Sahu, D. R.; Yao, J. C.; Verma, M.; Shukla, K. K. Convergence rate analysis of proximal gradient methods with applications to composite minimization problems. (English) Zbl 07313459 Optimization 70, No. 1, 75-100 (2021). MSC: 65J15 47J25 65H10 PDF BibTeX XML Cite \textit{D. R. Sahu} et al., Optimization 70, No. 1, 75--100 (2021; Zbl 07313459) Full Text: DOI
Tian, Zhaolu; Zhang, Yan; Wang, Junxin; Gu, Chuanqing Several relaxed iteration methods for computing PageRank. (English) Zbl 07305220 J. Comput. Appl. Math. 388, Article ID 113295, 22 p. (2021). MSC: 65F15 15A18 PDF BibTeX XML Cite \textit{Z. Tian} et al., J. Comput. Appl. Math. 388, Article ID 113295, 22 p. (2021; Zbl 07305220) Full Text: DOI
Abass, H. A.; Izuchukwu, C.; Mewomo, O. T.; Dong, Q. L. Strong convergence of an inertial forward-backward splitting method for accretive operators in real Banach space. (English) Zbl 07285133 Fixed Point Theory 21, No. 2, 397-412 (2020). MSC: 47H06 47H09 47J05 47H10 47J25 PDF BibTeX XML Cite \textit{H. A. Abass} et al., Fixed Point Theory 21, No. 2, 397--412 (2020; Zbl 07285133) Full Text: Link
Pani, Amiya K.; Thomée, Vidar; Vasudeva Murthy, A. S. A first-order explicit-implicit splitting method for a convection-diffusion problem. (English) Zbl 07284951 Comput. Methods Appl. Math. 20, No. 4, 769-782 (2020). Reviewer: Qifeng Zhang (Hangzhou) MSC: 65M06 65M15 35K10 PDF BibTeX XML Cite \textit{A. K. Pani} et al., Comput. Methods Appl. Math. 20, No. 4, 769--782 (2020; Zbl 07284951) Full Text: DOI
Thomée, Vidar A finite element splitting method for a convection-diffusion problem. (English) Zbl 07284947 Comput. Methods Appl. Math. 20, No. 4, 717-725 (2020). MSC: 65M60 65M06 65N30 65M15 35K10 PDF BibTeX XML Cite \textit{V. Thomée}, Comput. Methods Appl. Math. 20, No. 4, 717--725 (2020; Zbl 07284947) Full Text: DOI
Kitkuan, Duangkamon; Kumam, Poom; Martínez-Moreno, Juan Generalized Halpern-type forward-backward splitting methods for convex minimization problems with application to image restoration problems. (English) Zbl 07271708 Optimization 69, No. 7-8, 1557-1581 (2020). MSC: 47H20 49M20 49M25 49M27 47J25 47H05 PDF BibTeX XML Cite \textit{D. Kitkuan} et al., Optimization 69, No. 7--8, 1557--1581 (2020; Zbl 07271708) Full Text: DOI
Zhang, Jiansong; Han, Huiran A new discontinuous Galerkin mixed finite element method for compressible miscible displacement problem. (English) Zbl 1452.65262 Comput. Math. Appl. 80, No. 6, 1714-1725 (2020). MSC: 65M60 65N30 76S05 76N99 65M12 PDF BibTeX XML Cite \textit{J. Zhang} and \textit{H. Han}, Comput. Math. Appl. 80, No. 6, 1714--1725 (2020; Zbl 1452.65262) Full Text: DOI
Bauschke, Heinz H.; Moursi, Walaa M. On the behavior of the Douglas-Rachford algorithm for minimizing a convex function subject to a linear constraint. (English) Zbl 1451.90117 SIAM J. Optim. 30, No. 3, 2559-2576 (2020). MSC: 90C25 65K10 47H14 PDF BibTeX XML Cite \textit{H. H. Bauschke} and \textit{W. M. Moursi}, SIAM J. Optim. 30, No. 3, 2559--2576 (2020; Zbl 1451.90117) Full Text: DOI
Dehghan, Mehdi; Shirilord, Akbar Matrix multisplitting Picard-iterative method for solving generalized absolute value matrix equation. (English) Zbl 1451.65048 Appl. Numer. Math. 158, 425-438 (2020). MSC: 65F45 15A24 90C33 PDF BibTeX XML Cite \textit{M. Dehghan} and \textit{A. Shirilord}, Appl. Numer. Math. 158, 425--438 (2020; Zbl 1451.65048) Full Text: DOI
Ryu, Ernest K.; Taylor, Adrien B.; Bergeling, Carolina; Giselsson, Pontus Operator splitting performance estimation: tight contraction factors and optimal parameter selection. (English) Zbl 07248639 SIAM J. Optim. 30, No. 3, 2251-2271 (2020). MSC: 47H05 47H09 68Q25 90C22 90C25 90C60 PDF BibTeX XML Cite \textit{E. K. Ryu} et al., SIAM J. Optim. 30, No. 3, 2251--2271 (2020; Zbl 07248639) Full Text: DOI
