×

Spectral properties of the trap model on sparse networks. (English) Zbl 1400.82289

Summary: One of the simplest models for the slow relaxation and aging of glasses is the trap model by Bouchaud and others, which represents a system as a point in configuration-space hopping between local energy minima. The time evolution depends on the transition rates and the network of allowed jumps between the minima. We consider the case of sparse configuration-space connectivity given by a random graph, and study the spectral properties of the resulting master operator. We develop a general approach using the cavity method that gives access to the density of states in large systems, as well as localisation properties of the eigenvectors, which are important for the dynamics. We illustrate how, for a system with sparse connectivity and finite temperature, the density of states and the average inverse participation ratio have attributes that arise from a non-trivial combination of the corresponding mean field (fully connected) and random walk (infinite temperature) limits. In particular, we find a range of eigenvalues for which the density of states is of mean-field form but localisation properties are not, and speculate that the corresponding eigenvectors may be concentrated on extensively many clusters of network sites.

MSC:

82D30 Statistical mechanics of random media, disordered materials (including liquid crystals and spin glasses)
82C41 Dynamics of random walks, random surfaces, lattice animals, etc. in time-dependent statistical mechanics
05C81 Random walks on graphs
81S22 Open systems, reduced dynamics, master equations, decoherence
35R02 PDEs on graphs and networks (ramified or polygonal spaces)
60K20 Applications of Markov renewal processes (reliability, queueing networks, etc.)
82B30 Statistical thermodynamics
82B44 Disordered systems (random Ising models, random Schrödinger operators, etc.) in equilibrium statistical mechanics

Software:

PRMLT
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Berthier, L.; Biroli, G., Theoretical perspective on the glass transition and amorphous materials, Rev. Mod. Phys., 83, 587-645, (2011) · doi:10.1103/RevModPhys.83.587
[2] Götze, W.; Sjögren, L., The mode coupling theory of structural relaxations, Transp. Theory Stat. Phys., 24, 801-853, (1995) · Zbl 0873.76005 · doi:10.1080/00411459508203936
[3] Reichman, D. R.; Charbonneau, P., Mode-coupling theory, J. Stat. Mech., (2005) · doi:10.1088/1742-5468/2005/05/P05013
[4] Mézard, M.; Parisi, G.; Virasoro, M. A., Spin Glass Theory and Beyond, (1986), Singapore: World Scientific, Singapore
[5] Castellani, T.; Cavagna, A., Spin-glass theory for pedestrians, J. Stat. Mech., (2005) · doi:10.1088/1742-5468/2005/05/P05012
[6] Büchner, S.; Heuer, A., Potential energy landscape of a model glass former: thermodynamics, anharmonicities, and finite size effects, Phys. Rev. E, 60, 6507-6518, (1999) · doi:10.1103/PhysRevE.60.6507
[7] De Souza, V. K.; Wales, D. J., Connectivity in the potential energy landscape for binary Lennard-Jones systems, J. Chem. Phys., 130, (2009) · doi:10.1063/1.3131690
[8] Heuer, A., Exploring the potential energy landscape of glass-forming systems: from inherent structures via metabasins to macroscopic transport, J. Phys.: Condens. Matter, 20, (2008) · doi:10.1088/0953-8984/20/37/373101
[9] Bouchaud, J. P., Weak ergodicity breaking and aging in disordered systems, J. Physique I, 2, 1705-1713, (1992) · doi:10.1051/jp2:1992229
[10] Bouchaud, J. P.; Dean, D. S., Aging on Parisi’s tree, J. Phys. I France, 5, 265-286, (1995) · doi:10.1051/jp1:1995127
