zbl 1513.65253) Full Text: DOI
Shishkin, G. I.; Shishkina, L. P. A difference scheme of the decomposition method for an initial boundary value problem for the singularly perturbed transport equation. (English. Russian original) Zbl 1496.65129 Comput. Math. Math. Phys. 62, No. 7, 1193-1201 (2022); translation from Zh. Vychisl. Mat. Mat. Fiz. 62, No. 7, 1224-1232 (2022). MSC: 65M06 65N06 65M55 65M12 35B25 35B50 35Q49 PDF BibTeX XML Cite \textit{G. I. Shishkin} and \textit{L. P. Shishkina}, Comput. Math. Math. Phys. 62, No. 7, 1193--1201 (2022; Zbl 1496.65129); translation from Zh. Vychisl. Mat. Mat. Fiz. 62, No. 7, 1224--1232 (2022) Full Text: DOI
Aarthika, K.; Shanthi, V.; Ramos, Higinio A computational approach for a two-parameter singularly perturbed system of partial differential equations with discontinuous coefficients. (English) Zbl 1510.65183 Appl. Math. Comput. 434, Article ID 127409, 15 p. (2022). MSC: 65M06 35K51 65M12 PDF BibTeX XML Cite \textit{K. Aarthika} et al., Appl. Math. Comput. 434, Article ID 127409, 15 p. (2022; Zbl 1510.65183) Full Text: DOI
Cakir, Musa; Ekinci, Yilmaz; Cimen, Erkan A numerical approach for solving nonlinear Fredholm integro-differential equation with boundary layer. (English) Zbl 1513.65214 Comput. Appl. Math. 41, No. 6, Paper No. 259, 14 p. (2022). MSC: 65L05 65L11 65L12 65L20 65R20 45B05 45J05 PDF BibTeX XML Cite \textit{M. Cakir} et al., Comput. Appl. Math. 41, No. 6, Paper No. 259, 14 p. (2022; Zbl 1513.65214) Full Text: DOI
Derzie, Eshetu B.; Munyakazi, Justin B.; Gemechu, Tekle A parameter-uniform numerical method for singularly perturbed Burgers’ equation. (English) Zbl 1513.65281 Comput. Appl. Math. 41, No. 6, Paper No. 247, 19 p. (2022). MSC: 65M06 65M22 35B25 35Q53 PDF BibTeX XML Cite \textit{E. B. Derzie} et al., Comput. Appl. Math. 41, No. 6, Paper No. 247, 19 p. (2022; Zbl 1513.65281) Full Text: DOI
Liu, Xiaojing; Zhou, Youhe; Wang, Jizeng Wavelet multiresolution interpolation Galerkin method for nonlinear boundary value problems with localized steep gradients. (English) Zbl 1492.65215 AMM, Appl. Math. Mech., Engl. Ed. 43, No. 6, 863-882 (2022). MSC: 65L11 65L10 34B15 65L60 65T60 PDF BibTeX XML Cite \textit{X. Liu} et al., AMM, Appl. Math. Mech., Engl. Ed. 43, No. 6, 863--882 (2022; Zbl 1492.65215) Full Text: DOI
Gunes, Baransel; Demirbas, Mutlu A uniform discretization for solving singularly perturbed convection-diffusion boundary value problems. (English) Zbl 1491.65071 Mem. Differ. Equ. Math. Phys. 86, 69-84 (2022). MSC: 65L11 65L10 65L12 65L20 65L70 PDF BibTeX XML Cite \textit{B. Gunes} and \textit{M. Demirbas}, Mem. Differ. Equ. Math. Phys. 86, 69--84 (2022; Zbl 1491.65071) Full Text: Link
Debela, Habtamu G.; Woldaregay, Mesfin M.; Duressa, Gemechis F. Robust numerical method for singularly perturbed convection-diffusion type problems with non-local boundary condition. (English) Zbl 1489.65106 Math. Model. Anal. 27, No. 2, 199-214 (2022). MSC: 65L10 65L11 65L12 65L20 65L70 PDF BibTeX XML Cite \textit{H. G. Debela} et al., Math. Model. Anal. 27, No. 2, 199--214 (2022; Zbl 1489.65106) Full Text: DOI