Nägele, Martin; Zenklusen, Rico A new contraction technique with applications to congruency-constrained cuts. (English) Zbl 1450.90046 Math. Program. 183, No. 1-2 (B), 455-481 (2020). MSC: 90C27 90C35 68R05 68Q25 05C99 PDF BibTeX XML Cite \textit{M. Nägele} and \textit{R. Zenklusen}, Math. Program. 183, No. 1--2 (B), 455--481 (2020; Zbl 1450.90046) Full Text: DOI
Cheng, Guo; Li, Jicheng A new preconditioner for solving weighted Toeplitz least squares problems. (English) Zbl 1449.65043 Math. Appl. 33, No. 1, 172-185 (2020). MSC: 65F08 65F10 15B05 PDF BibTeX XML Cite \textit{G. Cheng} and \textit{J. Li}, Math. Appl. 33, No. 1, 172--185 (2020; Zbl 1449.65043)
Barthel, Thomas; Zhang, Yikang Optimized Lie-Trotter-Suzuki decompositions for two and three non-commuting terms. (English) Zbl 1435.81008 Ann. Phys. 418, Article ID 168165, 27 p. (2020). MSC: 81-10 81-08 PDF BibTeX XML Cite \textit{T. Barthel} and \textit{Y. Zhang}, Ann. Phys. 418, Article ID 168165, 27 p. (2020; Zbl 1435.81008) Full Text: DOI
Chen, Fang; Li, Tian-Yi; Lu, Kang-Ya Updated preconditioned Hermitian and skew-Hermitian splitting-type iteration methods for solving saddle-point problems. (English) Zbl 1449.65051 Comput. Appl. Math. 39, No. 3, Paper No. 162, 14 p. (2020). MSC: 65F10 65F08 15B57 PDF BibTeX XML Cite \textit{F. Chen} et al., Comput. Appl. Math. 39, No. 3, Paper No. 162, 14 p. (2020; Zbl 1449.65051) Full Text: DOI
Zhang, Ke; Wang, Lin-Na Efficient HSS-based preconditioners for generalized saddle point problems. (English) Zbl 1449.65071 Comput. Appl. Math. 39, No. 3, Paper No. 154, 19 p. (2020). MSC: 65F10 65F08 65N22 PDF BibTeX XML Cite \textit{K. Zhang} and \textit{L.-N. Wang}, Comput. Appl. Math. 39, No. 3, Paper No. 154, 19 p. (2020; Zbl 1449.65071) Full Text: DOI
Zheng, Hua; Qu, Wei Superlinearly convergent methods for solving a class of implicit complementarity problems based on sign analysis. (English) Zbl 1437.65045 Japan J. Ind. Appl. Math. 37, No. 2, 433-447 (2020). MSC: 65H17 65H20 65F10 90C33 PDF BibTeX XML Cite \textit{H. Zheng} and \textit{W. Qu}, Japan J. Ind. Appl. Math. 37, No. 2, 433--447 (2020; Zbl 1437.65045) Full Text: DOI
Boen, Lynn; in ’t Hout, Karel J. Operator splitting schemes for American options under the two-asset Merton jump-diffusion model. (English) Zbl 1444.91207 Appl. Numer. Math. 153, 114-131 (2020). MSC: 91G20 60G40 35Q91 60J74 PDF BibTeX XML Cite \textit{L. Boen} and \textit{K. J. in 't Hout}, Appl. Numer. Math. 153, 114--131 (2020; Zbl 1444.91207) Full Text: DOI
Shi, Quan; Shen, Qin-Qin; Tang, Tian-Pei A class of two-step modulus-based matrix splitting iteration methods for quasi-complementarity problems. (English) Zbl 1449.65065 Comput. Appl. Math. 39, No. 1, Paper No. 11, 23 p. (2020). MSC: 65F10 90C33 PDF BibTeX XML Cite \textit{Q. Shi} et al., Comput. Appl. Math. 39, No. 1, Paper No. 11, 23 p. (2020; Zbl 1449.65065) Full Text: DOI
Chen, Feng; Shen, Jie Stability and error analysis of operator splitting methods for American options under the Black-Scholes model. (English) Zbl 1433.91173 J. Sci. Comput. 82, No. 2, Paper No. 33, 17 p. (2020). Reviewer: George Stoica (Saint John) MSC: 91G20 60G40 PDF BibTeX XML Cite \textit{F. Chen} and \textit{J. Shen}, J. Sci. Comput. 82, No. 2, Paper No. 33, 17 p. (2020; Zbl 1433.91173) Full Text: DOI
Zheng, Hua; Li, Wen; Vong, Seakweng An iteration method for nonlinear complementarity problems. (English) Zbl 07169547 J. Comput. Appl. Math. 372, Article ID 112681, 11 p. (2020). MSC: 65F08 65F10 PDF BibTeX XML Cite \textit{H. Zheng} et al., J. Comput. Appl. Math. 372, Article ID 112681, 11 p. (2020; Zbl 07169547) Full Text: DOI
