Kumar, Santosh; Pal, Buddhadev \(K\)-type slant helices on spacelike and timelike surfaces. (English) Zbl 1487.53019 Acta Comment. Univ. Tartu. Math. 25, No. 2, 201-220 (2021). MSC: 53A35 53B30 PDF BibTeX XML Cite \textit{S. Kumar} and \textit{B. Pal}, Acta Comment. Univ. Tartu. Math. 25, No. 2, 201--220 (2021; Zbl 1487.53019) Full Text: DOI OpenURL
El Haimi, Abderrazak; Izid, Malika; Chahdi, Amina Ouazzani Position vectors of curves generalizing general helices and slant helices in Euclidean 3-space. (English) Zbl 1486.53006 Tamkang J. Math. 52, No. 4, 467-478 (2021). MSC: 53A04 PDF BibTeX XML Cite \textit{A. El Haimi} et al., Tamkang J. Math. 52, No. 4, 467--478 (2021; Zbl 1486.53006) Full Text: DOI OpenURL
Bulut, Fatma; Bektaş, Mehmet Special helices on equiform differential geometry of spacelike curves in Minkowski space-time. (English) Zbl 07544647 Commun. Fac. Sci. Univ. Ank., Sér. A1, Math. Stat. 69, No. 2, 1045-1056 (2020). MSC: 53A35 PDF BibTeX XML Cite \textit{F. Bulut} and \textit{M. Bektaş}, Commun. Fac. Sci. Univ. Ank., Sér. A1, Math. Stat. 69, No. 2, 1045--1056 (2020; Zbl 07544647) Full Text: DOI OpenURL
Takahashi, Takeshi The generalization of helices. (English) Zbl 1463.53008 Casp. J. Math. Sci. 8, No. 2, 178-195 (2019). MSC: 53A04 53A05 PDF BibTeX XML Cite \textit{T. Takahashi}, Casp. J. Math. Sci. 8, No. 2, 178--195 (2019; Zbl 1463.53008) Full Text: DOI OpenURL
Ünlütürk, Yasın; Yilmaz, Süha Associated curves of the spacelike curve via the Bishop frame of type-2 in \(\mathbb{E}^3_1\). (English) Zbl 1449.53001 J. Mahani Math. Res. Cent. 8, No. 1, 1-12 (2019). MSC: 53A04 53B30 53B50 PDF BibTeX XML Cite \textit{Y. Ünlütürk} and \textit{S. Yilmaz}, J. Mahani Math. Res. Cent. 8, No. 1, 1--12 (2019; Zbl 1449.53001) Full Text: DOI OpenURL
Ali, Ahmad Tawfik A constant angle ruled surfaces. (English) Zbl 1412.53003 Int. J. Geom. 7, No. 1, 69-80 (2018). MSC: 53A04 53A05 53A10 PDF BibTeX XML Cite \textit{A. T. Ali}, Int. J. Geom. 7, No. 1, 69--80 (2018; Zbl 1412.53003) OpenURL
Yilmaz, Münevver Yildirim; Bektaş, Mehmet Slant helices of \((k, m)\)-type in \(\mathbb{E}^{4}\). (English) Zbl 1410.53010 Acta Univ. Sapientiae, Math. 10, No. 2, 395-401 (2018). MSC: 53A04 53A05 PDF BibTeX XML Cite \textit{M. Y. Yilmaz} and \textit{M. Bektaş}, Acta Univ. Sapientiae, Math. 10, No. 2, 395--401 (2018; Zbl 1410.53010) Full Text: DOI OpenURL
Kaya, Seher; Yayli, Yusuf Generalized helices and singular points. (English) Zbl 1424.53004 Casp. J. Math. Sci. 6, No. 2, 131-142 (2017). MSC: 53A04 53A55 PDF BibTeX XML Cite \textit{S. Kaya} and \textit{Y. Yayli}, Casp. J. Math. Sci. 6, No. 2, 131--142 (2017; Zbl 1424.53004) Full Text: DOI OpenURL
Macit, N.; Akbiyik, M.; Yüce, S. Some new associated curves of an admissible Frenet curve in 3-dimensional and 4-dimensional Galilean spaces. (English) Zbl 1424.53006 Rom. J. Math. Comput. Sci. 7, No. 2, 110-122 (2017). MSC: 53A04 53A35 PDF BibTeX XML Cite \textit{N. Macit} et al., Rom. J. Math. Comput. Sci. 7, No. 2, 110--122 (2017; Zbl 1424.53006) OpenURL