[11] Monthus, C.; Bouchaud, J. P., Models of traps and glass phenomenology, J. Phys. A: Math. Gen., 29, 3847-3869, (1996) · Zbl 0900.82090 · doi:10.1088/0305-4470/29/14/012
[12] Albert, R.; Barabási, A. L., Statistical mechanics of complex networks, Rev. Mod. Phys., 74, 47-97, (2002) · Zbl 1205.82086 · doi:10.1103/RevModPhys.74.47
[13] Newman, M. E J., The structure and function of complex networks, SIAM Rev., 45, 167-256, (2003) · Zbl 1029.68010 · doi:10.1137/S003614450342480
[14] Derrida, B., Random-energy model: an exactly solvable model of disordered systems, Phys. Rev. B, 24, 2613-2626, (1981) · Zbl 1323.60134 · doi:10.1103/PhysRevB.24.2613
[15] Odagaki, T., Glass transition singularities, Phys. Rev. Lett., 75, 3701-3704, (1995) · doi:10.1103/PhysRevLett.75.3701
[16] Bouchaud, J. P.; Mézard, M., Universality classes for extreme-value statistics, J. Phys. A: Math. Gen., 30, 7997-8015, (1997) · Zbl 0953.60040 · doi:10.1088/0305-4470/30/23/004
[17] Rinn, B.; Maass, P.; Bouchaud, J. P., Hopping in the glass configuration space: subaging and generalized scaling laws, Phys. Rev. B, 64, (2001) · doi:10.1103/PhysRevB.64.104417
[18] Ben Arous, G.; Černý, J.; Mountford, T., Aging in two-dimensional Bouchaud’s model, Probab. Theory Relat. Fields, 134, 1-43, (2006) · Zbl 1089.82017 · doi:10.1007/s00440-004-0408-1
[19] Ben Arous, G.; Černý, J., Scaling limit for trap models on \(\mathbb{Z}^d\), Ann. Probab., 35, 2356-2384, (2007) · Zbl 1134.60064 · doi:10.1214/009117907000000024
[20] Muirhead, S.; Pymar, R., Localisation in the Bouchaud–Anderson model, Stoch. Process. Appl., 126, 3402-3462, (2016) · Zbl 1350.60104 · doi:10.1016/j.spa.2016.04.033
[21] Croydon, D. A.; Muirhead, S., Quenched localisation in the Bouchaud trap model with slowly varying traps, Probab. Theory Relat. Fields, 168, 269-315, (2017) · Zbl 1367.60124 · doi:10.1007/s00440-016-0710-8
[22] Baronchelli, A.; Barrat, A.; Pastor-Satorras, R., Glass transition and random walks on complex energy landscapes, Phys. Rev. E, 80, (2009) · doi:10.1103/PhysRevE.80.020102
[23] Moretti, P.; Baronchelli, A.; Barrat, A.; Pastor-Satorras, R., Complex networks and glassy dynamics: walks in the energy landscape, J. Stat. Mech., (2011) · doi:10.1088/1742-5468/2011/03/P03032
[24] Doye, J. P K., Network topology of a potential energy landscape: a static scale-free network, Phys. Rev. Lett., 88, (2002) · doi:10.1103/PhysRevLett.88.238701
[25] Massen, C. P.; Doye, J. P K., Power-law distributions for the areas of the basins of attraction on a potential energy landscape, Phys. Rev. E, 75, (2007) · doi:10.1103/PhysRevE.75.037101
[26] Rogers, T.; Castillo, I. P.; Kühn, R.; Takeda, K., Cavity approach to the spectral density of sparse symmetric random matrices, Phys. Rev. E, 78, (2008) · doi:10.1103/PhysRevE.78.031116
[27] Rogers, T.; Castillo, I. P., Cavity approach to the spectral density of non-Hermitian sparse matrices, Phys. Rev. E, 79, (2009) · doi:10.1103/PhysRevE.79.012101
[28] Kühn, R., Spectra of random stochastic matrices and relaxation in complex systems, Europhys. Lett., 109, 60003, (2015) · doi:10.1209/0295-5075/109/60003
[29] Metz, F. L.; Neri, I.; Bollé, D., Localization transition in symmetric random matrices, Phys. Rev. E, 82, (2010) · doi:10.1103/PhysRevE.82.031135
[30] Bordenave, C.; Lelarge, M., Resolvent of large random graphs, Random Struct. Algorithms, 37, 332-352, (2010) · Zbl 1209.05222 · doi:10.1002/rsa.20313
[31] Khorunzhy, O.; Shcherbina, M.; Vengerovsky, V., Eigenvalue distribution of large weighted random graphs, J. Math. Phys., 45, 1648-1672, (2004) · Zbl 1068.05062 · doi:10.1063/1.1667610