Singh, Gautam; Natesan, Srinivasan Superconvergence error estimates of discontinuous Galerkin time stepping for singularly perturbed parabolic problems. (English) Zbl 1491.65100 Numer. Algorithms 90, No. 3, 1073-1090 (2022). MSC: 65M60 65N30 65M12 65M15 65N50 35K67 35B25 PDF BibTeX XML Cite \textit{G. Singh} and \textit{S. Natesan}, Numer. Algorithms 90, No. 3, 1073--1090 (2022; Zbl 1491.65100) Full Text: DOI
Kumar, Sunil; Sumit; Vigo-Aguiar, Jesus A high order convergent numerical method for singularly perturbed time dependent problems using mesh equidistribution. (English) Zbl 07538462 Math. Comput. Simul. 199, 287-306 (2022). MSC: 65-XX 76-XX PDF BibTeX XML Cite \textit{S. Kumar} et al., Math. Comput. Simul. 199, 287--306 (2022; Zbl 07538462) Full Text: DOI
Rajeev Ranjan, Kumar; Gowrisankar, S. Uniformly convergent NIPG method for singularly perturbed convection diffusion problem on Shishkin type meshes. (English) Zbl 1492.65217 Appl. Numer. Math. 179, 125-148 (2022). MSC: 65L11 65L60 65L20 PDF BibTeX XML Cite \textit{K. Rajeev Ranjan} and \textit{S. Gowrisankar}, Appl. Numer. Math. 179, 125--148 (2022; Zbl 1492.65217) Full Text: DOI
Argun, R. L.; Volkov, V. T.; Lukyanenko, D. V. Numerical simulation of front dynamics in a nonlinear singularly perturbed reaction-diffusion problem. (English) Zbl 1490.35024 J. Comput. Appl. Math. 412, Article ID 114294, 15 p. (2022). MSC: 35B25 35B44 35C20 35K20 35K57 PDF BibTeX XML Cite \textit{R. L. Argun} et al., J. Comput. Appl. Math. 412, Article ID 114294, 15 p. (2022; Zbl 1490.35024) Full Text: DOI
Woldaregay, Mesfin Mekuria; Debela, Habtamu Garoma; Duressa, Gemechis File Uniformly convergent fitted operator method for singularly perturbed delay differential equations. (English) Zbl 1499.65307 Comput. Methods Differ. Equ. 10, No. 2, 502-518 (2022). MSC: 65L06 65L12 PDF BibTeX XML Cite \textit{M. M. Woldaregay} et al., Comput. Methods Differ. Equ. 10, No. 2, 502--518 (2022; Zbl 1499.65307) Full Text: DOI
Daba, Imiru Takele; Duressa, Gemechis File A robust computational method for singularly perturbed delay parabolic convection-diffusion equations arising in the modeling of neuronal variability. (English) Zbl 1499.65384 Comput. Methods Differ. Equ. 10, No. 2, 475-488 (2022). MSC: 65M06 65M12 35B25 65D07 35R07 PDF BibTeX XML Cite \textit{I. T. Daba} and \textit{G. F. Duressa}, Comput. Methods Differ. Equ. 10, No. 2, 475--488 (2022; Zbl 1499.65384) Full Text: DOI
Danilin, A. R.; Shaburov, A. A. Asymptotic expansion of the solution of a singularly perturbed optimal control problem with elliptical control constraints. (English. Russian original) Zbl 1487.49028 Autom. Remote Control 83, No. 1, 1-16 (2022); translation from Avtom. Telemekh. 2022, No. 1, 3-21 (2022). MSC: 49K21 93C70 PDF BibTeX XML Cite \textit{A. R. Danilin} and \textit{A. A. Shaburov}, Autom. Remote Control 83, No. 1, 1--16 (2022; Zbl 1487.49028); translation from Avtom. Telemekh. 2022, No. 1, 3--21 (2022) Full Text: DOI
Roos, Hans-Görg; Savvidou, Despo; Xenophontos, Christos On the finite element approximation of fourth-order singularly perturbed eigenvalue problems. (English) Zbl 1485.65123 Comput. Methods Appl. Math. 22, No. 2, 465-476 (2022). MSC: 65N30 65N25 65N12 PDF BibTeX XML Cite \textit{H.-G. Roos} et al., Comput. Methods Appl. Math. 22, No. 2, 465--476 (2022; Zbl 1485.65123) Full Text: DOI arXiv
