Antoniou, Stathis; Lambropoulou, Sofia Topological surgery in nature. (English) Zbl 1386.57033 Lambropoulou, Sofia (ed.) et al., Algebraic modeling of topological and computational structures and applications, THALES, Athens, Greece, July 1–3, 2015. Cham: Springer (ISBN 978-3-319-68102-3/hbk; 978-3-319-68103-0/ebook). Springer Proceedings in Mathematics & Statistics 219, 313-336 (2017). Reviewer: Jonathan Hodgson (Swarthmore) MSC: 57R65 57N12 57M25 37B99 92B99 PDF BibTeX XML Cite \textit{S. Antoniou} and \textit{S. Lambropoulou}, Springer Proc. Math. Stat. 219, 313--336 (2017; Zbl 1386.57033) Full Text: DOI arXiv
Contatto, Felipe; Dunajski, Maciej Manton’s five vortex equations from self-duality. (English) Zbl 1375.81176 J. Phys. A, Math. Theor. 50, No. 37, Article ID 375201, 13 p. (2017). MSC: 81T13 81T08 53C80 81V25 35Q51 PDF BibTeX XML Cite \textit{F. Contatto} and \textit{M. Dunajski}, J. Phys. A, Math. Theor. 50, No. 37, Article ID 375201, 13 p. (2017; Zbl 1375.81176) Full Text: DOI arXiv
Burke, John; Dawes, Jonathan H. P. Localized states in an extended Swift-Hohenberg equation. (English) Zbl 1242.35047 SIAM J. Appl. Dyn. Syst. 11, No. 1, 261-284 (2012). MSC: 35B36 35B32 37G05 37L10 PDF BibTeX XML Cite \textit{J. Burke} and \textit{J. H. P. Dawes}, SIAM J. Appl. Dyn. Syst. 11, No. 1, 261--284 (2012; Zbl 1242.35047) Full Text: DOI arXiv
Ludu, Andrei Differential geometry of moving surfaces and its relation to solitons. (English) Zbl 1247.37081 J. Geom. Symmetry Phys. 21, 1-28 (2011). Reviewer: Ricardo Miranda Martins (Campinas) MSC: 37K40 37K15 53C44 37K30 PDF BibTeX XML Cite \textit{A. Ludu}, J. Geom. Symmetry Phys. 21, 1--28 (2011; Zbl 1247.37081)
Barashenkov, I. V.; Zemlyanaya, E. V. Travelling solitons in the externally driven nonlinear Schrödinger equation. (English) Zbl 1230.35124 J. Phys. A, Math. Theor. 44, No. 46, Article ID 465211, 23 p. (2011). Reviewer: Jerzy Gawinecki (Warszawa) MSC: 35Q55 35Q51 PDF BibTeX XML Cite \textit{I. V. Barashenkov} and \textit{E. V. Zemlyanaya}, J. Phys. A, Math. Theor. 44, No. 46, Article ID 465211, 23 p. (2011; Zbl 1230.35124) Full Text: DOI arXiv
Rui, Weiguo; Long, Yao; He, Bin Some new travelling wave solutions with singular or nonsingular character for the higher order wave equation of KdV type (III). (English) Zbl 1167.34006 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 70, No. 11, 3816-3828 (2009). MSC: 34B40 34A05 35Q53 35Q51 PDF BibTeX XML Cite \textit{W. Rui} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 70, No. 11, 3816--3828 (2009; Zbl 1167.34006) Full Text: DOI
Pelinovsky, Dmitry E.; Kevrekidis, Panayotis G. Dark solitons in external potentials. (English) Zbl 1157.35089 Z. Angew. Math. Phys. 59, No. 4, 559-599 (2008). MSC: 35Q51 35Q55 37K45 37K50 PDF BibTeX XML Cite \textit{D. E. Pelinovsky} and \textit{P. G. Kevrekidis}, Z. Angew. Math. Phys. 59, No. 4, 559--599 (2008; Zbl 1157.35089) Full Text: DOI arXiv
