×

Stochastic stabilization of chaos and the cosmic microwave background. (English) Zbl 1064.85016

Summary: The cosmic microwave background (CMB) is a contemporary echo of the Big Bang. The recently announced WMAP 1-year sky maps provide exceptionally accurate data for the CMB, making it possible to probe the physics of the early Universe down to an unprecedented level of detail. Fluctuations in the CMB have a distribution that is close to Gaussian (i.e. normal). There has been considerable interest in identifying physical mechanisms that might lead to deviations from the Gaussian distribution. One class of cosmological models that have been much studied are those in which the Universe has constant negative curvature; all photon trajectories are then exponentially unstable and the Gaussian distribution of the CMB fluctuations has been related to general properties of quantum wave-functions in chaotic systems. Inhomogeneities in the distribution of matter imply a non-constant curvature. Here we show that, surprisingly, random perturbations in the curvature can stabilize photon trajectories. We argue that this leads to quantifiable non-Gaussian fluctuations in the CMB, as well as having other potentially important cosmological consequences.

MSC:

85A40 Astrophysical cosmology
83C75 Space-time singularities, cosmic censorship, etc.
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1086/377253 · doi:10.1086/377253
[2] DOI: 10.1086/377220 · doi:10.1086/377220
[3] DOI: 10.1046/j.1365-8711.2000.03444.x · doi:10.1046/j.1365-8711.2000.03444.x
[4] DOI: 10.1088/0264-9381/17/6/101 · Zbl 0964.83045 · doi:10.1088/0264-9381/17/6/101
[5] DOI: 10.1016/S0370-1573(02)00018-2 · Zbl 0995.83088 · doi:10.1016/S0370-1573(02)00018-2
[6] Berry M. V., J. Phys. 10 pp 2083–
[7] Bond J. R., Les Houches School Session LX, in: Cosmology and Large Scale Structure (1995)
[8] DOI: 10.1038/35010242 · doi:10.1038/35010242
[9] DOI: 10.1103/PhysRevLett.77.215 · doi:10.1103/PhysRevLett.77.215
[10] Cornish N. J., Phys. Rev. 25 pp 921–
[11] Gurzadyan V. G., Astron. Astrophys. 260 pp 14–
[12] Barrow J. D., Phys. Rev. 63 pp 044104– · doi:10.1103/PhysRevA.63.044104
[13] DOI: 10.1046/j.1365-8711.2001.04304.x · doi:10.1046/j.1365-8711.2001.04304.x
[14] DOI: 10.1016/0370-1573(94)00085-H · doi:10.1016/0370-1573(94)00085-H
[15] DOI: 10.1103/PhysRevLett.53.1515 · doi:10.1103/PhysRevLett.53.1515
[16] Guth A. H., Phys. Rev. 23 pp 347–
[17] DOI: 10.1038/18558 · doi:10.1038/18558
[18] Peebles P. J. E., The Large-Scale Structure of the Universe (1980)
[19] DOI: 10.1038/35019009 · doi:10.1038/35019009
[20] DOI: 10.1007/s12043-999-0053-4 · doi:10.1007/s12043-999-0053-4
[21] Wu K. K. S., Nature 397 pp 255–
[22] DOI: 10.1016/0370-1573(92)90044-Z · doi:10.1016/0370-1573(92)90044-Z
[23] Dettmann C. P., Phys. Rev. 48 pp 5655–
[24] Kapitsa P. L., Zh. Eksperim. Teor. Fiz. 21 pp 588–
[25] Bäcker A., J. Phys. 35 pp 527–
[26] Keating J. P., Proc. R. Soc. London Ser. 457 pp 1855– · Zbl 0990.81036 · doi:10.1098/rspa.2001.0790
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.