Kozhobekov, Kudaĭberdi Gaparalievich; Shoorukov, Asylbek Abdibakhapovich; Tursunov, Dilmurat Abdillazhanovich Asymptotics of the solution of the first boundary value problem for a singularly perturbed differential equation in partial derivatives of the second order of parabolic type. (Russian. English summary) Zbl 1490.35027 Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat., Mekh., Fiz. 14, No. 1, 27-34 (2022). MSC: 35B25 35C20 35K20 PDF BibTeX XML Cite \textit{K. G. Kozhobekov} et al., Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat., Mekh., Fiz. 14, No. 1, 27--34 (2022; Zbl 1490.35027) Full Text: DOI MNR
Gebeyehu, M.; Garoma, H.; Deressa, A. Fitted numerical method for singularly perturbed semilinear three-point boundary value problem. (English) Zbl 1482.65123 Iran. J. Numer. Anal. Optim. 12, No. 1, 145-162 (2022). MSC: 65L11 65L10 65L12 65L20 PDF BibTeX XML Cite \textit{M. Gebeyehu} et al., Iran. J. Numer. Anal. Optim. 12, No. 1, 145--162 (2022; Zbl 1482.65123) Full Text: DOI
Hegarty, A. F.; O’Riordan, E. A numerical algorithm to computationally solve the Hemker problem using Shishkin meshes. (English) Zbl 1491.65116 J. Comput. Appl. Math. 409, Article ID 114155, 17 p. (2022). Reviewer: Bülent Karasözen (Ankara) MSC: 65N06 65N12 65N15 35B25 35J25 PDF BibTeX XML Cite \textit{A. F. Hegarty} and \textit{E. O'Riordan}, J. Comput. Appl. Math. 409, Article ID 114155, 17 p. (2022; Zbl 1491.65116) Full Text: DOI arXiv
Chawla, Sheetal; Singh, Jagbir; Urmil An analysis of the robust convergent method for a singularly perturbed linear system of reaction-diffusion type having nonsmooth data. (English) Zbl 07488878 Int. J. Comput. Methods 19, No. 1, Article ID 2150056, 22 p. (2022). MSC: 65-XX 35-XX PDF BibTeX XML Cite \textit{S. Chawla} et al., Int. J. Comput. Methods 19, No. 1, Article ID 2150056, 22 p. (2022; Zbl 07488878) Full Text: DOI
Singh, Satpal; Kumar, Devendra; Ramos, Higinio A uniformly convergent quadratic \(B\)-spline based scheme for singularly perturbed degenerate parabolic problems. (English) Zbl 07487706 Math. Comput. Simul. 195, 88-106 (2022). MSC: 65-XX 76-XX PDF BibTeX XML Cite \textit{S. Singh} et al., Math. Comput. Simul. 195, 88--106 (2022; Zbl 07487706) Full Text: DOI
Xie, Ziqing; Yuan, Yongjun; Zhou, Jianxin On solving semilinear singularly perturbed Neumann problems for multiple solutions. (English) Zbl 1483.58002 SIAM J. Sci. Comput. 44, No. 1, A501-A523 (2022). MSC: 58E05 58E07 35J20 65N20 PDF BibTeX XML Cite \textit{Z. Xie} et al., SIAM J. Sci. Comput. 44, No. 1, A501--A523 (2022; Zbl 1483.58002) Full Text: DOI
Kudu, Mustafa; Amirali, Ilhame; Amiraliyev, Gabil M. A second order accurate method for a parameterized singularly perturbed problem with integral boundary condition. (English) Zbl 1483.65125 J. Comput. Appl. Math. 404, Article ID 113894, 9 p. (2022). MSC: 65L11 65L12 65L20 65L70 PDF BibTeX XML Cite \textit{M. Kudu} et al., J. Comput. Appl. Math. 404, Article ID 113894, 9 p. (2022; Zbl 1483.65125) Full Text: DOI