Zheng, Hua; Vong, Seakweng On convergence of the modulus-based matrix splitting iteration method for horizontal linear complementarity problems of \(H_+\)-matrices. (English) Zbl 1433.90174 Appl. Math. Comput. 369, Article ID 124890, 6 p. (2020). MSC: 90C33 65F10 65K05 PDF BibTeX XML Cite \textit{H. Zheng} and \textit{S. Vong}, Appl. Math. Comput. 369, Article ID 124890, 6 p. (2020; Zbl 1433.90174) Full Text: DOI
Ma, Lidong; Meng, Zhijuan; Chai, Jinfei; Cheng, Yumin Analyzing 3D advection-diffusion problems by using the dimension splitting element-free Galerkin method. (English) Zbl 07153262 Eng. Anal. Bound. Elem. 111, 167-177 (2020). MSC: 65 35 PDF BibTeX XML Cite \textit{L. Ma} et al., Eng. Anal. Bound. Elem. 111, 167--177 (2020; Zbl 07153262) Full Text: DOI
Berestovskii, Valerii N. The Poincaré conjecture and related statements. (English) Zbl 07265540 Dani, S. G. (ed.) et al., Geometry in history. Cham: Springer (ISBN 978-3-030-13608-6/hbk; 978-3-030-13611-6/pbk; 978-3-030-13609-3/ebook). 623-685 (2019). MSC: 57-03 01A60 57-02 57K30 57R60 57Q99 PDF BibTeX XML Cite \textit{V. N. Berestovskii}, in: Geometry in history. Cham: Springer. 623--685 (2019; Zbl 07265540) Full Text: DOI
Fang, Xi-Ming; Zhu, Zhi-Wei The modulus-based matrix double splitting iteration method for linear complementarity problems. (English) Zbl 1443.65086 Comput. Math. Appl. 78, No. 11, 3633-3643 (2019). MSC: 65K15 65F10 PDF BibTeX XML Cite \textit{X.-M. Fang} and \textit{Z.-W. Zhu}, Comput. Math. Appl. 78, No. 11, 3633--3643 (2019; Zbl 1443.65086) Full Text: DOI
Chen, Chris; Wang, Zeqi; Yang, Yue A new operator splitting method for American options under fractional Black-Scholes models. (English) Zbl 1442.65151 Comput. Math. Appl. 77, No. 8, 2130-2144 (2019). MSC: 65M06 35R11 91G60 PDF BibTeX XML Cite \textit{C. Chen} et al., Comput. Math. Appl. 77, No. 8, 2130--2144 (2019; Zbl 1442.65151) Full Text: DOI
Cao, Yang A general class of shift-splitting preconditioners for non-Hermitian saddle point problems with applications to time-harmonic eddy current models. (English) Zbl 1442.65039 Comput. Math. Appl. 77, No. 4, 1124-1143 (2019). MSC: 65F10 15A06 PDF BibTeX XML Cite \textit{Y. Cao}, Comput. Math. Appl. 77, No. 4, 1124--1143 (2019; Zbl 1442.65039) Full Text: DOI
Ren, Huan; Wang, Xiang; Tang, Xiao-Bin; Wang, Teng The general two-sweep modulus-based matrix splitting iteration method for solving linear complementarity problems. (English) Zbl 1442.65112 Comput. Math. Appl. 77, No. 4, 1071-1081 (2019). MSC: 65K15 15A06 90C33 PDF BibTeX XML Cite \textit{H. Ren} et al., Comput. Math. Appl. 77, No. 4, 1071--1081 (2019; Zbl 1442.65112) Full Text: DOI
Li, Zhizhi; Ke, Yifen; Chu, Risheng; Zhang, Huai Generalized modulus-based matrix splitting iteration methods for second-order cone linear complementarity problems. (Chinese. English summary) Zbl 1449.65122 Math. Numer. Sin. 41, No. 4, 395-405 (2019). MSC: 65K05 65F10 90C33 PDF BibTeX XML Cite \textit{Z. Li} et al., Math. Numer. Sin. 41, No. 4, 395--405 (2019; Zbl 1449.65122)
Hollender, Alexandros The classes PPA-\(k\): existence from arguments modulo \(k\). (English) Zbl 1435.68107 Caragiannis, Ioannis (ed.) et al., Web and Internet economics. 15th international conference, WINE 2019, New York, NY, USA, December 10–12, 2019. Proceedings. Cham: Springer. Lect. Notes Comput. Sci. 11920, 214-227 (2019). MSC: 68Q15 68Q25 91B32 PDF BibTeX XML Cite \textit{A. Hollender}, Lect. Notes Comput. Sci. 11920, 214--227 (2019; Zbl 1435.68107) Full Text: DOI