[32] Bordenave, C.; Caputo, P.; Chafaï, D., Spectrum of large random reversible Markov chains: heavy-tailed weights on the complete graph, Ann. Probab., 39, 1544-1590, (2011) · Zbl 1245.60008 · doi:10.1214/10-AOP587
[33] Bordenave, C.; Caputo, P.; Chafaï, D., Spectrum of non-Hermitian heavy tailed random matrices, Commun. Math. Phys., 307, 513-560, (2011) · Zbl 1235.60008 · doi:10.1007/s00220-011-1331-9
[34] Bordenave, C.; Caputo, P.; Chafaï, D.; Piras, D., Spectrum of large random Markov chains: heavy-tailed weights on the oriented complete graph, Random Matrices Theory Appl., 06, 1750006, (2017) · Zbl 06794803 · doi:10.1142/S201032631750006X
[35] Bertin, E. M.; Bouchaud, J. P., Subdiffusion and localization in the one-dimensional trap model, Phys. Rev. E, 67, (2003) · doi:10.1103/PhysRevE.67.026128
[36] Bollobas, B., Random Graphs, (2001), Cambridge: Cambridge University Press, Cambridge · Zbl 0979.05003
[37] Mézard, M.; Parisi, G.; Virasoro, M. A., SK model: the replica solution without replicas, Europhys. Lett., 1, 77-82, (1986) · doi:10.1209/0295-5075/1/2/006
[38] Fyodorov, Y. V., Multifractality and freezing phenomena in random energy landscapes: an introduction, Physica A, 389, 4229-4254, (2010) · doi:10.1016/j.physa.2010.01.020
[39] Altshuler, B. L.; Gefen, Y.; Kamenev, A.; Levitov, L. S., Quasiparticle lifetime in a finite system: a nonperturbative approach, Phys. Rev. Lett., 78, 2803-2806, (1997) · doi:10.1103/PhysRevLett.78.2803
[40] Altshuler, B. L.; Ioffe, L. B.; Kravtsov, V. E., Multifractal states in self-consistent theory of localization: analytical solution, (2016)
[41] Facoetti, D.; Vivo, P.; Biroli, G., From non-ergodic eigenvectors to local resolvent statistics and back: a random matrix perspective, Europhys. Lett., 115, 47003, (2016) · doi:10.1209/0295-5075/115/47003
[42] Flegel, F.; Sokolov, I. M., Dynamical localization and eigenstate localization in trap models, Eur. Phys. J. B, 87, 156, (2014) · doi:10.1140/epjb/e2014-50214-2
[43] Ueda, M.; Sasa, S. I., Replica symmetry breaking in trajectory space for the trap model, J. Phys. A: Math. Theor., 50, (2017) · Zbl 1366.82016 · doi:10.1088/1751-8121/aa5d5e
[44] Bouchaud, J. P.; Georges, A., Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications, Phys. Rep., 195, 127-293, (1990) · doi:10.1016/0370-1573(90)90099-N
[45] Derrida, B., Non-self-averaging effects in sums of random variables, spin glasses, random maps and random walks, On Three Levels, 125-137, (1994), Berlin: Springer, Berlin · Zbl 0863.60101
[46] McKay, B. D., The expected eigenvalue distribution of a large regular graph, Linear Algebr. Appl., 40, 203-216, (1981) · Zbl 0468.05039 · doi:10.1016/0024-3795(81)90150-6
[47] Dumitriu, I.; Pal, S., Sparse regular random graphs: spectral density and eigenvectors, Ann. Probab., 40, 2197-2235, (2012) · Zbl 1255.05173 · doi:10.1214/11-AOP673
[48] Bovier, A.; Faggionato, A., Spectral characterization of aging: the REM-like trap model, Ann. Appl. Probab., 15, 1997-2037, (2005) · Zbl 1086.60064 · doi:10.1214/105051605000000359
[49] Ran, A. C M.; Wojtylak, M., Eigenvalues of rank one perturbations of unstructured matrices, Linear Algebr. Appl., 437, 589-600, (2012) · Zbl 1247.15009 · doi:10.1016/j.laa.2012.02.027
[50] Edwards, S. F.; Jones, R. C., The eigenvalue spectrum of a large symmetric random matrix, J. Phys. A: Math. Gen., 9, 1595-1603, (1976) · Zbl 0346.60003 · doi:10.1088/0305-4470/9/10/011
[51] Bishop, C. M., Pattern Recognition and Machine Learning, (2006), Berlin: Springer, Berlin · Zbl 1107.68072