Shakti, Deepti; Mohapatra, Jugal; Das, Pratibhamoy; Vigo-Aguiar, Jesus A moving mesh refinement based optimal accurate uniformly convergent computational method for a parabolic system of boundary layer originated reaction-diffusion problems with arbitrary small diffusion terms. (English) Zbl 1503.65184 J. Comput. Appl. Math. 404, Article ID 113167, 16 p. (2022). MSC: 65M06 35B25 35B50 35B51 35K51 35K57 65M15 PDF BibTeX XML Cite \textit{D. Shakti} et al., J. Comput. Appl. Math. 404, Article ID 113167, 16 p. (2022; Zbl 1503.65184) Full Text: DOI
Liu, Chein-Shan; Chang, Chih-Wen Modified asymptotic solutions for second-order nonlinear singularly perturbed boundary value problems. (English) Zbl 07442867 Math. Comput. Simul. 193, 139-152 (2022). MSC: 35-XX 65-XX PDF BibTeX XML Cite \textit{C.-S. Liu} and \textit{C.-W. Chang}, Math. Comput. Simul. 193, 139--152 (2022; Zbl 07442867) Full Text: DOI
Daba, Imiru Takele; Duressa, Gemechis File Collocation method using artificial viscosity for time dependent singularly perturbed differential-difference equations. (English) Zbl 07431722 Math. Comput. Simul. 192, 201-220 (2022). MSC: 65-XX 76-XX PDF BibTeX XML Cite \textit{I. T. Daba} and \textit{G. F. Duressa}, Math. Comput. Simul. 192, 201--220 (2022; Zbl 07431722) Full Text: DOI
Nefedov, N. N. On a new type of periodic fronts in Burgers type equations with modular advection. (English) Zbl 1501.35029 Manuilov, Vladimir M. (ed.) et al., Differential equations on manifolds and mathematical physics. Dedicated to the memory of Boris Sternin. Selected papers based on the presentations of the conference on partial differential equations and applications, Moscow, Russia, November 6–9, 2018. Cham: Birkhäuser. Trends Math., 273-286 (2021). MSC: 35B25 35B10 35B35 35K20 35K58 PDF BibTeX XML Cite \textit{N. N. Nefedov}, in: Differential equations on manifolds and mathematical physics. Dedicated to the memory of Boris Sternin. Selected papers based on the presentations of the conference on partial differential equations and applications, Moscow, Russia, November 6--9, 2018. Cham: Birkhäuser. 273--286 (2021; Zbl 1501.35029) Full Text: DOI
Toprakseven, Şuayip; Zhu, Peng Uniform convergent modified weak Galerkin method for convection-dominated two-point boundary value problems. (English) Zbl 1493.65232 Turk. J. Math. 45, No. 6, 2703-2730 (2021). MSC: 65N30 PDF BibTeX XML Cite \textit{Ş. Toprakseven} and \textit{P. Zhu}, Turk. J. Math. 45, No. 6, 2703--2730 (2021; Zbl 1493.65232) Full Text: DOI
Woldaregay, Mesfin Mekuria; Duressa, Gemechis File Uniformly convergent numerical scheme for singularly perturbed parabolic delay differential equations. (English) Zbl 1513.65315 J. Appl. Math. Inform. 39, No. 5-6, 623-641 (2021). MSC: 65M06 65N06 65M12 35B25 35R07 41A58 35K10 PDF BibTeX XML Cite \textit{M. M. Woldaregay} and \textit{G. F. Duressa}, J. Appl. Math. Inform. 39, No. 5--6, 623--641 (2021; Zbl 1513.65315) Full Text: DOI
Chen, Shu-Bo; Soradi-Zeid, Samaneh; Dutta, Hemen; Mesrizadeh, Mehdi; Jahanshahi, Hadi; Chu, Yu-Ming Reproducing kernel Hilbert space method for nonlinear second order singularly perturbed boundary value problems with time-delay. (English) Zbl 1498.34063 Chaos Solitons Fractals 144, Article ID 110674, 10 p. (2021). MSC: 34A45 34E15 PDF BibTeX XML Cite \textit{S.-B. Chen} et al., Chaos Solitons Fractals 144, Article ID 110674, 10 p. (2021; Zbl 1498.34063) Full Text: DOI