Azizi, Abdelmalek On the splitting field of some polynomials with class number one. (English) Zbl 1448.11199 Gueye, Cheikh Thiecoumba (ed.) et al., Algebra, codes and cryptology. Proceedings of the first international conference, A2C 2019, in honor of Prof. Mamadou Sanghare, Dakar, Senegal, December 5–7, 2019. Cham: Springer. Commun. Comput. Inf. Sci. 1133, 73-80 (2019). Reviewer: Elliot Benjamin (Winterport) MSC: 11R29 PDF BibTeX XML Cite \textit{A. Azizi}, Commun. Comput. Inf. Sci. 1133, 73--80 (2019; Zbl 1448.11199) Full Text: DOI
Konnov, Igor; Pinyagina, Olga Splitting method with adaptive step-size. (English) Zbl 1443.90318 Khachay, Michael (ed.) et al., Mathematical optimization theory and operations research. 18th international conference, MOTOR 2019, Ekaterinburg, Russia, July 8–12, 2019. Proceedings. Cham: Springer. Lect. Notes Comput. Sci. 11548, 46-58 (2019). MSC: 90C33 90C30 PDF BibTeX XML Cite \textit{I. Konnov} and \textit{O. Pinyagina}, Lect. Notes Comput. Sci. 11548, 46--58 (2019; Zbl 1443.90318) Full Text: DOI
Combettes, Patrick L.; Glaudin, Lilian E. Proximal activation of smooth functions in splitting algorithms for convex image recovery. (English) Zbl 1443.90269 SIAM J. Imaging Sci. 12, No. 4, 1905-1935 (2019). MSC: 90C25 94A08 47N10 PDF BibTeX XML Cite \textit{P. L. Combettes} and \textit{L. E. Glaudin}, SIAM J. Imaging Sci. 12, No. 4, 1905--1935 (2019; Zbl 1443.90269) Full Text: DOI
Gladky, A. V.; Gladka, Y. A. A splitting scheme for diffusion and heat conduction problems. (English. Russian original) Zbl 1433.65158 Cybern. Syst. Anal. 55, No. 6, 988-998 (2019); translation from Kibern. Sist. Anal. 2019, No. 6, 122-133 (2019). MSC: 65M06 80M20 65M32 35K05 93C20 PDF BibTeX XML Cite \textit{A. V. Gladky} and \textit{Y. A. Gladka}, Cybern. Syst. Anal. 55, No. 6, 988--998 (2019; Zbl 1433.65158); translation from Kibern. Sist. Anal. 2019, No. 6, 122--133 (2019) Full Text: DOI
Matsumoto, Yukio Note on the codimension two splitting problem. (English) Zbl 1441.57032 Kyungpook Math. J. 59, No. 3, 563-589 (2019). Reviewer: Jonathan Hodgson (Swarthmore) MSC: 57R67 57R40 19G38 19J25 PDF BibTeX XML Cite \textit{Y. Matsumoto}, Kyungpook Math. J. 59, No. 3, 563--589 (2019; Zbl 1441.57032) Full Text: DOI
Wu, Yujiang; Yan, Guilin; Yang, Aili Modulus-based synchronous multisplitting iteration methods for a restricted class of nonlinear complementarity problems. (English) Zbl 1449.65126 Numer. Math., Theory Methods Appl. 12, No. 3, 709-726 (2019). MSC: 65K05 90C33 PDF BibTeX XML Cite \textit{Y. Wu} et al., Numer. Math., Theory Methods Appl. 12, No. 3, 709--726 (2019; Zbl 1449.65126) Full Text: DOI
Peng, Xiaofei A general relaxation two-sweep modulus-based matrix splitting iteration method for linear complementarity problems. (Chinese. English summary) Zbl 1449.65063 J. South China Norm. Univ., Nat. Sci. Ed. 51, No. 4, 93-99 (2019). MSC: 65F10 90C33 PDF BibTeX XML Cite \textit{X. Peng}, J. South China Norm. Univ., Nat. Sci. Ed. 51, No. 4, 93--99 (2019; Zbl 1449.65063) Full Text: DOI
Bu, Fan; Ma, Changfeng A generalized HSS shift-splitting method for solving saddle point problem. (Chinese. English summary) Zbl 1449.65049 J. Fujian Norm. Univ., Nat. Sci. 35, No. 3, 8-16 (2019). MSC: 65F10 65F08 65F50 PDF BibTeX XML Cite \textit{F. Bu} and \textit{C. Ma}, J. Fujian Norm. Univ., Nat. Sci. 35, No. 3, 8--16 (2019; Zbl 1449.65049) Full Text: DOI
Galloway, Greg Existence of CMC Cauchy surfaces and spacetime splitting. (English) Zbl 1437.83014 Pure Appl. Math. Q. 15, No. 2, 667-682 (2019). Reviewer: Alex B. Gaina (Chisinau) MSC: 83C05 83C57 83C75 53C50 53Z05 83F05 PDF BibTeX XML Cite \textit{G. Galloway}, Pure Appl. Math. Q. 15, No. 2, 667--682 (2019; Zbl 1437.83014) Full Text: DOI
