×

Lazy ABC. (English) Zbl 1342.62036

Summary: Approximate Bayesian computation (ABC) performs statistical inference for otherwise intractable probability models by accepting parameter proposals when corresponding simulated datasets are sufficiently close to the observations. Producing the large quantity of simulations needed requires considerable computing time. However, it is often clear before a simulation ends that it is unpromising: it is likely to produce a poor match or require excessive time. This paper proposes lazy ABC, an ABC importance sampling algorithm which saves time by sometimes abandoning such simulations. This makes ABC more scalable to applications where simulation is expensive. By using a random stopping rule and appropriate reweighting step, the target distribution is unchanged from that of standard ABC. Theory and practical methods to tune lazy ABC are presented and illustrated on a simple epidemic model example. They are also demonstrated on the computationally demanding spatial extremes application of R. J. Erhardt and R. L. Smith [Comput. Stat. Data Anal. 56, No. 6, 1468–1481 (2012; Zbl 1246.65023)], producing efficiency gains, in terms of effective sample size per unit CPU time, of roughly 3 times for a 20 location dataset, and 8 times for 35 locations.

MSC:

62F15 Bayesian inference
62F10 Point estimation
65C60 Computational problems in statistics (MSC2010)

Citations:

Zbl 1246.65023
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Andersson, H., Britton, T.: Stochastic Epidemic Models and Their Statistical Analysis. Springer, New York (2000) · Zbl 0951.92021 · doi:10.1007/978-1-4612-1158-7
[2] Andrieu, C., Roberts, G.O.: The pseudo-marginal approach for efficient Monte Carlo computations. Ann. Stat., pp. 697-725 (2009) · Zbl 1185.60083
[3] Beaumont, M.A.: Estimation of population growth or decline in genetically monitored populations. Genetics 164(3), 1139-1160 (2003)
[4] Beaumont, M.A.: Approximate Bayesian computation in evolution and ecology. Ann. Rev. Ecol. Evol. Syst. 41, 379-406 (2010) · doi:10.1146/annurev-ecolsys-102209-144621
[5] Beaumont, M.A., Cornuet, J.M., Marin, J.-M., Robert, C.P.: Adaptive approximate Bayesian computation. Biometrika 96(4), 983-990 (2009) · Zbl 1437.62393
[6] Brooks-Pollock, E., Roberts, G.O., Keeling, M.J.: A dynamic model of bovine tuberculosis spread and control in Great Britain. Nature 511(7508), 228-231 (2014) · doi:10.1038/nature13529
[7] Buzbas, E.O., Rosenberg, N.A.: AABC: approximate approximate Bayesian computation when simulating a large number of data sets is computationally infeasible. http://www.arxiv.org/abs/1301.6282 (2013)
[8] Erhardt, R.J., Smith, R.L.: Approximate Bayesian computing for spatial extremes. Comput. Stat. Data Anal. 56(6), 1468-1481 (2012) · Zbl 1246.65023 · doi:10.1016/j.csda.2011.12.003
[9] Fearnhead, P., Papaspiliopoulos, O., Roberts, G.O., Stuart, A.: Random-weight particle filtering of continuous time processes. J. R. Stat. Soc.: Ser. B 72(4), 497-512 (2010) · Zbl 1411.60109 · doi:10.1111/j.1467-9868.2010.00744.x
[10] Fearnhead, P., Prangle, D.: Constructing summary statistics for approximate Bayesian computation: semi-automatic ABC. J. R. Stat. Soc. Ser. B 74, 419-474 (2012) · Zbl 1411.62057 · doi:10.1111/j.1467-9868.2011.01010.x
[11] Geweke, J.: Bayesian inference in econometric models using Monte Carlo integration. Econometrica 57(6), 1317-1339 (1989) · Zbl 0683.62068 · doi:10.2307/1913710
[12] Liu, J.S.: Metropolized independent sampling with comparisons to rejection sampling and importance sampling. Stat. Comput. 6(2), 113-119 (1996) · doi:10.1007/BF00162521
[13] Marin, J.-M., Pudlo, P., Robert, C.P., Ryder, R.J.: Approximate Bayesian computational methods. Stat. Comput. 22(6), 1167-1180 (2012) · Zbl 1252.62022 · doi:10.1007/s11222-011-9288-2
[14] McKinley, T.J., Cook, A.R., Deardon, R.: Inference in epidemic models without likelihoods. Int. J. Biostat. 5(1), 24 (2009) · doi:10.2202/1557-4679.1171
[15] Meeds, E., Welling, M.: GPS-ABC: Gaussian process surrogate approximate Bayesian computation. http://www.arxiv.org/abs/1401.2838 (2014)
[16] Moores, M.T., Drovandi, C.C., Mengersen, K., Robert, C.P.: Pre-processing for approximate Bayesian computation in image analysis. http://www.arxiv.org/abs/1403.4359 (2014) · Zbl 1331.62158
[17] Ralston, A., Reilly, E.D., Hemmendinger, D. (eds.): Encyclopedia of Computer Science, 4th edn. Wiley, Chichester (2003) · Zbl 0954.68002
[18] Ribatet, M., Singleton, R., R Core team: Spatialextremes: Modelling Spatial Extremes. R package version 2.0-0 (2013)
[19] Schlather, M.: Models for stationary max-stable random fields. Extremes 5(1), 33-44 (2002) · Zbl 1035.60054 · doi:10.1023/A:1020977924878
[20] Tran, M.-N., Scharth, M., Pitt, M.K., Kohn, R.: Importance sampling squared for Bayesian inference in latent variable models. http://www.arxiv.org/abs/1309.3339 (2014)
[21] Wilkinson, R.D.: Accelerating ABC methods using Gaussian processes. http://arxiv.org/abs/1401.1436 (2014)
[22] Wood, S.: Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc.: Ser. B 73(1), 3-36 (2011) · Zbl 1411.62089 · doi:10.1111/j.1467-9868.2010.00749.x
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.