zbMATH — the first resource for mathematics

Improved production implicit continuous-fluid Eulerian method for compressible flow problems in Uintah. (English) Zbl 1253.76084
Summary: The implicit continuous-fluid Eulerian (ICE) method is a successful and widely used semi-implicit finite-volume method that applies to flows that range from supersonic to subsonic regimes. The classical ICE method has been expanded to problems in multiphase flow, which spans a wide area of science and engineering. The ICE method is utilized by the Center for the Simulation of Accidental Fires and Explosions code Uintah written at the University of Utah to simulate explosions, fires and other fluid and fluid-structure interaction phenomena. The ICE method used in Uintah (referred to here as Production ICE) is described in many papers by Kashiwa at Los Alamos National Laboratory and Harman at University of Utah. However, Production ICE does not perform as well as many current methods for compressible flow problems governed by the Euler equations. We show, via examples, that changing the nonconservation form of the solver in Production ICE to a conservation form improves the numerical solutions. In addition, the use of slope limiters makes it possible to suppress the nonphysical oscillations generated by the ICE method in conservation form. This new form of ICE is referred to as IMPICE, the IMproved Production ICE method. The accuracy of IMPICE for one-dimensional Euler equations is investigated by using a number of test cases.
76M20 Finite difference methods applied to problems in fluid mechanics
76M12 Finite volume methods applied to problems in fluid mechanics
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
76N99 Compressible fluids and gas dynamics, general
Full Text: DOI
[1] Harlow, Numerical calculation of almost incompressible flow, Journal of Computational Physics 3 pp 80– (1968) · Zbl 0172.52903 · doi:10.1016/0021-9991(68)90007-7
[2] Harlow, A numerical fluid dynamics calculation method for all flow speeds, Journal of Computational Physics 8 pp 197– (1971) · Zbl 0221.76011 · doi:10.1016/0021-9991(71)90002-7
[3] Casulli, Pressure method for the numerical solution of transient, compressible fluid flows, International Journal for Numerical Methods in Fluids 4 pp 1001– (1984) · Zbl 0549.76050 · doi:10.1002/fld.1650041102
[4] Issa, The computation of compressible and incompressible flow of fluid with a free surface, Physics of Fluids 8 (12) pp 2182– (1965) · Zbl 1180.76043 · doi:10.1063/1.1761178
[5] Issa, Solution of the implicitly discretised fluid flow equations by operator-splitting, Journal of Computational Physics 62 pp 40– (1986) · Zbl 0619.76024 · doi:10.1016/0021-9991(86)90099-9
[6] Reinelt, Ignition and combustion of a packed bed in a stagnation point flow, Combustion and Flame 99 (2) pp 395– (1994) · doi:10.1016/0010-2180(94)90146-5
[7] van der Heul, A conservative pressure-correction method for flow at all speeds, Computers and Fluids 32 pp 1113– (2003) · Zbl 1046.76033 · doi:10.1016/S0045-7930(02)00086-5
[8] Harlow, Numerical calculation of multiple fluid flow, Journal of Computational Physics 17 pp 19– (1975) · Zbl 0297.76079 · doi:10.1016/0021-9991(75)90061-3
[9] Kashiwa BA Padial NT Rauenzahn RM Vanderheyden WB A Cell-Centered ICE Method for Multiphase Flow Simulations Proceedings ASME Symposium on Numerical Methods for Multiphase Flows 19 23
[10] Kashiwa BA Lee WH Comparisons Between the Cell-Centered and Staggered Mesh Lagrangian Hydrodynamics
[11] Guilkey, An Eulerian-Lagrangian approach for simulating explosions of energetic devices, Computers and Structures 85 pp 660– (2007) · doi:10.1016/j.compstruc.2007.01.031
[12] Guilkey, An Eulerian-Lagrangian Approach for Large Deformation Fluid Structure Interaction Problems, Part 1: Algorithm Development (2003)
[13] Harman, An Eulerian-Lagrangian Approach for Large Deformation Fluid Structure Interaction Problems, Part 2: Multi-Physics Simulations Within a Modern Computational Framework Fluid Structure (2003)
[14] Livne OE ICE Algorithm and the Davis Advection Scheme 2006
[15] Livne OE ICE Algorithm for the Shocktube Problem Technical Report Technical Report No. UUSCI-2006-007 2006
[16] Hou, Why nonconservative schemes converge to wrong solutions: error analysis, Mathematics of Computation 62 pp 497– (1994) · Zbl 0809.65102 · doi:10.1090/S0025-5718-1994-1201068-0
[17] Lax, Systems of conservation laws, Communications in Pure and Applied Mathematics 13 pp 217– (1960) · Zbl 0152.44802 · doi:10.1002/cpa.3160130205
[18] Toro, FORCE schemes on unstructured meshes I: conservative hyperbolic systems, Journal of Computational Physics 228 pp 3368– (2009) · Zbl 1168.65377 · doi:10.1016/j.jcp.2009.01.025