Rockafellar, R. Tyrrell Progressive decoupling of linkages in optimization and variational inequalities with elicitable convexity or monotonicity. (English) Zbl 07146007 Set-Valued Var. Anal. 27, No. 4, 863-893 (2019). MSC: 65K10 65K15 PDF BibTeX XML Cite \textit{R. T. Rockafellar}, Set-Valued Var. Anal. 27, No. 4, 863--893 (2019; Zbl 07146007) Full Text: DOI
Güzel, Ismail; Adıyaman, Meltem; Somalı, S. Operator splitting methods for computation of eigenvalues of regular Sturm-Liouville problems. (English) Zbl 1438.65160 Surv. Math. Appl. 14, 261-275 (2019). MSC: 65L15 34L16 PDF BibTeX XML Cite \textit{I. Güzel} et al., Surv. Math. Appl. 14, 261--275 (2019; Zbl 1438.65160) Full Text: EMIS
Millán, R. Díaz; Machado, M. Pentón Inexact proximal \(\epsilon\)-subgradient methods for composite convex optimization problems. (English) Zbl 07139391 J. Glob. Optim. 75, No. 4, 1029-1060 (2019). MSC: 65K05 90C25 90C30 49J45 PDF BibTeX XML Cite \textit{R. D. Millán} and \textit{M. P. Machado}, J. Glob. Optim. 75, No. 4, 1029--1060 (2019; Zbl 07139391) Full Text: DOI
Mezzadri, Francesco On the equivalence between some projected and modulus-based splitting methods for linear complementarity problems. (English) Zbl 07138880 Calcolo 56, No. 4, Paper No. 41, 20 p. (2019). MSC: 65K15 90C33 PDF BibTeX XML Cite \textit{F. Mezzadri}, Calcolo 56, No. 4, Paper No. 41, 20 p. (2019; Zbl 07138880) Full Text: DOI
Zheng, Hua; Vong, Seakweng; Liu, Ling A direct preconditioned modulus-based iteration method for solving nonlinear complementarity problems of \(H\)-matrices. (English) Zbl 1429.65133 Appl. Math. Comput. 353, 396-405 (2019). MSC: 65K15 15A12 65F08 65F10 PDF BibTeX XML Cite \textit{H. Zheng} et al., Appl. Math. Comput. 353, 396--405 (2019; Zbl 1429.65133) Full Text: DOI
Cao, Yang; Wang, An Two-step modulus-based matrix splitting iteration methods for implicit complementarity problems. (English) Zbl 1434.65060 Numer. Algorithms 82, No. 4, 1377-1394 (2019). MSC: 65F99 90C33 PDF BibTeX XML Cite \textit{Y. Cao} and \textit{A. Wang}, Numer. Algorithms 82, No. 4, 1377--1394 (2019; Zbl 1434.65060) Full Text: DOI
Bai, Zhongzhi Regularized HSS iteration methods for stabilized saddle-point problems. (English) Zbl 07130811 IMA J. Numer. Anal. 39, No. 4, 1888-1923 (2019). MSC: 65 PDF BibTeX XML Cite \textit{Z. Bai}, IMA J. Numer. Anal. 39, No. 4, 1888--1923 (2019; Zbl 07130811) Full Text: DOI
Ding, Weiyang; Ng, Michael K.; Zhang, Wenxing A Peaceman-Rachford splitting method with monotone plus skew-symmetric splitting for nonlinear saddle point problems. (English) Zbl 1436.65074 J. Sci. Comput. 81, No. 2, 763-788 (2019). MSC: 65K10 65F10 46N10 47N10 68U10 PDF BibTeX XML Cite \textit{W. Ding} et al., J. Sci. Comput. 81, No. 2, 763--788 (2019; Zbl 1436.65074) Full Text: DOI
Ren, Huan; Wang, Xiang; Tang, Xiao-Bin; Wang, Teng A preconditioned general two-step modulus-based matrix splitting iteration method for linear complementarity problems of \(H_+\)-matrices. (English) Zbl 07128073 Numer. Algorithms 82, No. 3, 969-986 (2019). MSC: 65 PDF BibTeX XML Cite \textit{H. Ren} et al., Numer. Algorithms 82, No. 3, 969--986 (2019; Zbl 07128073) Full Text: DOI
Zhang, Xue-Qing; Peng, Jian-Wen; Yao, Jen-Chih Iteration complexity on the generalized Peaceman-Rachford splitting method for separable convex programming. (English) Zbl 1431.90114 Optimization 68, No. 9, 1749-1767 (2019). MSC: 90C25 90C60 PDF BibTeX XML Cite \textit{X.-Q. Zhang} et al., Optimization 68, No. 9, 1749--1767 (2019; Zbl 1431.90114) Full Text: DOI