Şendur, Ali; Natesan, Srinivasan; Singh, Gautam Error estimates for a fully discrete \(\varepsilon\)-uniform finite element method on quasi uniform meshes. (English) Zbl 1499.65335 Hacet. J. Math. Stat. 50, No. 5, 1306-1324 (2021). MSC: 65L11 65L60 65L70 65N30 PDF BibTeX XML Cite \textit{A. Şendur} et al., Hacet. J. Math. Stat. 50, No. 5, 1306--1324 (2021; Zbl 1499.65335) Full Text: DOI
Abagero, B. M.; Duressa, G. F.; Debela, H. G. Singularly perturbed Robin type boundary value problems with discontinuous source term in geophysical fluid dynamics. (English) Zbl 1485.76068 Iran. J. Numer. Anal. Optim. 11, No. 2, 351-364 (2021). MSC: 76M45 76M20 76U60 86A05 PDF BibTeX XML Cite \textit{B. M. Abagero} et al., Iran. J. Numer. Anal. Optim. 11, No. 2, 351--364 (2021; Zbl 1485.76068) Full Text: DOI
Woldaregay, M. M.; Duressa, G. F. Exponentially fitted tension spline method for singularly perturbed differential difference equations. (English) Zbl 1482.65126 Iran. J. Numer. Anal. Optim. 11, No. 2, 261-282 (2021). MSC: 65L11 65L03 65L70 PDF BibTeX XML Cite \textit{M. M. Woldaregay} and \textit{G. F. Duressa}, Iran. J. Numer. Anal. Optim. 11, No. 2, 261--282 (2021; Zbl 1482.65126) Full Text: DOI
Chawla, Sheetal; Urmil; Singh, Jagbir A parameter-robust convergence scheme for a coupled system of singularly perturbed first order differential equations with discontinuous source term. (English) Zbl 1499.65376 Int. J. Appl. Comput. Math. 7, No. 3, Paper No. 118, 18 p. (2021). MSC: 65M06 65M12 65M15 35B25 65L05 65L11 PDF BibTeX XML Cite \textit{S. Chawla} et al., Int. J. Appl. Comput. Math. 7, No. 3, Paper No. 118, 18 p. (2021; Zbl 1499.65376) Full Text: DOI
Yadav, Narendra Singh; Mukherjee, Kaushik On \(\varepsilon \)-uniform higher order accuracy of new efficient numerical method and its extrapolation for singularly perturbed parabolic problems with boundary layer. (English) Zbl 1499.65445 Int. J. Appl. Comput. Math. 7, No. 3, Paper No. 72, 58 p. (2021). MSC: 65M06 65N06 65M12 35K58 35B25 65B05 PDF BibTeX XML Cite \textit{N. S. Yadav} and \textit{K. Mukherjee}, Int. J. Appl. Comput. Math. 7, No. 3, Paper No. 72, 58 p. (2021; Zbl 1499.65445) Full Text: DOI
Liu, Li-Bin; Liang, Ying; Bao, Xiaobing; Fang, Honglin An efficient adaptive grid method for a system of singularly perturbed convection-diffusion problems with Robin boundary conditions. (English) Zbl 1485.65085 Adv. Difference Equ. 2021, Paper No. 6, 13 p. (2021). MSC: 65L12 65L10 65L50 34E15 34B15 PDF BibTeX XML Cite \textit{L.-B. Liu} et al., Adv. Difference Equ. 2021, Paper No. 6, 13 p. (2021; Zbl 1485.65085) Full Text: DOI
Lin, Bin A new numerical scheme for third-order singularly Emden-Fowler equations using quintic B-spline function. (English) Zbl 1480.65191 Int. J. Comput. Math. 98, No. 12, 2406-2422 (2021). MSC: 65L60 65L10 65L11 65D07 65L20 PDF BibTeX XML Cite \textit{B. Lin}, Int. J. Comput. Math. 98, No. 12, 2406--2422 (2021; Zbl 1480.65191) Full Text: DOI
Tomar, Saurabh An effective approach for solving a class of nonlinear singular boundary value problems arising in different physical phenomena. (English) Zbl 1480.65184 Int. J. Comput. Math. 98, No. 10, 2060-2077 (2021). MSC: 65L10 34B16 65L11 PDF BibTeX XML Cite \textit{S. Tomar}, Int. J. Comput. Math. 98, No. 10, 2060--2077 (2021; Zbl 1480.65184) Full Text: DOI