Izumiya, Shyuichi; Saji, Kentaro; Takeuchi, Nobuko Flat surfaces along cuspidal edges. (English) Zbl 1376.57034 J. Singul. 16, 73-100 (2017). Reviewer: Dorin Andrica (Riyadh) MSC: 57R45 58K99 PDF BibTeX XML Cite \textit{S. Izumiya} et al., J. Singul. 16, 73--100 (2017; Zbl 1376.57034) Full Text: DOI Link OpenURL
Ates, Fatma; Gok, Ismail; Ekmekci, Faik Nejat A new kind of slant helix in Lorentzian \((n + 2)\)- spaces. (English) Zbl 1375.53002 Kyungpook Math. J. 56, No. 3, 1003-1016 (2016). MSC: 53A04 53B25 53B30 PDF BibTeX XML Cite \textit{F. Ates} et al., Kyungpook Math. J. 56, No. 3, 1003--1016 (2016; Zbl 1375.53002) Full Text: DOI OpenURL
Altunkaya, Bülent; Kula, Levent Some characterizations of slant and spherical helices due to Sabban frame. (English) Zbl 1432.53002 Math. Sci. Appl. E-Notes 3, No. 2, 64-73 (2015). MSC: 53A04 PDF BibTeX XML Cite \textit{B. Altunkaya} and \textit{L. Kula}, Math. Sci. Appl. E-Notes 3, No. 2, 64--73 (2015; Zbl 1432.53002) Full Text: arXiv OpenURL
Macit, Nesibe; Düldül, Mustafa Some new associated curves of a Frenet curve in \(\mathbb{E}^{3}\) and \(\mathbb{E}^{4}\). (English) Zbl 1310.53003 Turk. J. Math. 38, No. 6, 1023-1037 (2014). MSC: 53A04 53A07 PDF BibTeX XML Cite \textit{N. Macit} and \textit{M. Düldül}, Turk. J. Math. 38, No. 6, 1023--1037 (2014; Zbl 1310.53003) Full Text: DOI Link OpenURL
Takahashi, Takeshi; Takeuchi, Nobuko Clad helices and developable surfaces. (English) Zbl 1314.53006 Bull. Tokyo Gakugei Univ., Nat. Sci. 66, 1-9 (2014). MSC: 53A04 53A05 PDF BibTeX XML Cite \textit{T. Takahashi} and \textit{N. Takeuchi}, Bull. Tokyo Gakugei Univ., Nat. Sci. 66, 1--9 (2014; Zbl 1314.53006) OpenURL
Gökçelik, Fatma; Gök, İsmail Null \(W\)-slant helices in \(E_1^3\). (English) Zbl 1294.53016 J. Math. Anal. Appl. 420, No. 1, 222-241 (2014). MSC: 53A35 53B25 PDF BibTeX XML Cite \textit{F. Gökçelik} and \textit{İ. Gök}, J. Math. Anal. Appl. 420, No. 1, 222--241 (2014; Zbl 1294.53016) Full Text: DOI OpenURL
Önder, Mehmet Null similar curves with variable transformations in the Minkowski 3-space \(E^3_1\). (English) Zbl 1315.53010 Int. J. Appl. Math. 26, No. 6, 685-693 (2013). MSC: 53A35 PDF BibTeX XML Cite \textit{M. Önder}, Int. J. Appl. Math. 26, No. 6, 685--693 (2013; Zbl 1315.53010) Full Text: arXiv OpenURL
El-Sabbagh, Mostafa F.; Ali, Ahmad T. Similar curves with variable transformations. (English) Zbl 1284.53005 Konuralp J. Math. 1, No. 2, 80-90 (2013). MSC: 53A04 53C40 53C50 PDF BibTeX XML Cite \textit{M. F. El-Sabbagh} and \textit{A. T. Ali}, Konuralp J. Math. 1, No. 2, 80--90 (2013; Zbl 1284.53005) Full Text: arXiv OpenURL
