Xu, Minqiang; Zhang, Lufang; Tohidi, Emran A fourth-order least-squares based reproducing kernel method for one-dimensional elliptic interface problems. (English) Zbl 07311182 Appl. Numer. Math. 162, 124-136 (2021). MSC: 65N12 65D07 65N15 65K10 PDF BibTeX XML Cite \textit{M. Xu} et al., Appl. Numer. Math. 162, 124--136 (2021; Zbl 07311182) Full Text: DOI
Nandal, Sarita; Pandey, Dwijendra Narain Numerical technique for fractional variable-order differential equation of fourth-order with delay. (English) Zbl 07310824 Appl. Numer. Math. 161, 391-407 (2021). MSC: 65M70 65M12 65N12 65D07 35R11 35R07 PDF BibTeX XML Cite \textit{S. Nandal} and \textit{D. N. Pandey}, Appl. Numer. Math. 161, 391--407 (2021; Zbl 07310824) Full Text: DOI
Lee, Jung-Kyung An efficient numerical method for pricing American put options under the CEV model. (English) Zbl 07309591 J. Comput. Appl. Math. 389, Article ID 113311, 16 p. (2021). MSC: 91G60 65N06 91G20 60G40 PDF BibTeX XML Cite \textit{J.-K. Lee}, J. Comput. Appl. Math. 389, Article ID 113311, 16 p. (2021; Zbl 07309591) Full Text: DOI
Mirzaee, Farshid; Alipour, Sahar Quintic B-spline collocation method to solve \(n\)-dimensional stochastic Itô-Volterra integral equations. (English) Zbl 07305054 J. Comput. Appl. Math. 384, Article ID 113153, 9 p. (2021). MSC: 60H20 65R20 45D05 65D30 PDF BibTeX XML Cite \textit{F. Mirzaee} and \textit{S. Alipour}, J. Comput. Appl. Math. 384, Article ID 113153, 9 p. (2021; Zbl 07305054) Full Text: DOI
Chen, Jingmin; Yu, Thomas; Brogan, Patrick; Kusner, Robert; Yang, Yilin; Zigerelli, Andrew Numerical methods for biomembranes: conforming subdivision methods versus non-conforming PL methods. (English) Zbl 1455.49023 Math. Comput. 90, No. 328, 471-516 (2021). MSC: 49M41 65D99 65K10 65Z05 30C30 90C30 41A15 PDF BibTeX XML Cite \textit{J. Chen} et al., Math. Comput. 90, No. 328, 471--516 (2021; Zbl 1455.49023) Full Text: DOI
Mohammadi, Reza Numerical approximation for viscous Cahn-Hilliard equation via septic B-spline. (English) Zbl 1454.65063 Appl. Anal. 100, No. 1, 93-115 (2021). MSC: 65M06 65D07 65N35 65M12 65M15 35Q35 76M20 PDF BibTeX XML Cite \textit{R. Mohammadi}, Appl. Anal. 100, No. 1, 93--115 (2021; Zbl 1454.65063) Full Text: DOI
Moghaddam, B. P.; Mostaghim, Z. S.; Pantelous, Athanasios A.; Tenreiro Machado, J. A. An integro quadratic spline-based scheme for solving nonlinear fractional stochastic differential equations with constant time delay. (English) Zbl 1455.65017 Commun. Nonlinear Sci. Numer. Simul. 92, Article ID 105475, 16 p. (2021). MSC: 65C30 26A33 34K37 34K50 60H35 PDF BibTeX XML Cite \textit{B. P. Moghaddam} et al., Commun. Nonlinear Sci. Numer. Simul. 92, Article ID 105475, 16 p. (2021; Zbl 1455.65017) Full Text: DOI
Bhal, Santosh Kumar; Danumjaya, P.; Fairweather, G. The Crank-Nicolson orthogonal spline collocation method for one-dimensional parabolic problems with interfaces. (English) Zbl 1456.65059 J. Comput. Appl. Math. 383, Article ID 113119, 10 p. (2021). MSC: 65M06 65N35 65M12 65D07 65D32 35K20 PDF BibTeX XML Cite \textit{S. K. Bhal} et al., J. Comput. Appl. Math. 383, Article ID 113119, 10 p. (2021; Zbl 1456.65059) Full Text: DOI
Gu, Jiaxi; Jung, Jae-Hun Adaptive Gaussian radial basis function methods for initial value problems: construction and comparison with adaptive multiquadric radial basis function methods. (English) Zbl 1455.65107 J. Comput. Appl. Math. 381, Article ID 113036, 17 p. (2021). Reviewer: Martin D. Buhmann (Gießen) MSC: 65L05 65D12 65L12 65L60 41A15 PDF BibTeX XML Cite \textit{J. Gu} and \textit{J.-H. Jung}, J. Comput. Appl. Math. 381, Article ID 113036, 17 p. (2021; Zbl 1455.65107) Full Text: DOI
Sepehrian, Behnam; Karimi, Radpoor Marzieh Solving the Fokker-Planck equation via the compact finite difference method. (English) Zbl 07333819 Comput. Methods Differ. Equ. 8, No. 3, 493-504 (2020). MSC: 35G16 65N06 PDF BibTeX XML Cite \textit{B. Sepehrian} and \textit{R. M. Karimi}, Comput. Methods Differ. Equ. 8, No. 3, 493--504 (2020; Zbl 07333819) Full Text: DOI
Ferrari, Alberto José; Lara, Luis Pedro; Santillan Marcus, Eduardo Adrian Convergence analysis and parity conservation of a new form of a quadratic explicit spline with applications to integral equations. (English) Zbl 07329941 J. Egypt. Math. Soc. 28, Paper No. 30, 14 p. (2020). MSC: 65K 65H 65L 65D 65F 65Fxx 65Hxx 65Dxx 65Lxx 65Kxx PDF BibTeX XML Cite \textit{A. J. Ferrari} et al., J. Egypt. Math. Soc. 28, Paper No. 30, 14 p. (2020; Zbl 07329941) Full Text: DOI
Abjadian, Maryam; Taleei, Ameneh Numerical simulation of the biosensors in a trigger mode based on Michaelis-Menten enzymatic reaction. (English) Zbl 07326385 J. Math. Model. 8, No. 2, 123-138 (2020). MSC: 35K57 65N06 65N35 PDF BibTeX XML Cite \textit{M. Abjadian} and \textit{A. Taleei}, J. Math. Model. 8, No. 2, 123--138 (2020; Zbl 07326385) Full Text: DOI