Aarthika, K.; Shanthi, V.; Ramos, Higinio A finite-difference scheme for a coupled system of singularly perturbed time-dependent reaction-diffusion equations with discontinuous source terms. (English) Zbl 1480.65312 Int. J. Comput. Math. 98, No. 1, 120-135 (2021). MSC: 65N06 65N22 35B25 PDF BibTeX XML Cite \textit{K. Aarthika} et al., Int. J. Comput. Math. 98, No. 1, 120--135 (2021; Zbl 1480.65312) Full Text: DOI
Fairuz, A. N.; Majid, Z. A. Rational methods for solving first-order initial value problems. (English) Zbl 1480.65165 Int. J. Comput. Math. 98, No. 2, 252-270 (2021). MSC: 65L05 65L04 PDF BibTeX XML Cite \textit{A. N. Fairuz} and \textit{Z. A. Majid}, Int. J. Comput. Math. 98, No. 2, 252--270 (2021; Zbl 1480.65165) Full Text: DOI
Siva Prasad, E.; Phaneendra, K. Solution of singularly perturbed boundary value problems with singularity using variable mesh finite difference method. (English) Zbl 1499.65330 J. Dyn. Syst. Geom. Theor. 19, No. 1, 113-124 (2021). MSC: 65L10 65L11 65L12 PDF BibTeX XML Cite \textit{E. Siva Prasad} and \textit{K. Phaneendra}, J. Dyn. Syst. Geom. Theor. 19, No. 1, 113--124 (2021; Zbl 1499.65330) Full Text: DOI
Sykopetritou, Irene; Xenophontos, Christos An \(h_p\) finite element method for a singularly perturbed reaction-convection-diffusion boundary value problem with two small parameters. (English) Zbl 1499.65354 Int. J. Numer. Anal. Model. 18, No. 4, 481-499 (2021). MSC: 65L60 65L10 65L11 65L20 34E05 PDF BibTeX XML Cite \textit{I. Sykopetritou} and \textit{C. Xenophontos}, Int. J. Numer. Anal. Model. 18, No. 4, 481--499 (2021; Zbl 1499.65354) Full Text: arXiv Link
Angasu, Merga Amara; Duressa, Gemechis File; Woldaregay, Mesfin Mekuria Exponentially fitted numerical scheme for singularly perturbed differential equations involving small delays. (English) Zbl 1499.65301 J. Appl. Math. Inform. 39, No. 3-4, 419-435 (2021). MSC: 65L06 65L12 PDF BibTeX XML Cite \textit{M. A. Angasu} et al., J. Appl. Math. Inform. 39, No. 3--4, 419--435 (2021; Zbl 1499.65301) Full Text: DOI
Ranjan, Rakesh; Prasad, Hari Shankar A novel approach for the numerical approximation to the solution of singularly perturbed differential-difference equations with small shifts. (English) Zbl 1475.65057 J. Appl. Math. Comput. 65, No. 1-2, 403-427 (2021). MSC: 65L10 65L11 65L12 65L20 PDF BibTeX XML Cite \textit{R. Ranjan} and \textit{H. S. Prasad}, J. Appl. Math. Comput. 65, No. 1--2, 403--427 (2021; Zbl 1475.65057) Full Text: DOI
Gupta, Vikas; Sahoo, Sanjay K.; Dubey, Ritesh K. Robust higher order finite difference scheme for singularly perturbed turning point problem with two outflow boundary layers. (English) Zbl 1476.65148 Comput. Appl. Math. 40, No. 5, Paper No. 179, 23 p. (2021). MSC: 65L11 65L10 65L20 65L50 65L70 PDF BibTeX XML Cite \textit{V. Gupta} et al., Comput. Appl. Math. 40, No. 5, Paper No. 179, 23 p. (2021; Zbl 1476.65148) Full Text: DOI arXiv
Woldaregay, Mesfin Mekuria; Duressa, Gemechis File Robust mid-point upwind scheme for singularly perturbed delay differential equations. (English) Zbl 1476.65121 Comput. Appl. Math. 40, No. 5, Paper No. 178, 12 p. (2021). MSC: 65L03 65L06 65L12 65L15 PDF BibTeX XML Cite \textit{M. M. Woldaregay} and \textit{G. F. Duressa}, Comput. Appl. Math. 40, No. 5, Paper No. 178, 12 p. (2021; Zbl 1476.65121) Full Text: DOI