Zhu, Lei; Xu, Weiwei; Yin, Junfeng A modified general modulus-based matrix splitting method for linear complementarity problems of \({H_+}\)-matrices. (Chinese. English summary) Zbl 1438.65058 Acta Math. Appl. Sin. 42, No. 1, 111-120 (2019). MSC: 65F10 65F50 90C33 PDF BibTeX XML Cite \textit{L. Zhu} et al., Acta Math. Appl. Sin. 42, No. 1, 111--120 (2019; Zbl 1438.65058)
Li, Chenliang; Tian, Zhaohe; Hu, Xiaomei The general modulus-based matrix multi-splitting multi-parameter accelerated overrelaxation method for a class of weakly nonlinear complementarity problems. (Chinese. English summary) Zbl 1438.90356 Math. Numer. Sin. 41, No. 1, 91-103 (2019). MSC: 90C33 65F10 PDF BibTeX XML Cite \textit{C. Li} et al., Math. Numer. Sin. 41, No. 1, 91--103 (2019; Zbl 1438.90356)
Yu, Chia Fu Chow’s theorem for semi-abelian varieties and bounds for splitting fields of algebraic tori. (English) Zbl 07106642 Acta Math. Sin., Engl. Ser. 35, No. 9, 1453-1463 (2019). MSC: 20G15 20C10 11G10 12F12 PDF BibTeX XML Cite \textit{C. F. Yu}, Acta Math. Sin., Engl. Ser. 35, No. 9, 1453--1463 (2019; Zbl 07106642) Full Text: DOI arXiv
Cervi, Jessica; Spiteri, Raymond J. A comparison of fourth-order operator splitting methods for cardiac simulations. (English) Zbl 07106367 Appl. Numer. Math. 145, 227-235 (2019). MSC: 65J 68W PDF BibTeX XML Cite \textit{J. Cervi} and \textit{R. J. Spiteri}, Appl. Numer. Math. 145, 227--235 (2019; Zbl 07106367) Full Text: DOI
Pang, Chin How Jeffrey Dykstra’s splitting and an approximate proximal point algorithm for minimizing the sum of convex functions. (English) Zbl 1427.90220 J. Optim. Theory Appl. 182, No. 3, 1019-1049 (2019). MSC: 90C25 65K05 68Q25 47J25 PDF BibTeX XML Cite \textit{C. H. J. Pang}, J. Optim. Theory Appl. 182, No. 3, 1019--1049 (2019; Zbl 1427.90220) Full Text: DOI
Zheng, Hua; Vong, Seakweng Improved convergence theorems of the two-step modulus-based matrix splitting and synchronous multisplitting iteration methods for solving linear complementarity problems. (English) Zbl 1418.65043 Linear Multilinear Algebra 67, No. 9, 1773-1784 (2019). MSC: 65F10 90C33 PDF BibTeX XML Cite \textit{H. Zheng} and \textit{S. Vong}, Linear Multilinear Algebra 67, No. 9, 1773--1784 (2019; Zbl 1418.65043) Full Text: DOI
Cholamjiak, Prasit; Shehu, Yekini Inertial forward-backward splitting method in Banach spaces with application to compressed sensing. (English) Zbl 07088749 Appl. Math., Praha 64, No. 4, 409-435 (2019). MSC: 47H05 47J20 47J25 PDF BibTeX XML Cite \textit{P. Cholamjiak} and \textit{Y. Shehu}, Appl. Math., Praha 64, No. 4, 409--435 (2019; Zbl 07088749) Full Text: DOI
Zhang, Yin Convergence of a class of stationary iterative methods for saddle point problems. (English) Zbl 1438.49052 J. Oper. Res. Soc. China 7, No. 2, 195-204 (2019). MSC: 49M37 65K05 90C30 PDF BibTeX XML Cite \textit{Y. Zhang}, J. Oper. Res. Soc. China 7, No. 2, 195--204 (2019; Zbl 1438.49052) Full Text: DOI
Cruz-Rodríguez, Roberto C.; Skiba, Yuri N.; Filatov, Denis M. An implicit direct unconditionally stable numerical algorithm for the solution of advection-diffusion equation on a sphere. (English) Zbl 07076637 Appl. Numer. Math. 142, 1-15 (2019). MSC: 65L 76M 65M PDF BibTeX XML Cite \textit{R. C. Cruz-Rodríguez} et al., Appl. Numer. Math. 142, 1--15 (2019; Zbl 07076637) Full Text: DOI
Alonso-Mallo, I.; Cano, B.; Reguera, N. Avoiding order reduction when integrating reaction-diffusion boundary value problems with exponential splitting methods. (English) Zbl 07073327 J. Comput. Appl. Math. 357, 228-250 (2019). MSC: 65M22 65M15 65J08 35Q79 PDF BibTeX XML Cite \textit{I. Alonso-Mallo} et al., J. Comput. Appl. Math. 357, 228--250 (2019; Zbl 07073327) Full Text: DOI
