×

Space debris long term dynamics. (English) Zbl 1425.70027

Celletti, Alessandra (ed.) et al., Mathematical models and methods for planet Earth. Selected papers based on the presentations at the workshop, MPE 2013, Rome, Italy, May 27–29, 2013. Cham: Springer. Springer INdAM Ser. 6, 111-121 (2014).
Summary: Our lifestyle is strongly dependent on the presence of spacecraft: telecommunications, GPS or cellular phones, TV, Internet, climate watches, ecological studies, catastrophe prevention, military surveys,… Despite the technological progress, the costs and the risks due to the space debris are increasing and can really stop or drastically reduce the systematic replacement or extension of the present satellite constellations, stopping the worldwide communication.
In the next years, a special attention should be dedicated to the space debris problematic, to protect the space environment and to allow technological innovations, in the present framework of sustainable development.
In particular, more precise information about the dynamics and the behavior of debris has to be collected; the methods and theories of classical celestial mechanics are very suitable to describe the long term dynamics of these debris. Interesting results have been obtained by new approaches of the problem: the resonant description of the dynamics of geosynchronous debris, the consideration of the solar radiation pressure as an important perturbation, specially for objects with a large A/m coefficients and, because of the lifetimes of the debris, the use of symplectic integrators, as for the natural bodies but adapted to the specific force model.
For the entire collection see [Zbl 1298.86001].

MSC:

70F15 Celestial mechanics

Software:

NIMASTEP
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aksnes, K.: Short-period and long-period perturbations of a spherical satellite due to direct solar radiation. Celestial Mechanics 13, 89-104 (1976) · Zbl 0337.70024 · doi:10.1007/BF01228536
[2] Beutler, G.: Methods of celestial mechanics. Physical, mathematical, and numerical problems, Volumes 1 & 2. Springer-Verlag, Berlin Heidelberg (2005) · Zbl 1095.70001
[3] Breiter, S., Wytrzyszczak, I., Melendo, B.: Long-term predictability of orbits around the geosynchronous altitude. Adv. Space Res. 35, 1313-1317 (2005) · doi:10.1016/j.asr.2005.02.033
[4] Chao, C.C.: Analytical Investigation of GEO Debris with High Area-to-mass Ratio, AIAA paper No. AIAA-2006-6514. Presented at the 2006 AIAA/AAS Astrodynamics Specialist Conference. Keystone, Colorado (2006)
[5] Cincotta, P. M., Simó, C.,: Simple tools to study global dynamics in non-axisymmetric galactic potentials, Astronomy and Astrophysics. Supplement 147, 205-228 (2000)
[6] Cincotta, P.M., Giordano, C.M., Simó, C.: Phase space structure of multi-dimensional systems by means of the mean exponential growth factor of nearby orbits. Physica D 182, 151-178 (2003) · Zbl 1032.37042 · doi:10.1016/S0167-2789(03)00103-9
[7] Delsate, N., Compère, A.: NIMASTEP: a software to modelize, study and analyze the dynamics of various small objects orbiting specific bodies. Astronomy & Astrophysics 540, A120 (2012) · doi:10.1051/0004-6361/201118522
[8] Ferraz-Mello, S.: Analytical study of the Earth’s shadowing effects on satellite orbits. Celestial Mechanics 5, 80-101 (1972) · doi:10.1007/BF01227825
[9] Hubaux, Ch., Lemaître, A., Delsate, N., Carletti, T.: Symplectic integration of space debris motion considering several Earth’s shadowing models. Adv. Space Res. 49, 1472-1486 (2012) · doi:10.1016/j.asr.2012.02.009
[10] Hubaux, Ch., Lemaître, A.: The impact of Earth’s shadow on the long-term evolution of space debris. Celest. Mech. & Dyn. Astron. 116, 79-95 (2013) · doi:10.1007/s10569-013-9480-0
[11] Hubaux, Ch., Libert, A.-S., Delsate, N., Carletti, T.: Influence of Earth’s shadowing effects on space debris stability. Adv. Space Res. 51, 25-38 (2013) · doi:10.1016/j.asr.2012.08.011
[12] Laskar, J., Robutel, P.: High order symplectic integrators for perturbed Hamiltonian systems. Celest. Mech. & Dyn. Astron. 80, 39-62 (2001) · Zbl 1013.70002 · doi:10.1023/A:1012098603882
[13] Laskar, J.: Frequency analysis of a dynamical system. Celest. Mech. & Dyn. Astron. 56, 191-196 (1993) · Zbl 0785.58025 · doi:10.1007/BF00699731
[14] Lemaître, A., Delsate, N., Valk, S.: A web of secondary resonances for large A/m geostationary debris. Celest. Mech. & Dyn. Astron. 104, 383-402 (2009) · Zbl 1204.70024 · doi:10.1007/s10569-009-9217-2
[15] Rossi, A.: Population models of space debris. In: Knezevic, Z., Milani, A. (eds) Dynamics of population of planetary systems. Proceedings of the IAU Colloquium No. 197, 427-438 (2005)
[16] Rossi, A.: Resonant dynamics of Medium Earth Orbits: space debris issues. Celest. Mech. & Dyn. Astr. 100, 267-286 (2008) · Zbl 1254.70041 · doi:10.1007/s10569-008-9121-1
[17] Schildknecht, T., Früh, C., Herzog, A., Hinze, J. & Vananti, A.: AIUB Efforts to Survey, Track, and Characterize Small-Size Objects at High Altitudes. Proceedings of 2010 AMOS Technical Conference, 14-17 September. Maui, Hawaii, USA (2010)
[18] Tommei, G., Milani, A. & Rossi, A.: Orbit determination of space debris: admissible regions. Celest. Mech. & Dyn. Astr. 97, 289-30 (2007) · Zbl 1117.70027 · doi:10.1007/s10569-007-9065-x
[19] Valk, S., Lemaître, A., Anselmo, L.: Analytical and semi-analytical investigations of geosynchronous space debris with high area-to-mass ratios. Adv. Space Res. 41, 1077-1090 (2008) · doi:10.1016/j.asr.2007.10.025
[20] Valk, S., Lemaître, A., Deleflie, F.: Semi-analytical theory of mean orbital motion for geosynchronous space debris, under gravitational influence. Adv. Space Res. 43, 1070-1082 (2009) · doi:10.1016/j.asr.2008.12.015
[21] Valk, S., Lemaître, A.: Semi-analytical investigations of high area-to-mass ratio geosynchronous space debris including Earth’s shadowing effects, Adv. Space Res. 42, 1429-1443 (2008) · doi:10.1016/j.asr.2008.02.010
[22] Valk, S, Delsate, N., Lemaître, A., T.: Global dynamics of high area-to-mass ratios GEO space debris by means of the MEGNO indicator Adv. Space Res. 43, 1509-1526 (2009) · doi:10.1016/j.asr.2009.02.014
[23] Yoshida, H.: Construction of higher order symplectic integrators. Phys. Lett. A 150, 262-268 (1990) · doi:10.1016/0375-9601(90)90092-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.