Franz, Sebastian Singularly perturbed reaction-diffusion problems as first order systems. (English) Zbl 1491.65135 J. Sci. Comput. 89, No. 2, Paper No. 38, 14 p. (2021). MSC: 65N30 65N12 65N15 65N50 35B25 PDF BibTeX XML Cite \textit{S. Franz}, J. Sci. Comput. 89, No. 2, Paper No. 38, 14 p. (2021; Zbl 1491.65135) Full Text: DOI arXiv
Fedele, Baptiste; Negulescu, Claudia; Ottaviani, Maurizio Analysis of the Kolmogorov model with an asymptotic-preserving method. (English) Zbl 07411296 Phys. Lett., A 410, Article ID 127522, 11 p. (2021). MSC: 81-XX 82-XX PDF BibTeX XML Cite \textit{B. Fedele} et al., Phys. Lett., A 410, Article ID 127522, 11 p. (2021; Zbl 07411296) Full Text: DOI
Bansal, Komal; Sharma, Kapil K. A high order robust numerical scheme for the generalized Stein’s model of neuronal variability. (English) Zbl 07409802 J. Difference Equ. Appl. 27, No. 5, 637-663 (2021). MSC: 65L11 65M12 35K20 PDF BibTeX XML Cite \textit{K. Bansal} and \textit{K. K. Sharma}, J. Difference Equ. Appl. 27, No. 5, 637--663 (2021; Zbl 07409802) Full Text: DOI
Zakharova, S. A.; Davydova, M. A.; Lukyanenko, D. V. Use of asymptotic analysis for solving the inverse problem of source parameters determination of nitrogen oxide emission in the atmosphere. (English) Zbl 1470.65189 Inverse Probl. Sci. Eng. 29, No. 3, 365-377 (2021). MSC: 65N21 35J75 86A22 PDF BibTeX XML Cite \textit{S. A. Zakharova} et al., Inverse Probl. Sci. Eng. 29, No. 3, 365--377 (2021; Zbl 1470.65189) Full Text: DOI
Xie, Yaning; Huang, Zhongyi; Ying, Wenjun A Cartesian grid based tailored finite point method for reaction-diffusion equation on complex domains. (English) Zbl 07384067 Comput. Math. Appl. 97, 298-313 (2021). MSC: 65L10 35B25 65N30 35J25 65M06 PDF BibTeX XML Cite \textit{Y. Xie} et al., Comput. Math. Appl. 97, 298--313 (2021; Zbl 07384067) Full Text: DOI
Danilin, A. R.; Kovrizhnykh, O. O. Asymptotics of a solution to a singularly perturbed time-optimal control problem of transferring an object to a set. (English. Russian original) Zbl 1469.49004 Proc. Steklov Inst. Math. 313, Suppl. 1, S40-S53 (2021); translation from Tr. Inst. Mat. Mekh. (Ekaterinburg) 26, No. 2, 132-146 (2020). MSC: 49J15 34H05 PDF BibTeX XML Cite \textit{A. R. Danilin} and \textit{O. O. Kovrizhnykh}, Proc. Steklov Inst. Math. 313, S40--S53 (2021; Zbl 1469.49004); translation from Tr. Inst. Mat. Mekh. (Ekaterinburg) 26, No. 2, 132--146 (2020) Full Text: DOI
Butuzov, V. F. Singularly perturbed partially dissipative systems of equations. (English. Russian original) Zbl 1472.34108 Theor. Math. Phys. 207, No. 2, 579-593 (2021); translation from Teor. Mat. Fiz. 207, No. 2, 210-225 (2021). Reviewer: Robert Vrabel (Trnava) MSC: 34E15 34B15 34E05 PDF BibTeX XML Cite \textit{V. F. Butuzov}, Theor. Math. Phys. 207, No. 2, 579--593 (2021; Zbl 1472.34108); translation from Teor. Mat. Fiz. 207, No. 2, 210--225 (2021) Full Text: DOI
Ku Sahoo, Sanjay; Gupta, Vikas Second-order parameter-uniform finite difference scheme for singularly perturbed parabolic problem with a boundary turning point. (English) Zbl 1476.65176 J. Difference Equ. Appl. 27, No. 2, 223-240 (2021). MSC: 65M06 65N06 65M12 65B05 35B25 35B45 35K67 PDF BibTeX XML Cite \textit{S. Ku Sahoo} and \textit{V. Gupta}, J. Difference Equ. Appl. 27, No. 2, 223--240 (2021; Zbl 1476.65176) Full Text: DOI