[52] Mézard, M.; Parisi, G., The Bethe lattice spin glass revisited, Eur. Phys. J. B, 20, 217-233, (2001) · doi:10.1007/PL00011099
[53] Khorunzhiy, O.; Kirsch, W.; Müller, P., Lifshitz tails for spectra of Erdös–Rényi random graphs, Ann. Appl. Probab., 16, 295-309, (2006) · Zbl 1113.05311 · doi:10.1214/1050516000000719
[54] Bapst, V.; Semerjian, G., Lifshitz tails on the Bethe lattice: a combinatorial approach, J. Stat. Phys., 145, 51-92, (2011) · Zbl 1230.82031 · doi:10.1007/s10955-011-0319-3
[55] Biroli, G.; Monasson, R., A single defect approximation for localized states on random lattices, J. Phys. A: Math. Gen., 32, L255-L261, (1999) · Zbl 0955.82031 · doi:10.1088/0305-4470/32/48/301
[56] Reed, M.; Simon, B., Functional Analysis, (1980), New York: Academic, New York
[57] Kühn, R., Spectra of sparse random matrices, J. Phys. A: Math. Theor., 41, (2008) · Zbl 1188.15037 · doi:10.1088/1751-8113/41/29/295002
[58] Semerjian, G.; Cugliandolo, L. F., Sparse random matrices: the eigenvalue spectrum revisited, J. Phys. A: Math. Gen., 35, 303, (2002) · Zbl 1066.82019 · doi:10.1088/0305-4470/35/23/303
[59] Abou-Chacra, R.; Thouless, D. J.; Anderson, P. W., A selfconsistent theory of localization, J. Phys. C: Solid State Phys., 6, 009, (1973) · doi:10.1088/0022-3719/6/10/009
[60] Traulsen, A.; Claussen, J. C.; Hauert, C., Coevolutionary dynamics: from finite to infinite populations, Phys. Rev. Lett., 95, (2005) · doi:10.1103/PhysRevLett.95.238701
[61] Nemoto, T.; Bouchet, F.; Jack, R. L.; Lecomte, V., Population-dynamics method with a multicanonical feedback control, Phys. Rev. E, 93, (2016) · doi:10.1103/PhysRevA.93.062123
[62] Nemoto, T.; Guevara Hidalgo, E.; Lecomte, V., Finite-time and finite-size scalings in the evaluation of large-deviation functions: analytical study using a birth-death process, Phys. Rev. E, 95, (2017) · doi:10.1103/PhysRevA.95.012102
[63] Regev, I.; Lookman, T., Yield in amorphous solids: the ant in the energy landscape labyrinth, (2017)
[64] Lu, L.; Chung, F. R K., Complex Graphs and Networks, (2006), Providence, RI: American Mathematical Society, Providence, RI
[65] Erdös, P.; Rényi, A., On random graphs, I, Publ. Math., 6, 290-297, (1959) · Zbl 0092.15705
[66] Barabasi, A. L.; Albert, R., Emergence of scaling in random networks, Science, 286, 509-512, (1999) · Zbl 1226.05223 · doi:10.1126/science.286.5439.509
[67] De Bacco, C.; Majumdar, S. N.; Sollich, P., The average number of distinct sites visited by a random walker on random graphs, J. Phys. A: Math. Theor., 48, (2015) · Zbl 1360.05152 · doi:10.1088/1751-8113/48/20/205004
[68] Hansen, J. P.; McDonald, I. R., Theory of Simple Liquids, (2013), New York: Academic, New York
[69] Barrat, A.; Mézard, M., Phase space diffusion and low temperature aging, J. Phys. I France, 5, 941-947, (1995) · doi:10.1051/jp1:1995174
[70] Bertin, E. M., Cross-over from entropic to thermal dynamics in glassy models, J. Phys. A: Math. Gen., 36, 10683-10700, (2003) · Zbl 1075.82548 · doi:10.1088/0305-4470/36/43/002
[71] Sollich, P., Fluctuation-dissipation relations in trap models, J. Phys. A: Math. Gen., 36, 10807-10818, (2003) · Zbl 1075.82533 · doi:10.1088/0305-4470/36/43/009
[72] Sollich, P., Trap models with slowly decorrelating observables, J. Phys. A: Math. Gen., 39, 2573-2597, (2006) · Zbl 1101.82348 · doi:10.1088/0305-4470/39/11/004
[73] Cammarota, C.; Marinari, E., Spontaneous energy-barrier formation in entropy-driven glassy dynamics, Phys. Rev. E, 92, (2015) · doi:10.1103/PhysRevA.92.010301
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.