Rathish Kumar, B. V.; Priyadarshi, Gopal Haar wavelet method for two-dimensional parabolic inverse problem with a control parameter. (English) Zbl 07321709 Rend. Circ. Mat. Palermo (2) 69, No. 3, 961-976 (2020). MSC: 65T60 65C30 31A30 PDF BibTeX XML Cite \textit{B. V. Rathish Kumar} and \textit{G. Priyadarshi}, Rend. Circ. Mat. Palermo (2) 69, No. 3, 961--976 (2020; Zbl 07321709) Full Text: DOI
Kumar, Rakesh Hybrid FDM-WENO method for the convection-diffusion problems. (English) Zbl 07315500 Bressan, Alberto (ed.) et al., Hyperbolic problems: theory, numerics, applications. Proceedings of the 17th international conference, HYP2018, Pennsylvania State University, University Park, PA, USA, June 25–29, 2018. Springfield, MO: American Institute of Mathematical Sciences (AIMS) (ISBN 978-1-60133-023-9). AIMS Series on Applied Mathematics 10, 515-523 (2020). MSC: 65M06 65M22 65M22 PDF BibTeX XML Cite \textit{R. Kumar}, AIMS Ser. Appl. Math. 10, 515--523 (2020; Zbl 07315500)
Dube, Mbakisi; Patidar, Kailash C. A robust nonstandard finite difference scheme for pricing real estate index options. (English) Zbl 07314943 J. Difference Equ. Appl. 26, No. 11-12, 1471-1493 (2020). MSC: 35Q91 91G20 91G60 35K20 65M06 65M12 65D07 PDF BibTeX XML Cite \textit{M. Dube} and \textit{K. C. Patidar}, J. Difference Equ. Appl. 26, No. 11--12, 1471--1493 (2020; Zbl 07314943) Full Text: DOI
Bhal, Santosh Kumar; Danumjaya, P.; Fairweather, G. High-order orthogonal spline collocation methods for two-point boundary value problems with interfaces. (English) Zbl 1453.65190 Math. Comput. Simul. 174, 102-122 (2020). MSC: 65L60 65L10 PDF BibTeX XML Cite \textit{S. K. Bhal} et al., Math. Comput. Simul. 174, 102--122 (2020; Zbl 1453.65190) Full Text: DOI
Iqbal, Azhar; Abd Hamid, Nur Nadiah; Md. Ismail, Ahmad Izani Cubic B-spline Galerkin method for numerical solution of the coupled nonlinear Schrödinger equation. (English) Zbl 1453.65325 Math. Comput. Simul. 174, 32-44 (2020). MSC: 65M60 65M12 35Q55 PDF BibTeX XML Cite \textit{A. Iqbal} et al., Math. Comput. Simul. 174, 32--44 (2020; Zbl 1453.65325) Full Text: DOI
Müller, Paul F. X.; Passenbrunner, Markus Almost everywhere convergence of spline sequences. (English) Zbl 07297403 Isr. J. Math. 240, No. 1, 149-177 (2020). Reviewer: Oscar Blasco (València) MSC: 46B09 41A30 60G42 PDF BibTeX XML Cite \textit{P. F. X. Müller} and \textit{M. Passenbrunner}, Isr. J. Math. 240, No. 1, 149--177 (2020; Zbl 07297403) Full Text: DOI
Ballem, Sreenivasulu Numerical solution of fifth order bvp by Galerkin method with cubic B-splines. (English) Zbl 07296920 South East Asian J. Math. Math. Sci. 16, No. 1A, 89-96 (2020). MSC: 65M60 PDF BibTeX XML Cite \textit{S. Ballem}, South East Asian J. Math. Math. Sci. 16, No. 1A, 89--96 (2020; Zbl 07296920) Full Text: Link
Karaagac, Berat; Ucar, Yusuf; Esen, Alaattin Dynamics of modified improved Boussinesq equation via Galerkin finite element method. (English) Zbl 07292728 Math. Methods Appl. Sci. 43, No. 17, 10204-10220 (2020). MSC: 65M60 65D07 PDF BibTeX XML Cite \textit{B. Karaagac} et al., Math. Methods Appl. Sci. 43, No. 17, 10204--10220 (2020; Zbl 07292728) Full Text: DOI
Begum, Tahera; Khan, Arshad; Ahmad, Naseem A numerical study of boundary layer flow of viscous incompressible fluid past an inclined stretching sheet and heat transfer using nonpolynomial spline method. (English) Zbl 07292714 Math. Methods Appl. Sci. 43, No. 17, 9948-9967 (2020). Reviewer: W. Sridhar (Vaddeswaram) MSC: 80A19 76D10 65D07 76M99 PDF BibTeX XML Cite \textit{T. Begum} et al., Math. Methods Appl. Sci. 43, No. 17, 9948--9967 (2020; Zbl 07292714) Full Text: DOI
Majeed, Abdul; Kamran, Mohsin; Rafique, Muhammad An approximation to the solution of time fractional modified Burgers’ equation using extended cubic B-spline method. (English) Zbl 07291002 Comput. Appl. Math. 39, No. 4, Paper No. 257, 21 p. (2020). MSC: 65D07 65M06 65N22 PDF BibTeX XML Cite \textit{A. Majeed} et al., Comput. Appl. Math. 39, No. 4, Paper No. 257, 21 p. (2020; Zbl 07291002) Full Text: DOI
Maier, L.-B. Ambient residual penalty approximation of partial differential equations on embedded submanifolds. (English) Zbl 1455.35068 Adv. Comput. Math. 46, No. 4, Paper No. 62, 29 p. (2020). MSC: 35J15 58J05 41A15 65N35 PDF BibTeX XML Cite \textit{L. B. Maier}, Adv. Comput. Math. 46, No. 4, Paper No. 62, 29 p. (2020; Zbl 1455.35068) Full Text: DOI
Chakravarthy, P. Pramod; Shivhare, Meenakshi Numerical study of a singularly perturbed two parameter problems on a modified Bakhvalov mesh. (English) Zbl 1455.65115 Comput. Math. Math. Phys. 60, No. 11, 1778-1786 (2020). MSC: 65L11 65L10 65L60 PDF BibTeX XML Cite \textit{P. P. Chakravarthy} and \textit{M. Shivhare}, Comput. Math. Math. Phys. 60, No. 11, 1778--1786 (2020; Zbl 1455.65115) Full Text: DOI
Derakhshan, Maryam; Zarebnia, Mohammad New approach for solution of Volterra integral equations using spline quasi-interpolant. (English) Zbl 1446.65207 J. Hyperstruct. 8, No. 2, 156-170 (2020). MSC: 65R20 41A15 45D05 45M05 PDF BibTeX XML Cite \textit{M. Derakhshan} and \textit{M. Zarebnia}, J. Hyperstruct. 8, No. 2, 156--170 (2020; Zbl 1446.65207) Full Text: Link