Kudu, Mustafa; Amirali, Ilhame; Amiraliyev, Gabil M. A fitted second-order difference method for a parameterized problem with integral boundary condition exhibiting initial layer. (English) Zbl 1471.65091 Mediterr. J. Math. 18, No. 3, Paper No. 106, 17 p. (2021). MSC: 65L11 65L12 65L20 34K26 PDF BibTeX XML Cite \textit{M. Kudu} et al., Mediterr. J. Math. 18, No. 3, Paper No. 106, 17 p. (2021; Zbl 1471.65091) Full Text: DOI
Tursunov, D. A.; Bekmurza uulu, Ybadylla Asymptotic solution of the Robin problem with a regularly singular point. (English) Zbl 1469.34078 Lobachevskii J. Math. 42, No. 3, 613-620 (2021). Reviewer: Robert Vrabel (Trnava) MSC: 34E15 34B15 34E05 34B05 PDF BibTeX XML Cite \textit{D. A. Tursunov} and \textit{Y. Bekmurza uulu}, Lobachevskii J. Math. 42, No. 3, 613--620 (2021; Zbl 1469.34078) Full Text: DOI
Lukyanenko, D. V.; Borzunov, A. A.; Shishlenin, M. A. Solving coefficient inverse problems for nonlinear singularly perturbed equations of the reaction-diffusion-advection type with data on the position of a reaction front. (English) Zbl 1471.65123 Commun. Nonlinear Sci. Numer. Simul. 99, Article ID 105824, 10 p. (2021). MSC: 65M32 35R30 35R25 65M06 65J20 65K10 35B25 35B40 35Q53 PDF BibTeX XML Cite \textit{D. V. Lukyanenko} et al., Commun. Nonlinear Sci. Numer. Simul. 99, Article ID 105824, 10 p. (2021; Zbl 1471.65123) Full Text: DOI
Cheng, Yao On the local discontinuous Galerkin method for singularly perturbed problem with two parameters. (English) Zbl 1467.65073 J. Comput. Appl. Math. 392, Article ID 113485, 22 p. (2021). MSC: 65L11 65L20 65L60 PDF BibTeX XML Cite \textit{Y. Cheng}, J. Comput. Appl. Math. 392, Article ID 113485, 22 p. (2021; Zbl 1467.65073) Full Text: DOI
Ramesh, V. P.; Priyanga, B. Higher order uniformly convergent numerical algorithm for time-dependent singularly perturbed differential-difference equations. (English) Zbl 1468.65109 Differ. Equ. Dyn. Syst. 29, No. 1, 239-263 (2021). MSC: 65M06 65N06 65M12 35K20 35K67 35B45 35R07 PDF BibTeX XML Cite \textit{V. P. Ramesh} and \textit{B. Priyanga}, Differ. Equ. Dyn. Syst. 29, No. 1, 239--263 (2021; Zbl 1468.65109) Full Text: DOI
Subburayan, V.; Ramanujam, N. Uniformly convergent finite difference schemes for singularly perturbed convection diffusion type delay differential equations. (English) Zbl 1468.65085 Differ. Equ. Dyn. Syst. 29, No. 1, 139-155 (2021). MSC: 65L12 34K10 65L11 65L20 65L70 PDF BibTeX XML Cite \textit{V. Subburayan} and \textit{N. Ramanujam}, Differ. Equ. Dyn. Syst. 29, No. 1, 139--155 (2021; Zbl 1468.65085) Full Text: DOI
Tursunov, È. A. Asymptotic behavior of solutions to a Cauchy problem with a turning point in the case of change of stability. (English. Russian original) Zbl 1469.34079 J. Math. Sci., New York 254, No. 6, 808-810 (2021); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 156, 103-105 (2018). Reviewer: Robert Vrabel (Trnava) MSC: 34E20 34A12 34E05 PDF BibTeX XML Cite \textit{È. A. Tursunov}, J. Math. Sci., New York 254, No. 6, 808--810 (2021; Zbl 1469.34079); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 156, 103--105 (2018) Full Text: DOI