Zhang, Jiansong A new combined characteristic mixed finite element method for compressible miscible displacement problem. (English) Zbl 1419.65076 Numer. Algorithms 81, No. 3, 1157-1179 (2019). MSC: 65M60 65M12 65M15 65M25 76S05 PDF BibTeX XML Cite \textit{J. Zhang}, Numer. Algorithms 81, No. 3, 1157--1179 (2019; Zbl 1419.65076) Full Text: DOI
Thong, Duong Viet; Vinh, Nguyen The Inertial methods for fixed point problems and zero point problems of the sum of two monotone mappings. (English) Zbl 07068096 Optimization 68, No. 5, 1037-1072 (2019). MSC: 65Y05 65K15 68W10 47H05 47H10 PDF BibTeX XML Cite \textit{D. V. Thong} and \textit{N. T. Vinh}, Optimization 68, No. 5, 1037--1072 (2019; Zbl 07068096) Full Text: DOI
Lei, Xin; Du, Zhifang; Li, Jiequan The simulation of compressible multi-fluid flows by a GRP-based energy-splitting method. (English) Zbl 1410.76244 Comput. Fluids 181, 416-428 (2019). MSC: 76M12 65M08 35L60 35L65 76N15 PDF BibTeX XML Cite \textit{X. Lei} et al., Comput. Fluids 181, 416--428 (2019; Zbl 1410.76244) Full Text: DOI
Mezzadri, Francesco; Galligani, Emanuele Splitting methods for a class of horizontal linear complementarity problems. (English) Zbl 1407.65067 J. Optim. Theory Appl. 180, No. 2, 500-517 (2019). MSC: 65K05 90C33 PDF BibTeX XML Cite \textit{F. Mezzadri} and \textit{E. Galligani}, J. Optim. Theory Appl. 180, No. 2, 500--517 (2019; Zbl 1407.65067) Full Text: DOI
Wu, Can; Wang, Qiuyu; Xiao, Yunhai On the equivalence of Peaceman-Rachford splitting method and some typical alternating direction method of multipliers. (English) Zbl 1451.90127 J. Nonlinear Convex Anal. 19, No. 11, 1933-1944 (2018). MSC: 90C25 90C46 47H05 PDF BibTeX XML Cite \textit{C. Wu} et al., J. Nonlinear Convex Anal. 19, No. 11, 1933--1944 (2018; Zbl 1451.90127) Full Text: Link
Fu, Yuanmin; Zhu, Li-Jun; He, Long Iterative algorithms with Armijo-like search for solving split equality problems. (English) Zbl 07289953 J. Nonlinear Convex Anal. 19, No. 11, 1837-1846 (2018). MSC: 47J25 47J05 47H09 PDF BibTeX XML Cite \textit{Y. Fu} et al., J. Nonlinear Convex Anal. 19, No. 11, 1837--1846 (2018; Zbl 07289953) Full Text: Link
Chen, Hui; Wang, Zhaojun; Zi, Xuemin Two-sample spatial rank test using projection. (English) Zbl 07192564 J. Stat. Comput. Simulation 88, No. 3, 498-510 (2018). MSC: 62 PDF BibTeX XML Cite \textit{H. Chen} et al., J. Stat. Comput. Simulation 88, No. 3, 498--510 (2018; Zbl 07192564) Full Text: DOI
Gu, Ghuanqing; Ge, Guodong Two-splitting iteration method for computing higher-order PageRank. (Chinese. English summary) Zbl 1438.65063 Commun. Appl. Math. Comput. 32, No. 3, 581-587 (2018). MSC: 65F15 65F50 PDF BibTeX XML Cite \textit{G. Gu} and \textit{G. Ge}, Commun. Appl. Math. Comput. 32, No. 3, 581--587 (2018; Zbl 1438.65063) Full Text: DOI
Zhang, Litao; Zhang, Guohui; Zhao, Yinchao New modulus-based synchronous multisplitting methods based on block splitting for linear complementarity problems. (English) Zbl 1438.90371 J. Zhejiang Univ., Sci. Ed. 45, No. 6, 684-693 (2018). MSC: 90C33 65K05 PDF BibTeX XML Cite \textit{L. Zhang} et al., J. Zhejiang Univ., Sci. Ed. 45, No. 6, 684--693 (2018; Zbl 1438.90371) Full Text: DOI
Liu, Ling; Zheng, Hua; Peng, Xiaofei A general modulus-based matrix splitting iteration method for a class of nonlinear complementarity problems. (Chinese. English summary) Zbl 1438.65051 J. South China Norm. Univ., Nat. Sci. Ed. 50, No. 6, 91-95 (2018). MSC: 65F10 65F50 90C33 PDF BibTeX XML Cite \textit{L. Liu} et al., J. South China Norm. Univ., Nat. Sci. Ed. 50, No. 6, 91--95 (2018; Zbl 1438.65051) Full Text: DOI
Liang, Zhao-Zheng; Zhang, Guo-Feng Variants of the deteriorated PSS preconditioner for saddle point problems. (English) Zbl 1415.65071 Comput. Math. Appl. 75, No. 8, 3024-3046 (2018). MSC: 65F08 65F10 15A06 PDF BibTeX XML Cite \textit{Z.-Z. Liang} and \textit{G.-F. Zhang}, Comput. Math. Appl. 75, No. 8, 3024--3046 (2018; Zbl 1415.65071) Full Text: DOI