Bracken, Paul Spin model equations, connections with integrable systems and applications to magnetic vortices. (English) Zbl 1073.82513 Int. J. Mod. Phys. B 17, No. 25, 4525-4537 (2003). MSC: 82B20 81R12 PDF BibTeX XML Cite \textit{P. Bracken}, Int. J. Mod. Phys. B 17, No. 25, 4525--4537 (2003; Zbl 1073.82513) Full Text: DOI
Zhao, Xiqiang; Tang, Dengbin Solitary wave solutions for (2+1)-dimensional dispersive long wave equations. (Chinese. English summary) Zbl 1062.35095 J. Nanjing Univ. Aeronaut. Astronaut. 35, No. 6, 639-642 (2003). MSC: 35Q35 37K40 PDF BibTeX XML Cite \textit{X. Zhao} and \textit{D. Tang}, J. Nanjing Univ. Aeronaut. Astronaut. 35, No. 6, 639--642 (2003; Zbl 1062.35095)
Haine, Luc The \(q\)-hypergeometric equation, Askey-Wilson type solitons and rational cuves with singularities. (English) Zbl 1037.33015 Kuznetsov, V. B. (ed.), The Kowalevski property. Providence, RI: American Mathematical Society (AMS) (ISBN 0-8218-2885-1/pbk). CRM Proc. Lect. Notes 32, 69-91 (2002). Reviewer: Angela Pasquale (Metz) MSC: 33D45 35Q51 PDF BibTeX XML Cite \textit{L. Haine}, CRM Proc. Lect. Notes 32, 69--91 (2002; Zbl 1037.33015)
Clément, G.; Fabbri, A. The cosmological gravitating \(\sigma\) model: Solitons and black holes. (English) Zbl 0967.83022 Classical Quantum Gravity 17, No. 13, 2537-2545 (2000). MSC: 83C80 83C57 83E05 PDF BibTeX XML Cite \textit{G. Clément} and \textit{A. Fabbri}, Classical Quantum Gravity 17, No. 13, 2537--2545 (2000; Zbl 0967.83022) Full Text: DOI arXiv
Chen, Xiangjun; Chen, Zhide; Huang, Nianning A direct perturbation theory for dark solitons based on a complete set of the squared Jost solutions. (English) Zbl 0929.35143 J. Phys. A, Math. Gen. 31, No. 33, 6929-6947 (1998). MSC: 35Q55 81Q15 PDF BibTeX XML Cite \textit{X. Chen} et al., J. Phys. A, Math. Gen. 31, No. 33, 6929--6947 (1998; Zbl 0929.35143) Full Text: DOI
Makhan’kov, V. G. (ed.); Fedyanin, V. K. (ed.); Pashaev, O. K. (ed.) Solitions and applications. Papers from the 4th international workshop dedicated to N. N. Bogolubov on his 80th birthday, Dubna, Russia, August 25–27, 1989 and the All-Union seminar on solitons on nonintegrable systems, Dubna, Russia, September 1989. (English) Zbl 0947.58505 Singapore: World Scientific. xvi, 436 p. (1990). MSC: 58-06 35-06 00B25 PDF BibTeX XML Cite \textit{V. G. Makhan'kov} (ed.) et al., Solitions and applications. Papers from the 4th international workshop dedicated to N. N. Bogolubov on his 80th birthday, Dubna, Russia, August 25--27, 1989 and the All-Union seminar on solitons on nonintegrable systems, Dubna, Russia, September 1989. Singapore: World Scientific (1990; Zbl 0947.58505)
Rajaraman, R. Solitons and instantons. An introduction to solitons and instantons in quantum field theory. (English) Zbl 0493.35074 Amsterdam - New York - Oxford: North-Holland Publishing Company. VIII, 409 p. $ 90.75; Dfl. 195.00 (1982). MSC: 35Q99 81-02 35-02 81T08 PDF BibTeX XML