Lagerwerf, Marinus J.; Palenstijn, Willem Jan; Bleichrodt, Folkert; Batenburg, K. Joost An efficient interpolation approach for exploring the parameter space of regularized tomography algorithms. (English) Zbl 07271692 Fundam. Inform. 172, No. 2, 143-167 (2020). MSC: 68 PDF BibTeX XML Cite \textit{M. J. Lagerwerf} et al., Fundam. Inform. 172, No. 2, 143--167 (2020; Zbl 07271692) Full Text: DOI
Mustahsan, Muhammad; Kiran, Ayesha; Singh, Jagdev; Nisar, Kottakkaran Sooppy; Kumar, Devendra Higher order B-spline differential quadrature rule to approximate generalized Rosenau-RLW equation. (English) Zbl 1451.65157 Math. Methods Appl. Sci. 43, No. 11, 6812-6822 (2020). MSC: 65M70 65D07 35Q53 65F05 PDF BibTeX XML Cite \textit{M. Mustahsan} et al., Math. Methods Appl. Sci. 43, No. 11, 6812--6822 (2020; Zbl 1451.65157) Full Text: DOI
Yakupov, N. M.; Kiyamov, H. G.; Mukhamedova, I. Z. Simulation of toroidal shell with local defect. (English) Zbl 1450.74027 Lobachevskii J. Math. 41, No. 7, 1310-1314 (2020). MSC: 74K25 74G70 74S05 PDF BibTeX XML Cite \textit{N. M. Yakupov} et al., Lobachevskii J. Math. 41, No. 7, 1310--1314 (2020; Zbl 1450.74027) Full Text: DOI
Babaei, A.; Moghaddam, B. P.; Banihashemi, S.; Machado, J. A. T. Numerical solution of variable-order fractional integro-partial differential equations via sinc collocation method based on single and double exponential transformations. (English) Zbl 1452.65268 Commun. Nonlinear Sci. Numer. Simul. 82, Article ID 104985, 21 p. (2020). MSC: 65M70 65D07 65M12 65M15 65M06 35R11 35R09 35G31 41A15 PDF BibTeX XML Cite \textit{A. Babaei} et al., Commun. Nonlinear Sci. Numer. Simul. 82, Article ID 104985, 21 p. (2020; Zbl 1452.65268) Full Text: DOI
Ali, Arshed; Ahmad, Shakeel; Haq, Fazal-I; Hussain, Iltaf; Khan, Hassan; Bushnaq, Samia Numerical simulation of nonlinear parabolic type Volterra partial integro-differential equations using quartic B-spline collocation method. (English) Zbl 1451.65229 Nonlinear Stud. 27, No. 3, 621-636 (2020). MSC: 65R20 45D05 45K05 65M70 PDF BibTeX XML Cite \textit{A. Ali} et al., Nonlinear Stud. 27, No. 3, 621--636 (2020; Zbl 1451.65229) Full Text: Link
Hu, Xindi; Zhu, Shengfeng Isogeometric analysis for time-fractional partial differential equations. (English) Zbl 1450.65123 Numer. Algorithms 85, No. 3, 909-930 (2020). MSC: 65M60 65D07 26A33 74S05 35R11 PDF BibTeX XML Cite \textit{X. Hu} and \textit{S. Zhu}, Numer. Algorithms 85, No. 3, 909--930 (2020; Zbl 1450.65123) Full Text: DOI
Yu, Luchuan; Wang, Kaiqiang; Zhang, Qinhe; Zhang, Jianhua Trajectory planning of a redundant planar manipulator based on joint classification and particle swarm optimization algorithm. (English) Zbl 1456.70006 Multibody Syst. Dyn. 50, No. 1, 25-43 (2020). MSC: 70B15 70E55 90C59 PDF BibTeX XML Cite \textit{L. Yu} et al., Multibody Syst. Dyn. 50, No. 1, 25--43 (2020; Zbl 1456.70006) Full Text: DOI
Kumar, P. Murali Mohan; Ravi Kanth, A. S. V. Computational study for a class of time-dependent singularly perturbed parabolic partial differential equation through tension spline. (English) Zbl 07261300 Comput. Appl. Math. 39, No. 3, Paper No. 233, 19 p. (2020). MSC: 65M12 65L11 35K20 PDF BibTeX XML Cite \textit{P. M. M. Kumar} and \textit{A. S. V. Ravi Kanth}, Comput. Appl. Math. 39, No. 3, Paper No. 233, 19 p. (2020; Zbl 07261300) Full Text: DOI
Floater, Michael S.; Hu, Kaibo A characterization of supersmoothness of multivariate splines. (English) Zbl 1447.41014 Adv. Comput. Math. 46, No. 5, Paper No. 70, 15 p. (2020). Reviewer: Martin D. Buhmann (Gießen) MSC: 41A58 41A15 65D07 65N30 PDF BibTeX XML Cite \textit{M. S. Floater} and \textit{K. Hu}, Adv. Comput. Math. 46, No. 5, Paper No. 70, 15 p. (2020; Zbl 1447.41014) Full Text: DOI
Pham, Duong Thanh; Le, Tung A posteriori error estimates for hypersingular integral equation on spheres with spherical splines. (English) Zbl 1452.65411 Acta Math. Vietnam. 45, No. 3, 661-692 (2020). MSC: 65R20 65R30 45E05 PDF BibTeX XML Cite \textit{D. T. Pham} and \textit{T. Le}, Acta Math. Vietnam. 45, No. 3, 661--692 (2020; Zbl 1452.65411) Full Text: DOI
Pepin, A.; Beauchemin, S. S.; Léger, S.; Beaudoin, N. A new method for high-degree spline interpolation: proof of continuity for piecewise polynomials. (English) Zbl 1447.41002 Can. Math. Bull. 63, No. 3, 655-669 (2020). Reviewer: Martin D. Buhmann (Gießen) MSC: 41A15 65D05 65D07 65T50 PDF BibTeX XML Cite \textit{A. Pepin} et al., Can. Math. Bull. 63, No. 3, 655--669 (2020; Zbl 1447.41002) Full Text: DOI
Roul, Pradip A fourth order numerical method based on B-spline functions for pricing Asian options. (English) Zbl 1446.65133 Comput. Math. Appl. 80, No. 3, 504-521 (2020). MSC: 65M70 65M06 65N35 65D07 65M12 91G20 91G60 35Q91 PDF BibTeX XML Cite \textit{P. Roul}, Comput. Math. Appl. 80, No. 3, 504--521 (2020; Zbl 1446.65133) Full Text: DOI