Ali, Ahmad T.; Abdel Aziz, Hossam S.; Sorour, Adel H. Ruled surfaces generated by some special curves in Euclidean 3-space. (English) Zbl 1281.53002 J. Egypt. Math. Soc. 21, No. 3, 285-294 (2013). MSC: 53A04 PDF BibTeX XML Cite \textit{A. T. Ali} et al., J. Egypt. Math. Soc. 21, No. 3, 285--294 (2013; Zbl 1281.53002) Full Text: DOI OpenURL
Şenol, Ali; Ziplar, Evren; Yayli, Yusuf; Gök, İsmail A new approach on helices in Euclidean \(n\)-space. (English) Zbl 1277.53004 Math. Commun. 18, No. 1, 241-256 (2013). MSC: 53A04 PDF BibTeX XML Cite \textit{A. Şenol} et al., Math. Commun. 18, No. 1, 241--256 (2013; Zbl 1277.53004) Full Text: arXiv Link OpenURL
Oztekin, H.; Tatlipinar, S. Spherical images and involute of slant helices in Euclidean and Minkowski 3-space. (English) Zbl 1289.53004 Acta Univ. Apulensis, Math. Inform. 30, 135-146 (2012). MSC: 53A04 53B30 53A35 PDF BibTeX XML Cite \textit{H. Oztekin} and \textit{S. Tatlipinar}, Acta Univ. Apulensis, Math. Inform. 30, 135--146 (2012; Zbl 1289.53004) OpenURL
Ali, Ahmad T. Position vectors of slant helices in Euclidean 3-space. (English) Zbl 1261.53001 J. Egypt. Math. Soc. 20, No. 1, 1-6 (2012). MSC: 53A04 PDF BibTeX XML Cite \textit{A. T. Ali}, J. Egypt. Math. Soc. 20, No. 1, 1--6 (2012; Zbl 1261.53001) Full Text: DOI arXiv OpenURL
Öztekin, Handan Balgetir; Tatlipinar, Serpil Some characterizations of inclined curves and slant helices in the Lorentzian space \(L^n\). (English) Zbl 1266.53017 Kochi J. Math. 7, 97-108 (2012). Reviewer: Marian Hotloś (Wrocław) MSC: 53B25 53B30 PDF BibTeX XML Cite \textit{H. B. Öztekin} and \textit{S. Tatlipinar}, Kochi J. Math. 7, 97--108 (2012; Zbl 1266.53017) OpenURL
Munteanu, Marian Ioan; Nistor, Ana Irina Surfaces in \(\mathbb E^{3}\) making constant angle with Killing vector fields. (English) Zbl 1255.53004 Int. J. Math. 23, No. 6, 1250023, 16 p. (2012). Reviewer: Luc Vrancken (Valenciennes) MSC: 53A04 53B25 PDF BibTeX XML Cite \textit{M. I. Munteanu} and \textit{A. I. Nistor}, Int. J. Math. 23, No. 6, 1250023, 16 p. (2012; Zbl 1255.53004) Full Text: DOI arXiv OpenURL
Kahraman, Ferdağ; Gök, İsmail; Hacisalihoğlu, H. Hilmi On the quaternionic \(B_{2}\) slant helices in the semi-Euclidean space \(E^4_2\). (English) Zbl 1241.53005 Appl. Math. Comput. 218, No. 11, 6391-6400 (2012). MSC: 53A07 53A04 53B30 PDF BibTeX XML Cite \textit{F. Kahraman} et al., Appl. Math. Comput. 218, No. 11, 6391--6400 (2012; Zbl 1241.53005) Full Text: DOI OpenURL
Saglam, Derya; Kalkan, Özgür Some characterizations of slant helices in Minkowski \( n \)-space \( E_{\nu}^{n} \). (English) Zbl 1289.53006 C. R. Acad. Bulg. Sci. 64, No. 2, 173-184 (2011). Reviewer: Petar Popivanov (Sofia) MSC: 53A04 53B30 PDF BibTeX XML Cite \textit{D. Saglam} and \textit{Ö. Kalkan}, C. R. Acad. Bulg. Sci. 64, No. 2, 173--184 (2011; Zbl 1289.53006) OpenURL