[19] Ben-Artzi, A second order Godunov-type scheme for compressible fluid dynamics, Journal of Computational Physics 55 pp 1– (1984) · Zbl 0535.76070 · doi:10.1016/0021-9991(84)90013-5
[20] Ben-Artzi, Application of the generalised Riemann problem method to 1-D compressible flows with interfaces, Journal of Computational Physics 65 pp 170– (1986) · Zbl 0591.76118 · doi:10.1016/0021-9991(86)90010-0
[21] Colella, A direct Eulerian MUSCL scheme for gas dynamics, SIAM Journal on Scientific and Statistical Computing 6 pp 104– (1985) · Zbl 0562.76072 · doi:10.1137/0906009
[22] Van Leer, Towards the ultimate conservative difference scheme II. Monotonicity and conservation combined in a second order scheme, Journal of Computational Physics 14 pp 361– (1974) · Zbl 0276.65055 · doi:10.1016/0021-9991(74)90019-9
[23] Van Leer, Towards the ultimate conservative difference scheme III. Upstream-centered finite-difference schemes for ideal compressible flow, Journal of Computational Physics 23 pp 263– (1977) · Zbl 0339.76039 · doi:10.1016/0021-9991(77)90094-8
[24] Van Leer, Towards the ultimate conservative difference scheme V. A second order sequel to Godunov’s method, Journal of Computational Physics 32 pp 101– (1979) · Zbl 1364.65223 · doi:10.1016/0021-9991(79)90145-1
[25] Van Leer, On the relation between the upwind-differencing schemes of Godunov, Engquist-Osher and Roe, SIAM Journal on Scientific and Statistical Computing 5 (1) pp 1– (1985) · Zbl 0547.65065 · doi:10.1137/0905001
[26] Harten, On upstream differencing and Godunov-type schemes for hyperbolic conservation laws, SIAM Review 25 pp 35– (1983) · Zbl 0565.65051 · doi:10.1137/1025002
[27] Davis, Simplified second-order Godunov-type methods, SIAM Journal on Scientific and Statistical Computing 9 (3) pp 445– (1988) · Zbl 0645.65050 · doi:10.1137/0909030
[28] Gaskell, Curvature-compensated convective transport: SMART, a new boundedness-preserving transport algorithm, International Journal for Numerical Methods in Fluids 8 (6) pp 617– (1988) · Zbl 0668.76118 · doi:10.1002/fld.1650080602
[29] Harten, Uniformly high-order accurate nonoscillatory schemes I, SIAM Journal on Numerical Analysis 24 pp 279– (1987) · Zbl 0627.65102 · doi:10.1137/0724022
[30] Sweby, High resolution schemes using flux-limiters for hyperbolic conservation laws, SIAM Journal on Numerical Analysis 21 pp 995– (1984) · Zbl 0565.65048 · doi:10.1137/0721062
[31] Van Albada, A comparative study of computational methods in cosmic gas dynamics, Astronomy & Astrophysics 108 pp 76– (1982) · Zbl 0492.76117
[32] Waterson, Numerical Methods in Laminar and Turbulent Flows, Proceedings of the Ninth International Conference 9 pp 203– (1995)
[33] Kwatra, A method for avoiding the acoustic time step restriction in compressible flow, Journal of Computational Physics 228 (11) (2009) · Zbl 1273.76356 · doi:10.1016/j.jcp.2009.02.027
[34] Kashiwa BA A Multifield Model and Method for Fluid-Structure Interaction Dynamics Technical Report LA-UR-01-1136 2001
[35] Toro, Riemann Solvers and Numerical Methods for Fluids Dynamics: A Practical Introduction (2009) · Zbl 1227.76006 · doi:10.1007/b79761
[36] Laney, Computational Gas Dynamics (1998) · Zbl 0947.76001
[37] Lax, Weak solutions of nonlinear hyperbolic equations and their numerical computation, Communications in Pure and Applied Mathematics 7 pp 159– (1954) · Zbl 0055.19404 · doi:10.1002/cpa.3160070112
[38] Shu, Efficient implementation of essentially nonoscillatory shock capturing schemes II, Journal of Computational Physics 83 pp 32– (1989) · Zbl 0674.65061 · doi:10.1016/0021-9991(89)90222-2
[39] Greenough, A quantitative comparison of numerical methods for the compressible Euler equations: fifth-order WENO and piecewise-linear Godunov, Journal of Computational Physics 196 pp 259– (2004) · Zbl 1115.76370 · doi:10.1016/j.jcp.2003.11.002
[40] MartĂ­n, A bandwidth-optimized WENO scheme for the effective direct numerical simulation of compressible turbulence, Journal of Computational Physics 220 pp 270– (2006) · Zbl 1103.76028 · doi:10.1016/j.jcp.2006.05.009
[41] Mehdizadeh Khalsaraei, An improvement on the positivity results for 2-stage explicit Runge-Kutta methods, Journal of Computational and Applied Mathematics 235 pp 137– (2010) · Zbl 1203.65110 · doi:10.1016/j.cam.2010.05.020
[42] VanderHeyden, Compatible fluxes for van Leer advection, Journal of Computational Physics 146 pp 1– (1998) · Zbl 0932.76058 · doi:10.1006/jcph.1998.6070
[43] Berzins, Nonlinear data-bounded polynomial approximations and their applications in ENO methods, Numerical Algorithms 55 (2) pp 171– (2010) · Zbl 1208.65123 · doi:10.1007/s11075-010-9395-8
[44] Jiang, Efficient implementation of weighted ENO schemes, J. Comput. Phys 126 pp 202– (1996) · Zbl 0877.65065 · doi:10.1006/jcph.1996.0130
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.