Raja, S. P. Bézier and B-spline curves – a study and its application in wavelet decomposition. (English) Zbl 07237366 Int. J. Wavelets Multiresolut. Inf. Process. 18, No. 4, Article ID 2050030, 38 p. (2020). MSC: 65D18 68U05 97R60 41A15 65D07 42C40 65T60 PDF BibTeX XML Cite \textit{S. P. Raja}, Int. J. Wavelets Multiresolut. Inf. Process. 18, No. 4, Article ID 2050030, 38 p. (2020; Zbl 07237366) Full Text: DOI
Qiao, Leijie; Xu, Da; Yan, Yubin High-order ADI orthogonal spline collocation method for a new 2D fractional integro-differential problem. (English) Zbl 1446.65131 Math. Methods Appl. Sci. 43, No. 8, 5162-5178 (2020). MSC: 65M70 65M06 65M12 65M15 65D07 35R11 26A33 45E10 35R09 45K05 PDF BibTeX XML Cite \textit{L. Qiao} et al., Math. Methods Appl. Sci. 43, No. 8, 5162--5178 (2020; Zbl 1446.65131) Full Text: DOI
Samadyar, Nasrin; Ordokhani, Yadollah; Mirzaee, Farshid The couple of Hermite-based approach and Crank-Nicolson scheme to approximate the solution of two dimensional stochastic diffusion-wave equation of fractional order. (English) Zbl 07228825 Eng. Anal. Bound. Elem. 118, 285-294 (2020). MSC: 35R11 60H15 65M06 41A15 PDF BibTeX XML Cite \textit{N. Samadyar} et al., Eng. Anal. Bound. Elem. 118, 285--294 (2020; Zbl 07228825) Full Text: DOI
Mirzaee, Farshid; Alipour, Sahar An efficient cubic B-spline and bicubic B-spline collocation method for numerical solutions of multidimensional nonlinear stochastic quadratic integral equations. (English) Zbl 1452.65019 Math. Methods Appl. Sci. 43, No. 1, 384-397 (2020). MSC: 65C30 41A15 60H20 65D07 65N35 PDF BibTeX XML Cite \textit{F. Mirzaee} and \textit{S. Alipour}, Math. Methods Appl. Sci. 43, No. 1, 384--397 (2020; Zbl 1452.65019) Full Text: DOI
Derevianko, Nadiia; Ullrich, Tino A higher order Faber spline basis for sampling discretization of functions. (English) Zbl 1444.42035 J. Approx. Theory 257, Article ID 105449, 37 p. (2020). MSC: 42C40 42C15 46E35 41A15 65T60 PDF BibTeX XML Cite \textit{N. Derevianko} and \textit{T. Ullrich}, J. Approx. Theory 257, Article ID 105449, 37 p. (2020; Zbl 1444.42035) Full Text: DOI
Heeren, Behrend; Rumpf, Martin; Wardetzky, Max; Wirth, Benedikt Discrete Riemannian calculus on shell space. (English) Zbl 1446.74165 Bonito, Andrea (ed.) et al., Geometric partial differential equations. Part I. Amsterdam: Elsevier/North Holland. Handb. Numer. Anal. 21, 621-679 (2020). MSC: 74K25 74S99 53Z05 53B21 65D17 PDF BibTeX XML Cite \textit{B. Heeren} et al., Handb. Numer. Anal. 21, 621--679 (2020; Zbl 1446.74165) Full Text: DOI
Nayak, Sucheta; Khan, Arshad Variable mesh polynomial spline discretization for solving higher order nonlinear singular boundary value problems. (English) Zbl 1448.65014 Differ. Equ. Dyn. Syst. 28, No. 3, 617-631 (2020). MSC: 65D07 65N06 65N15 PDF BibTeX XML Cite \textit{S. Nayak} and \textit{A. Khan}, Differ. Equ. Dyn. Syst. 28, No. 3, 617--631 (2020; Zbl 1448.65014) Full Text: DOI
Kouibia, A.; Pasadas, M.; Akhrif, R. A variational method for solving two-dimensional Bratu’s problem. (English) Zbl 1451.65180 Numer. Algorithms 84, No. 4, 1589-1599 (2020). MSC: 65N25 65D07 PDF BibTeX XML Cite \textit{A. Kouibia} et al., Numer. Algorithms 84, No. 4, 1589--1599 (2020; Zbl 1451.65180) Full Text: DOI
Klinkel, Sven; Chasapi, Margarita Isogeometric analysis of solids in boundary representation. (English) Zbl 1444.74054 Schröder, Jörg (ed.) et al., Novel finite element technologies for solids and structures. Papers based on the presentations at the CISM course, Udine, Italy, September 18–22, 2017. Cham: Springer. CISM Courses Lect. 597, 153-197 (2020). MSC: 74S22 74B05 65D17 65D07 PDF BibTeX XML Cite \textit{S. Klinkel} and \textit{M. Chasapi}, CISM Courses Lect. 597, 153--197 (2020; Zbl 1444.74054) Full Text: DOI
Xu, Xiaoyong; Zhou, Fengying Crank-Nicolson orthogonal spline collocation method combined with WSGI difference scheme for the two-dimensional time-fractional diffusion-wave equation. (English) Zbl 1442.65412 Open Math. 18, 67-86 (2020). MSC: 65N35 65M06 65M12 65D07 26A33 35R11 35R09 45K05 PDF BibTeX XML Cite \textit{X. Xu} and \textit{F. Zhou}, Open Math. 18, 67--86 (2020; Zbl 1442.65412) Full Text: DOI
Islam, Md Shafiqul; Smith, Adam Approximating solutions of Fredholm integral equations via a general spline maximum entropy method. (English) Zbl 1442.65456 Int. J. Appl. Comput. Math. 6, No. 3, Paper No. 64, 15 p. (2020). MSC: 65R20 45B05 PDF BibTeX XML Cite \textit{M. S. Islam} and \textit{A. Smith}, Int. J. Appl. Comput. Math. 6, No. 3, Paper No. 64, 15 p. (2020; Zbl 1442.65456) Full Text: DOI
Sahu, Kshama Sagar; Jena, Mahendra Kumar Solution of initial value problems using an operational matrix. (English) Zbl 1442.65134 Int. J. Appl. Comput. Math. 6, No. 3, Paper No. 61, 23 p. (2020). MSC: 65L10 65L05 65T60 PDF BibTeX XML Cite \textit{K. S. Sahu} and \textit{M. K. Jena}, Int. J. Appl. Comput. Math. 6, No. 3, Paper No. 61, 23 p. (2020; Zbl 1442.65134) Full Text: DOI
