×

A numerical study on exceptional eigenvalues of certain congruence subgroups of \(\mathrm {SO}(n,1)\) and \(\mathrm {SU}(n,1)\). (English) Zbl 1370.11065

Summary: In a previous work [the author, Proc. Am. Math. Soc. 142, No. 1, 1–14 (2014; Zbl 1329.11029)], we applied lattice point theorems on hyperbolic spaces to obtain asymptotic formulas for the number of integral representations of negative integers by quadratic and Hermitian forms of signature \((n,1)\) lying in Euclidean balls of increasing radius. That formula involved an error term that depended on the first nonzero eigenvalue of the Laplace-Beltrami operator on the corresponding congruence hyperbolic manifolds. The aim of this paper is to compare the error term obtained by experimental computations with the error term mentioned above, for several choices of quadratic and Hermitian forms. Our numerical results provide evidence of the existence of exceptional eigenvalues for some arithmetic subgroups of \(\mathrm {SU}(3,1)\), \(\mathrm {SU}(4,1)\), and \(\mathrm {SU}(5,1)\), and thus they contradict the generalized Selberg (and Ramanujan) conjecture in these cases. Furthermore, for several arithmetic subgroups of \(\mathrm {SO}(4,1)\), \(\mathrm {SO}(6,1)\), \(\mathrm {SO}(8,1)\), and \(\mathrm {SU}(2,1)\), there is evidence of a lower bound on the first nonzero eigenvalue that is better than the already known lower bound for congruences subgroups.

MSC:

11F72 Spectral theory; trace formulas (e.g., that of Selberg)
11D45 Counting solutions of Diophantine equations

Citations:

Zbl 1329.11029

Software:

SageMath
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Alaca, A., Alaca, S., Lemire, M.F., Williams, K.S.: Nineteen quaternary quadratic forms. Acta Arith 130, 277-310 (2007) · Zbl 1131.11025 · doi:10.4064/aa130-3-5
[2] Alaca, A., Alaca, S., Williams, K.S.: Liouville’s sixtenary quadratic forms \[x^2+y^2+z^2+t^2+2u^2+2v^2\] x2+y2+z2+t2+2u2+2v \[2, x^2+y^2+2z^2+2t^2+2u^2+2v^2\] x2+y2+2z2+2t2+2u2+2v2 and \[x^2+2y^2+2z^2+2t^2+2u^2+4v^2\] x2+2y2+2z2+2t2+2u2+4v2. Far East J. Math. Sci. (FJMS) 30, 547-556 (2008) · Zbl 1213.11086
[3] Alaca, A., Alaca, S., Williams, K.S.: Fourteen octonary quadratic forms. Int. J. Number Theory 6, 37-50 (2010) · Zbl 1228.11049 · doi:10.1142/S179304211000279X
[4] Booker, A.R., Strömbergsson, A.: Numerical computations with the trace formula and the Selberg eigenvalue conjecture. J. Reine Angew. Math. 607, 113-161 (2007) · Zbl 1147.11030 · doi:10.1515/CRELLE.2007.047
[5] Bruggeman, R., Miatello, R., Wallach, N.: Resolvent and lattice points on symmetric spaces of strictly negative curvature. Math. Ann. 315, 617-669 (1999) · Zbl 0972.11094 · doi:10.1007/s002080050331
[6] Cogdell, J., Li, J.-S., Piatetski-Shapiro, I., Sarnak, P.: Poincaré series for \[{\rm SO}(n,1)\] SO(n,1). Acta Math. 167, 229-285 (1991) · Zbl 0743.11028 · doi:10.1007/BF02392451
[7] Deshouillers, J.-M., Iwaniec, H.: Kloosterman sums and Fourier coefficients of cusp forms. Invent. Math. 70, 219-288 (1982/83) · Zbl 0502.10021
[8] Elstrodt, J., Grunewald, F., Mennicke, J.: Arithmetic applications of the hyperbolic lattice point theorem. Proc. Lond. Math. Soc. 3(57), 239-283 (1988) · Zbl 0752.11018 · doi:10.1112/plms/s3-57.2.239
[9] Elstrodt, J., Grunewald, F., Mennicke, J.: Some remarks on discrete subgroups of \[{\rm SL}(\mathbb{C})\] SL(C). J. Sov. Math. 46, 1760-1788 (1989) · Zbl 0672.10019 · doi:10.1007/BF01099347
[10] Elstrodt, J., Grunewald, F., Mennicke, J.: Kloosterman sums for Clifford algebras and a lower bound for the positive eigenvalues of the Laplacian for congruence subgroups acting on hyperbolic spaces. Invent. Math. 101, 641-685 (1990) · Zbl 0737.11013 · doi:10.1007/BF01231519
[11] Gelbart, S., Jacquet, H.: A relation between automorphic representations on \[{\rm GL}(2)\] GL(2) of \[{\rm GL}(3)\] GL(3). Ann. Ec. Norm. Sup. 11, 471-552 (1978) · Zbl 0406.10022
[12] Gorodnik, A., Nevo, A.: Counting lattice points. J. Reine Angew. Math. 663, 127-176 (2012) · Zbl 1248.37011
[13] Huxley, M.N.: Exceptional eigenvalues and congruence subgroups. In: The Selberg Trace Formula and Related Topics. Contemporary Mathematics, vol. 56, pp. 341-349 (1986) · Zbl 0601.10019
[14] Kim, H., Sarnak, P.: Refined estimates towards the Ramanujan and Selberg conjectures. J. Am. Math. Soc. 16, 175-181 (2003) · Zbl 1018.11024 · doi:10.1090/S0894-0347-02-00410-1
[15] Kim, H., Shahidi, F.: Functorial products for \[{\rm GL}_2 \times{\rm GL}_3\] GL2×GL3 and the symmetric cube for \[{\rm GL}_2\] GL2. Ann. Math. 155(2), 837-893 (2002) · Zbl 1040.11036 · doi:10.2307/3062134
[16] Kitaoka, T.: Arithmetic of Quadratic Forms. Cambridge University Press, Cambridge (1999) · Zbl 0920.11022
[17] Lauret, E.: An asymptotic formula for representations of integers by indefinite hermitian forms. Proc. Am. Math. Soc. 142, 1-14 (2014) · Zbl 1329.11029 · doi:10.1090/S0002-9939-2013-11726-0
[18] Lax, P., Phillips, R.: The asymptotic distribution of lattice points in Euclidean and non-Euclidean spaces. J. Funct. Anal. 46, 280-350 (1982) · Zbl 0497.30036 · doi:10.1016/0022-1236(82)90050-7
[19] Levitan, B.M.: Asymptotic formulas for the number of lattice points in Euclidean and Lobachevskiĭ spaces. Russ. Math. Surv. 42, 13-42 (1987) · Zbl 0632.10048 · doi:10.1070/RM1987v042n03ABEH001420
[20] Li, J.-S.: Kloosterman-Selberg zeta functions on complex hyperbolic spaces. Am. J. Math. 113, 653-731 (1991) · Zbl 0747.11024 · doi:10.2307/2374843
[21] Luo, W., Rudnick, Z., Sarnak, P.: On Selberg’s eigenvalue conjecture. Geom. Funct. Anal. 5, 387-401 (1995) · Zbl 0844.11038 · doi:10.1007/BF01895672
[22] Otremba, G.: Zur Theorie der hermiteschen Formen in imaginär-quadratischen Zahlkörpern. J. Reine Angew. Math. 249, 1-19 (1971) · Zbl 0221.12007
[23] Patterson, S.J.: A lattice-point problem in hyperbolic space. Mathematika 22, 81-88 (1975) · Zbl 0308.10013 · doi:10.1112/S0025579300004526
[24] Phillips, R., Rudnick, Z.: The circle problem in the hyperbolic plane. J. Funct. Anal. 121, 78-116 (1994) · Zbl 0812.11035 · doi:10.1006/jfan.1994.1045
[25] Ratcliffe, J., Tschantz, S.: On the representation of integers by the Lorentzian quadratic form. J. Funct. Anal. 150, 498-525 (1997) · Zbl 0883.11017 · doi:10.1006/jfan.1997.3129
[26] Roelcke, W.: Über die Wellengleichung bei Grenzkreisgruppen erster Art, S.-B. Heidelberger Akad. Wiss. Math.-Nat. Kl. 1953/1955, 4, 159-267 (1956) · Zbl 0747.11024
[27] Sarnak, P.: The arithmetic and geometry of some hyperbolic three manifolds. Acta Math. 151, 253-295 (1983) · Zbl 0527.10022 · doi:10.1007/BF02393209
[28] Sarnak, P.: Selberg’s eigenvalue conjecture. Not. Am. Math. Soc. 42, 1272-1277 (1995) · Zbl 1042.11517
[29] Stein, W.A., et al.: Sage Mathematics Software (Version 4.3). The Sage Development Team. http://www.sagemath.org (2009) · Zbl 0743.11028
[30] Selberg, A.: Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series. J. Indian Math. Soc. 20, 47-87 (1956). Also in Collected Papers I, 423-463 · Zbl 0072.08201
[31] Selberg, A.: Harmonic analysis. Introduction to the Göttingen lecture notes. In: Collected Papers, vol. I, pp. 626-672 · Zbl 1131.11025
[32] Selberg, A.: Remarks on the distribution of poles of Eisenstein series. In: Collected Papers, vol. II, pp. 15-46 · Zbl 0712.11034
[33] Selberg, A.: On the estimation of Fourier coefficients of modular forms. In: Proceedings of Symposia in Pure Mathematics, vol. VIII, pp. 1-15 (1965) · Zbl 0142.33903
[34] Yang, T.: An explicit formula for local densities of quadratic forms. J. Number Theory 72, 309-356 (1998) · Zbl 0930.11021 · doi:10.1006/jnth.1998.2258
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.