Gök, İsmail; Okuyucu, O. Zeki; Kahraman, Ferdağ; Hacisalihoğlu, H. Hilmi On the quaternionic \(B _{2}\)-slant helices in the Euclidean space \(E ^{4}\). (English) Zbl 1239.53002 Adv. Appl. Clifford Algebr. 21, No. 4, 707-719 (2011). MSC: 53A07 53A04 PDF BibTeX XML Cite \textit{İ. Gök} et al., Adv. Appl. Clifford Algebr. 21, No. 4, 707--719 (2011; Zbl 1239.53002) Full Text: DOI OpenURL
Ali, Ahmad T.; López, Rafael Slant helices in Euclidean 4-space \(E^4\). (English) Zbl 1227.53007 J. Egypt. Math. Soc. 18, No. 2, 223-230 (2010). MSC: 53A07 53A04 PDF BibTeX XML Cite \textit{A. T. Ali} and \textit{R. López}, J. Egypt. Math. Soc. 18, No. 2, 223--230 (2010; Zbl 1227.53007) Full Text: arXiv OpenURL
Ali, Ahmad T.; Turgut, Melih Some characterizations of slant helices in the Euclidean space \(E^n\). (English) Zbl 1216.53011 Hacet. J. Math. Stat. 39, No. 3, 327-336 (2010). MSC: 53A07 53A04 PDF BibTeX XML Cite \textit{A. T. Ali} and \textit{M. Turgut}, Hacet. J. Math. Stat. 39, No. 3, 327--336 (2010; Zbl 1216.53011) Full Text: arXiv OpenURL
Barros, Manuel; Ferrández, Angel Epicycloids generating Hamiltonian minimal surfaces in the complex quadric. (English) Zbl 1182.53054 J. Geom. Phys. 60, No. 1, 68-73 (2010). MSC: 53C42 53C50 PDF BibTeX XML Cite \textit{M. Barros} and \textit{A. Ferrández}, J. Geom. Phys. 60, No. 1, 68--73 (2010; Zbl 1182.53054) Full Text: DOI OpenURL
Gök, İsmail; Camci, Çetin; Hacisalihoǧlu, H. Hilmi \(V_n\)-slant helices in Minkowski \(n\)-space \(E^n_1\). (English) Zbl 1194.53003 Commun. Fac. Sci. Univ. Ank., Sér. A1, Math. Stat. 58, No. 1, 29-38 (2009). MSC: 53A04 14H45 14H50 PDF BibTeX XML Cite \textit{İ. Gök} et al., Commun. Fac. Sci. Univ. Ank., Sér. A1, Math. Stat. 58, No. 1, 29--38 (2009; Zbl 1194.53003) Full Text: DOI OpenURL
Gök, İsmail; Camci, Çetin; Hacisalihoğlu, H. Hilmi \(V_n\)-slant helices in Euclidean \(n\)-space \(E^n\). (English) Zbl 1185.53006 Math. Commun. 14, No. 2, 317-329 (2009). MSC: 53A07 53A04 PDF BibTeX XML Cite \textit{İ. Gök} et al., Math. Commun. 14, No. 2, 317--329 (2009; Zbl 1185.53006) OpenURL
Erdoğan, Mehmet; Yilmaz, Gülşen Null generalized and slant helices in 4-dimensional Lorentz-Minkowski space. (English) Zbl 1160.53331 Int. J. Contemp. Math. Sci. 3, No. 21-24, 1113-1120 (2008). MSC: 53B30 53B50 53C80 53A04 PDF BibTeX XML Cite \textit{M. Erdoğan} and \textit{G. Yilmaz}, Int. J. Contemp. Math. Sci. 3, No. 21--24, 1113--1120 (2008; Zbl 1160.53331) Full Text: Link OpenURL
Melih, Turgut; Suha, Yilmaz Characterizations of some special helices in \(E^4\). (English) Zbl 1150.53302 Sci. Magna 4, No. 1, 51-55 (2008). MSC: 53A04 53A05 PDF BibTeX XML Cite \textit{T. Melih} and \textit{Y. Suha}, Sci. Magna 4, No. 1, 51--55 (2008; Zbl 1150.53302) OpenURL
Izumiya, Shyuichi; Takeuchi, Nobuko New special curves and developable surfaces. (English) Zbl 1081.53003 Turk. J. Math. 28, No. 2, 153-163 (2004). Reviewer: Stefka Hineva (Sofia) MSC: 53A04 53A05 PDF BibTeX XML Cite \textit{S. Izumiya} and \textit{N. Takeuchi}, Turk. J. Math. 28, No. 2, 153--163 (2004; Zbl 1081.53003) OpenURL