Zemlyanova, Anna Y.; Machina, Alexia A new B-spline collocation method for singular integro-differential equations of higher orders. (English) Zbl 1452.65415 J. Comput. Appl. Math. 380, Article ID 112949, 12 p. (2020). Reviewer: Fritz Keinert (Ames) MSC: 65R20 45E05 45J05 65L60 74B10 PDF BibTeX XML Cite \textit{A. Y. Zemlyanova} and \textit{A. Machina}, J. Comput. Appl. Math. 380, Article ID 112949, 12 p. (2020; Zbl 1452.65415) Full Text: DOI
Gao, Guohua; Jiang, Hao; Vink, Jeroen C.; van Hagen, Paul P. H.; Wells, Terence J. Performance enhancement of Gauss-Newton trust-region solver for distributed Gauss-Newton optimization method. (English) Zbl 1434.90211 Comput. Geosci. 24, No. 2, 837-852 (2020). MSC: 90C39 90C20 86A22 90C55 PDF BibTeX XML Cite \textit{G. Gao} et al., Comput. Geosci. 24, No. 2, 837--852 (2020; Zbl 1434.90211) Full Text: DOI
Gillette, Andrew; Hu, Kaibo; Zhang, Shuo Nonstandard finite element de Rham complexes on cubical meshes. (English) Zbl 1447.65140 BIT 60, No. 2, 373-409 (2020). Reviewer: Bülent Karasözen (Ankara) MSC: 65N30 65J05 41A15 PDF BibTeX XML Cite \textit{A. Gillette} et al., BIT 60, No. 2, 373--409 (2020; Zbl 1447.65140) Full Text: DOI
Soori, Z.; Aminataei, A. Numerical solution of space fractional diffusion equation by spline method combined with Richardson extrapolation. (English) Zbl 07208214 Comput. Appl. Math. 39, No. 2, Paper No. 136, 18 p. (2020). MSC: 65L06 41A15 PDF BibTeX XML Cite \textit{Z. Soori} and \textit{A. Aminataei}, Comput. Appl. Math. 39, No. 2, Paper No. 136, 18 p. (2020; Zbl 07208214) Full Text: DOI
Vo, Duy; Nanakorn, Pruettha Geometrically nonlinear multi-patch isogeometric analysis of planar curved Euler-Bernoulli beams. (English) Zbl 1442.74108 Comput. Methods Appl. Mech. Eng. 366, Article ID 113078, 23 p. (2020). MSC: 74K10 65D07 74S05 65N30 74S22 PDF BibTeX XML Cite \textit{D. Vo} and \textit{P. Nanakorn}, Comput. Methods Appl. Mech. Eng. 366, Article ID 113078, 23 p. (2020; Zbl 1442.74108) Full Text: DOI
Andersen, Martin S.; Chen, Tianshi Smoothing splines and rank structured matrices: revisiting the spline kernel. (English) Zbl 1440.65038 SIAM J. Matrix Anal. Appl. 41, No. 2, 389-412 (2020). MSC: 65F05 65D07 65D10 60G15 65C20 PDF BibTeX XML Cite \textit{M. S. Andersen} and \textit{T. Chen}, SIAM J. Matrix Anal. Appl. 41, No. 2, 389--412 (2020; Zbl 1440.65038) Full Text: DOI
Singh, Aditi; Dahiya, Sumita; Singh, S. P. A fourth-order B-spline collocation method for nonlinear Burgers-Fisher equation. (English) Zbl 1452.65283 Math. Sci., Springer 14, No. 1, 75-85 (2020). MSC: 65M70 41A15 PDF BibTeX XML Cite \textit{A. Singh} et al., Math. Sci., Springer 14, No. 1, 75--85 (2020; Zbl 1452.65283) Full Text: DOI
Dem’yanovich, Yu. K. Embedding of spaces and wavelet decomposition. (English. Russian original) Zbl 07196781 St. Petersbg. Math. J. 31, No. 3, 435-453 (2020); translation from Algebra Anal. 31, No. 3, 55-81 (2019). MSC: 65T60 41A15 42C40 PDF BibTeX XML Cite \textit{Yu. K. Dem'yanovich}, St. Petersbg. Math. J. 31, No. 3, 435--453 (2020; Zbl 07196781); translation from Algebra Anal. 31, No. 3, 55--81 (2019) Full Text: DOI
Li, Chong-Jun; Jia, Yan-Mei A superconvergent nonconforming quadrilateral spline element for biharmonic equation using the B-net method. (English) Zbl 1449.65318 Comput. Appl. Math. 39, No. 2, Paper No. 70, 31 p. (2020). MSC: 65N30 65D07 65N12 65N15 PDF BibTeX XML Cite \textit{C.-J. Li} and \textit{Y.-M. Jia}, Comput. Appl. Math. 39, No. 2, Paper No. 70, 31 p. (2020; Zbl 1449.65318) Full Text: DOI
Roul, Pradip; Prasad Goura, V. M. K. A sixth order numerical method and its convergence for generalized Black-Scholes PDE. (English) Zbl 1437.65110 J. Comput. Appl. Math. 377, Article ID 112881, 19 p. (2020). MSC: 65M06 65N35 65D07 65M12 91G20 91G60 35Q91 PDF BibTeX XML Cite \textit{P. Roul} and \textit{V. M. K. Prasad Goura}, J. Comput. Appl. Math. 377, Article ID 112881, 19 p. (2020; Zbl 1437.65110) Full Text: DOI
Rahman, Sharif A spline chaos expansion. (English) Zbl 1436.41009 SIAM/ASA J. Uncertain. Quantif. 8, 27-57 (2020). MSC: 41A15 60H35 PDF BibTeX XML Cite \textit{S. Rahman}, SIAM/ASA J. Uncertain. Quantif. 8, 27--57 (2020; Zbl 1436.41009) Full Text: DOI
Fisher, Nick; Bialecki, Bernard Extrapolated ADI Crank-Nicolson orthogonal spline collocation for coupled Burgers’ equations. (English) Zbl 1433.65185 J. Difference Equ. Appl. 26, No. 1, 45-73 (2020). MSC: 65M70 65M15 35Q53 PDF BibTeX XML Cite \textit{N. Fisher} and \textit{B. Bialecki}, J. Difference Equ. Appl. 26, No. 1, 45--73 (2020; Zbl 1433.65185) Full Text: DOI
Roul, Pradip A fourth-order non-uniform mesh optimal B-spline collocation method for solving a strongly nonlinear singular boundary value problem describing electrohydrodynamic flow of a fluid. (English) Zbl 1445.65028 Appl. Numer. Math. 153, 558-574 (2020). Reviewer: Antonio López-Carmona (Granada) MSC: 65L10 65L60 76W05 PDF BibTeX XML Cite \textit{P. Roul}, Appl. Numer. Math. 153, 558--574 (2020; Zbl 1445.65028) Full Text: DOI
Hasler, Caren; Craiu, Radu V. Nonparametric imputation method for nonresponse in surveys. (English) Zbl 1436.62042 Stat. Methods Appl. 29, No. 1, 25-48 (2020). MSC: 62D05 62D10 65D07 62G09 PDF BibTeX XML Cite \textit{C. Hasler} and \textit{R. V. Craiu}, Stat. Methods Appl. 29, No. 1, 25--48 (2020; Zbl 1436.62042) Full Text: DOI
Maquart, Tristan; Wenfeng, Ye; Elguedj, Thomas; Gravouil, Anthony; Rochette, Michel 3D volumetric isotopological meshing for finite element and isogeometric based reduced order modeling. (English) Zbl 1439.65186 Comput. Methods Appl. Mech. Eng. 362, Article ID 112809, 22 p. (2020). MSC: 65N30 PDF BibTeX XML Cite \textit{T. Maquart} et al., Comput. Methods Appl. Mech. Eng. 362, Article ID 112809, 22 p. (2020; Zbl 1439.65186) Full Text: DOI
Kaur, Navjot; Goyal, Kavita Uncertainty propagation using Wiener-linear B-spline wavelet expansion. (English) Zbl 07185197 Comput. Math. Appl. 79, No. 9, 2598-2623 (2020). MSC: 65T60 65D07 PDF BibTeX XML Cite \textit{N. Kaur} and \textit{K. Goyal}, Comput. Math. Appl. 79, No. 9, 2598--2623 (2020; Zbl 07185197) Full Text: DOI
Derakhshan, M.; Zarebnia, M. On the numerical treatment and analysis of two-dimensional Fredholm integral equations using quasi-interpolant. (English) Zbl 1449.65357 Comput. Appl. Math. 39, No. 2, Paper No. 106, 20 p. (2020). MSC: 65R20 41A15 41A25 45B05 PDF BibTeX XML Cite \textit{M. Derakhshan} and \textit{M. Zarebnia}, Comput. Appl. Math. 39, No. 2, Paper No. 106, 20 p. (2020; Zbl 1449.65357) Full Text: DOI
Bosner, Tina; Crnković, Bojan; Škifić, Jerko Application of CCC-Schoenberg operators on image resampling. (English) Zbl 1455.94008 BIT 60, No. 1, 129-155 (2020). MSC: 94A08 41A15 41A50 65D07 65D17 65D18 65M08 68U10 PDF BibTeX XML Cite \textit{T. Bosner} et al., BIT 60, No. 1, 129--155 (2020; Zbl 1455.94008) Full Text: DOI
Roul, Pradip A high accuracy numerical method and its convergence for time-fractional Black-Scholes equation governing European options. (English) Zbl 1437.91455 Appl. Numer. Math. 151, 472-493 (2020). Reviewer: Abdallah Bradji (Annaba) MSC: 91G60 65N35 65M12 65D07 65M06 35R11 35C08 35Q91 91G20 PDF BibTeX XML Cite \textit{P. Roul}, Appl. Numer. Math. 151, 472--493 (2020; Zbl 1437.91455) Full Text: DOI
Pedas, Arvet; Tamme, Enn; Vikerpuur, Mikk Numerical solution of linear fractional weakly singular integro-differential equations with integral boundary conditions. (English) Zbl 1437.65245 Appl. Numer. Math. 149, 124-140 (2020). MSC: 65R20 65L05 65L60 26A33 PDF BibTeX XML Cite \textit{A. Pedas} et al., Appl. Numer. Math. 149, 124--140 (2020; Zbl 1437.65245) Full Text: DOI
Zarebnia, M.; Parvaz, R. Error analysis of the numerical solution of the Benjamin-Bona-Mahony-Burgers equation. (English) Zbl 1431.65192 Bol. Soc. Parana. Mat. (3) 38, No. 3, 177-191 (2020). MSC: 65M70 41A15 65M12 PDF BibTeX XML Cite \textit{M. Zarebnia} and \textit{R. Parvaz}, Bol. Soc. Parana. Mat. (3) 38, No. 3, 177--191 (2020; Zbl 1431.65192) Full Text: Link
Sahlan, Monireh Nosrati Convergence of approximate solution of mixed Hammerstein type integral equations. (English) Zbl 1431.45004 Bol. Soc. Parana. Mat. (3) 38, No. 2, 61-74 (2020). MSC: 45G10 65L60 42C40 65Gxx PDF BibTeX XML Cite \textit{M. N. Sahlan}, Bol. Soc. Parana. Mat. (3) 38, No. 2, 61--74 (2020; Zbl 1431.45004) Full Text: Link
Saeedi, Leila; Tari, Abolfazl; Babolian, Esmail A study on functional fractional integro-differential equations of Hammerstein type. (English) Zbl 1449.65367 Comput. Methods Differ. Equ. 8, No. 1, 173-193 (2020). MSC: 65R20 45J05 34A08 65D07 PDF BibTeX XML Cite \textit{L. Saeedi} et al., Comput. Methods Differ. Equ. 8, No. 1, 173--193 (2020; Zbl 1449.65367) Full Text: DOI
Bialecki, Bernard; Fairweather, Graeme; Karageorghis, Andreas; Maack, Jonathan A quadratic spline collocation method for the Dirichlet biharmonic problem. (English) Zbl 1434.65290 Numer. Algorithms 83, No. 1, 165-199 (2020). MSC: 65N35 65D07 31A30 65T50 65F08 65F10 65N12 35J40 35J20 PDF BibTeX XML Cite \textit{B. Bialecki} et al., Numer. Algorithms 83, No. 1, 165--199 (2020; Zbl 1434.65290) Full Text: DOI
Alipour, Sahar; Mirzaee, Farshid An iterative algorithm for solving two dimensional nonlinear stochastic integral equations: a combined successive approximations method with bilinear spline interpolation. (English) Zbl 1433.65344 Appl. Math. Comput. 371, Article ID 124947, 12 p. (2020). MSC: 65R20 65D30 45D05 60H20 60H35 65C30 PDF BibTeX XML Cite \textit{S. Alipour} and \textit{F. Mirzaee}, Appl. Math. Comput. 371, Article ID 124947, 12 p. (2020; Zbl 1433.65344) Full Text: DOI
Lin, Ji; Reutskiy, Sergiy A cubic B-spline semi-analytical algorithm for simulation of 3D steady-state convection-diffusion-reaction problems. (English) Zbl 1433.65018 Appl. Math. Comput. 371, Article ID 124944, 16 p. (2020). MSC: 65D07 65N35 35K57 PDF BibTeX XML Cite \textit{J. Lin} and \textit{S. Reutskiy}, Appl. Math. Comput. 371, Article ID 124944, 16 p. (2020; Zbl 1433.65018) Full Text: DOI
Roul, Pradip; Prasad Goura, V. M. K. A high order numerical method and its convergence for time-fractional fourth order partial differential equations. (English) Zbl 1433.65243 Appl. Math. Comput. 366, Article ID 124727, 22 p. (2020). MSC: 65M70 35R11 PDF BibTeX XML Cite \textit{P. Roul} and \textit{V. M. K. Prasad Goura}, Appl. Math. Comput. 366, Article ID 124727, 22 p. (2020; Zbl 1433.65243) Full Text: DOI
Kumar, Rakesh; Choudhary, Ashok; Baskar, S. Modified cubic B-spline quasi-interpolation numerical scheme for hyperbolic conservation laws. (English) Zbl 1435.65124 Appl. Anal. 99, No. 1, 158-179 (2020). Reviewer: Hendrik Ranocha (Braunschweig) MSC: 65M06 65D07 35L65 35D40 PDF BibTeX XML Cite \textit{R. Kumar} et al., Appl. Anal. 99, No. 1, 158--179 (2020; Zbl 1435.65124) Full Text: DOI
Kanth, A. S. V. Ravi; Garg, Neetu A numerical approach for a class of time-fractional reaction-diffusion equation through exponential B-spline method. (English) Zbl 1442.65213 Comput. Appl. Math. 39, No. 1, Paper No. 37, 24 p. (2020). Reviewer: Ahmed M. A. El-Sayed (Alexandria) MSC: 65M12 35R11 65M70 PDF BibTeX XML Cite \textit{A. S. V. R. Kanth} and \textit{N. Garg}, Comput. Appl. Math. 39, No. 1, Paper No. 37, 24 p. (2020; Zbl 1442.65213) Full Text: DOI
Staino, Alessandro; Russo, Emilio Nested conditional value-at-risk portfolio selection: a model with temporal dependence driven by market-index volatility. (English) Zbl 1431.91369 Eur. J. Oper. Res. 280, No. 2, 741-753 (2020). MSC: 91G10 90C15 91G70 PDF BibTeX XML Cite \textit{A. Staino} and \textit{E. Russo}, Eur. J. Oper. Res. 280, No. 2, 741--753 (2020; Zbl 1431.91369) Full Text: DOI
Černá, Dana; Finěk, Václav Galerkin method with new quadratic spline wavelets for integral and integro-differential equations. (English) Zbl 1416.65530 J. Comput. Appl. Math. 363, 426-443 (2020). MSC: 65R20 45F05 65N30 65T60 PDF BibTeX XML Cite \textit{D. Černá} and \textit{V. Finěk}, J. Comput. Appl. Math. 363, 426--443 (2020; Zbl 1416.65530) Full Text: DOI
Khadr, M. M.; Abualnaja, Khadijah Mohammed Galerkin-FEM for obtaining the numerical solution of the linear fractional Klein-Gordon equation. (English) Zbl 07334193 J. Appl. Anal. Comput. 9, No. 1 (2019). MSC: 41A30 41A55 65N12 65N30 PDF BibTeX XML Full Text: DOI
Phaneendra, K.; Mahesh, G. Fourth order computational method for two parameters singularly perturbed boundary value problem using non-polynomial cubic spline. (English) Zbl 1453.65179 Int. J. Comput. Sci. Math. 10, No. 3, 261-275 (2019). MSC: 65L11 65L12 65L20 PDF BibTeX XML Cite \textit{K. Phaneendra} and \textit{G. Mahesh}, Int. J. Comput. Sci. Math. 10, No. 3, 261--275 (2019; Zbl 1453.65179) Full Text: DOI
Srivastava, Pankaj Kumar A spline-based computational technique applicable for solution of boundary value problem arising in human physiology. (English) Zbl 1453.92007 Int. J. Comput. Sci. Math. 10, No. 1, 46-57 (2019). MSC: 92-08 65L10 65L60 93C30 PDF BibTeX XML Cite \textit{P. K. Srivastava}, Int. J. Comput. Sci. Math. 10, No. 1, 46--57 (2019; Zbl 1453.92007) Full Text: DOI
Ong, Chia Rui; Miura, Hiroaki Immersed boundary method with irrotational discrete delta vector for droplet simulations of large density ratio. (English) Zbl 1452.76248 J. Comput. Phys. 391, 280-302 (2019). MSC: 76T10 76M12 86A10 76D05 PDF BibTeX XML Cite \textit{C. R. Ong} and \textit{H. Miura}, J. Comput. Phys. 391, 280--302 (2019; Zbl 1452.76248) Full Text: DOI
Farhana binti Ismail, Noratiqah; Phang, Chang Numerical solution for a class of fractional variational problem via second order B-spline function. (English) Zbl 1454.49032 J. Indones. Math. Soc. 25, No. 3, 171-182 (2019). MSC: 49M05 49J40 45P05 PDF BibTeX XML Cite \textit{N. Farhana binti Ismail} and \textit{C. Phang}, J. Indones. Math. Soc. 25, No. 3, 171--182 (2019; Zbl 1454.49032) Full Text: DOI
Assari, Pouria; Asadi, Mehregan Fatemeh; Dehghan, Mehdi The implication of local thin plate splines for solving nonlinear mixed integro-differential equations based on the Galerkin scheme. (English) Zbl 07267472 Numer. Math., Theory Methods Appl. 12, No. 4, 1066-1092 (2019). MSC: 65M60 65R20 PDF BibTeX XML Cite \textit{P. Assari} et al., Numer. Math., Theory Methods Appl. 12, No. 4, 1066--1092 (2019; Zbl 07267472) Full Text: DOI
Qiao, Leijie; Xu, Da BDF ADI orthogonal spline collocation scheme for the fractional integro-differential equation with two weakly singular kernels. (English) Zbl 1443.65250 Comput. Math. Appl. 78, No. 12, 3807-3820 (2019). MSC: 65M70 PDF BibTeX XML Cite \textit{L. Qiao} and \textit{D. Xu}, Comput. Math. Appl. 78, No. 12, 3807--3820 (2019; Zbl 1443.65250) Full Text: DOI
Wang, Qiao; Zhou, Wei; Cheng, Yonggang; Ma, Gang; Chang, Xiaolin NURBS-enhanced line integration boundary element method for 2D elasticity problems with body forces. (English) Zbl 1442.65419 Comput. Math. Appl. 77, No. 7, 2006-2028 (2019). MSC: 65N38 74B05 PDF BibTeX XML Cite \textit{Q. Wang} et al., Comput. Math. Appl. 77, No. 7, 2006--2028 (2019; Zbl 1442.65419) Full Text: DOI
Karakoc, Seydi Battal Gazi; Bhowmik, Samir Kumar Galerkin finite element solution for Benjamin-Bona-Mahony-Burgers equation with cubic B-splines. (English) Zbl 1442.65262 Comput. Math. Appl. 77, No. 7, 1917-1932 (2019). MSC: 65M60 65D07 35Q53 PDF BibTeX XML Cite \textit{S. B. G. Karakoc} and \textit{S. K. Bhowmik}, Comput. Math. Appl. 77, No. 7, 1917--1932 (2019; Zbl 1442.65262) Full Text: DOI
Lu, Wanshun; Yan, Jie; Ma, Xu B-spline wavelet collocation method for solution of nonlinear fractional Fredholm integro-differential equation. (Chinese. English summary) Zbl 1449.65167 J. Lanzhou Univ. Technol. 45, No. 4, 156-161 (2019). MSC: 65L60 65R20 65T60 45J05 45B05 PDF BibTeX XML Cite \textit{W. Lu} et al., J. Lanzhou Univ. Technol. 45, No. 4, 156--161 (2019; Zbl 1449.65167)
Wang, Michael Yu; Zong, Hongming; Ma, Qingping; Tian, Ye; Zhou, Mingdong Cellular level set in B-splines (CLIBS): a method for modeling and topology optimization of cellular structures. (English) Zbl 1441.74172 Comput. Methods Appl. Mech. Eng. 349, 378-404 (2019). MSC: 74P15 65D07 74S99 PDF BibTeX XML Cite \textit{M. Y. Wang} et al., Comput. Methods Appl. Mech. Eng. 349, 378--404 (2019; Zbl 1441.74172) Full Text: DOI
Zimmermann, Christopher; Toshniwal, Deepesh; Landis, Chad M.; Hughes, Thomas J. R.; Mandadapu, Kranthi K.; Sauer, Roger A. An isogeometric finite element formulation for phase transitions on deforming surfaces. (English) Zbl 1441.74286 Comput. Methods Appl. Mech. Eng. 351, 441-477 (2019). MSC: 74S05 65M60 65D07 74N15 PDF BibTeX XML Cite \textit{C. Zimmermann} et al., Comput. Methods Appl. Mech. Eng. 351, 441--477 (2019; Zbl 1441.74286) Full Text: DOI
Codony, D.; Marco, O.; Fernández-Méndez, S.; Arias, I. An immersed boundary hierarchical B-spline method for flexoelectricity. (English) Zbl 1441.74073 Comput. Methods Appl. Mech. Eng. 354, 750-782 (2019). MSC: 74F15 65D07 74S05 65N30 PDF BibTeX XML Cite \textit{D. Codony} et al., Comput. Methods Appl. Mech. Eng. 354, 750--782 (2019; Zbl 1441.74073) Full Text: DOI
Liu, Yanan; Liu, Yinghua; Ding, Keqin A structured grid based B-spline finite elements method combining local isogeometry analysis technique for crack problems. (English) Zbl 1440.74419 Comput. Methods Appl. Mech. Eng. 348, 753-775 (2019). MSC: 74S05 65N30 65D07 74R10 PDF BibTeX XML Cite \textit{Y. Liu} et al., Comput. Methods Appl. Mech. Eng. 348, 753--775 (2019; Zbl 1440.74419) Full Text: DOI
Jia, Yue; Anitescu, Cosmin; Zhang, Yongjie Jessica; Rabczuk, Timon An adaptive isogeometric analysis collocation method with a recovery-based error estimator. (English) Zbl 1440.65248 Comput. Methods Appl. Mech. Eng. 345, 52-74 (2019). MSC: 65N35 65D07 PDF BibTeX XML Cite \textit{Y. Jia} et al., Comput. Methods Appl. Mech. Eng. 345, 52--74 (2019; Zbl 1440.65248) Full Text: DOI
Xue, Riye; Liu, Chang; Zhang, Weisheng; Zhu, Yichao; Tang, Shan; Du, Zongliang; Guo, Xu Explicit structural topology optimization under finite deformation via moving morphable void (MMV) approach. (English) Zbl 1440.74325 Comput. Methods Appl. Mech. Eng. 344, 798-818 (2019). MSC: 74P15 74S05 PDF BibTeX XML Cite \textit{R. Xue} et al., Comput. Methods Appl. Mech. Eng. 344, 798--818 (2019; Zbl 1440.74325) Full Text: DOI
Wang, Kun; Yu, Shengjiao; Wang, Zheng; Feng, Renzhong; Liu, Tiegang Adjoint-based airfoil optimization with adaptive isogeometric discontinuous Galerkin method. (English) Zbl 1440.74278 Comput. Methods Appl. Mech. Eng. 344, 602-625 (2019). MSC: 74P10 65D07 74S05 65N30 PDF BibTeX XML Cite \textit{K. Wang} et al., Comput. Methods Appl. Mech. Eng. 344, 602--625 (2019; Zbl 1440.74278) Full Text: DOI
de Villiers, Johan; Ranirina, Dinna Shortest multi-wavelet matrix filters for refinable vector splines. (English) Zbl 1439.42045 Adv. Comput. Math. 45, No. 5-6, 3327-3365 (2019). Reviewer: Devendra Kumar (Al-Baha) MSC: 42C40 65T60 41A15 PDF BibTeX XML Cite \textit{J. de Villiers} and \textit{D. Ranirina}, Adv. Comput. Math. 45, No. 5--6, 3327--3365 (2019; Zbl 1439.42045) Full Text: DOI
Zeidabadi, Hamed; Pourgholi, Reza; Tabasi, Seyyed Hashem Solving a nonlinear inverse system of Burgers equations. (English) Zbl 1449.65232 Int. J. Nonlinear Anal. Appl. 10, No. 1, 35-54 (2019). MSC: 65M32 35K05 65D07 65M70 65M12 65M30 65J20 65M06 35Q53 PDF BibTeX XML Cite \textit{H. Zeidabadi} et al., Int. J. Nonlinear Anal. Appl. 10, No. 1, 35--54 (2019; Zbl 1449.65232) Full Text: DOI
Yagmurlu, Nuri Murat; Karaagac, Berat; Esen, Alaattin A lumped Galerkin finite element method for the generalized Hirota-Satsuma coupled KdV and coupled MKdV equations. (English) Zbl 1434.65284 Tbil. Math. J. 12, No. 3, 159-173 (2019). MSC: 65N30 65D07 65L06 35Q53 PDF BibTeX XML Cite \textit{N. M. Yagmurlu} et al., Tbil. Math. J. 12, No. 3, 159--173 (2019; Zbl 1434.65284) Full Text: DOI Euclid