Jiang, Jianlin; Pan, Yunwen A modified Cooper algorithm for large-scale multi-source Weber problem. (Chinese. English summary) Zbl 1424.90179 Math. Numer. Sin. 40, No. 4, 470-484 (2018). MSC: 90B80 90C26 90C59 62H30 PDF BibTeX XML Cite \textit{J. Jiang} and \textit{Y. Pan}, Math. Numer. Sin. 40, No. 4, 470--484 (2018; Zbl 1424.90179)
Gan, Xiaoting; Xu, Dengguo; Dou, Quanyu Modulus methods for pricing American bond option based on finite difference discretization. (Chinese. English summary) Zbl 1424.91164 J. Jilin Univ., Sci. 56, No. 4, 837-844 (2018). MSC: 91G60 65M06 91G20 60G40 PDF BibTeX XML Cite \textit{X. Gan} et al., J. Jilin Univ., Sci. 56, No. 4, 837--844 (2018; Zbl 1424.91164) Full Text: DOI
Huang, Zheng-Ge; Wang, Li-Gong; Xu, Zhong; Cui, Jing-Jing Parameterized generalized shift-splitting preconditioners for nonsymmetric saddle point problems. (English) Zbl 1409.65012 Comput. Math. Appl. 75, No. 2, 349-373 (2018). MSC: 65F08 15A09 65F10 PDF BibTeX XML Cite \textit{Z.-G. Huang} et al., Comput. Math. Appl. 75, No. 2, 349--373 (2018; Zbl 1409.65012) Full Text: DOI
Wang, Zeng-Qi A note on the block alternating splitting implicit iteration method for complex saddle-point problems. (English) Zbl 07031747 Numer. Linear Algebra Appl. 25, No. 6, e2209, 15 p. (2018). MSC: 65F10 65F08 PDF BibTeX XML Cite \textit{Z.-Q. Wang}, Numer. Linear Algebra Appl. 25, No. 6, e2209, 15 p. (2018; Zbl 07031747) Full Text: DOI
Liu, Zhongxiang; Wang, Cuiwei; Wang, Zengqi The improvement of block alternating implicit iteration methods for saddle-point problems from time-harmonic eddy current models. (Chinese. English summary) Zbl 1424.65033 Math. Numer. Sin. 40, No. 3, 271-286 (2018). MSC: 65F10 65F08 PDF BibTeX XML Cite \textit{Z. Liu} et al., Math. Numer. Sin. 40, No. 3, 271--286 (2018; Zbl 1424.65033)
Ke, Yi-Fen; Ma, Chang-Feng; Zhang, Huai The relaxation modulus-based matrix splitting iteration methods for circular cone nonlinear complementarity problems. (English) Zbl 1413.90287 Comput. Appl. Math. 37, No. 5, 6795-6820 (2018). MSC: 90C33 65H10 PDF BibTeX XML Cite \textit{Y.-F. Ke} et al., Comput. Appl. Math. 37, No. 5, 6795--6820 (2018; Zbl 1413.90287) Full Text: DOI
Csomós, Petra; Mena, Hermann Fourier-splitting method for solving hyperbolic LQR problems. (English) Zbl 1406.35449 Numer. Algebra Control Optim. 8, No. 1, 17-46 (2018). MSC: 35Q93 49J20 65M22 93B52 34H05 76B15 93C20 93C15 65T50 65F30 PDF BibTeX XML Cite \textit{P. Csomós} and \textit{H. Mena}, Numer. Algebra Control Optim. 8, No. 1, 17--46 (2018; Zbl 1406.35449) Full Text: DOI
Riahi, Hassan; Chbani, Zaki; Loumi, Moulay-Tayeb Weak and strong convergences of the generalized penalty Forward-Forward and Forward-Fackward splitting algorithms for solving bilevel hierarchical pseudomonotone equilibrium problems. (English) Zbl 07001083 Optimization 67, No. 10, 1745-1767 (2018). MSC: 47H05 49M30 65K05 90C25 90C47 PDF BibTeX XML Cite \textit{H. Riahi} et al., Optimization 67, No. 10, 1745--1767 (2018; Zbl 07001083) Full Text: DOI
Vidotto, Ettore; Helmig, Rainer; Schneider, Martin; Wohlmuth, Barbara Streamline method for resolving sharp fronts for complex two-phase flow in porous media. (English) Zbl 1404.86010 Comput. Geosci. 22, No. 6, 1487-1502 (2018). MSC: 86-08 PDF BibTeX XML Cite \textit{E. Vidotto} et al., Comput. Geosci. 22, No. 6, 1487--1502 (2018; Zbl 1404.86010) Full Text: DOI
Ke, Yi-Fen; Ma, Chang-Feng; Zhang, Huai The modulus-based matrix splitting iteration methods for second-order cone linear complementarity problems. (English) Zbl 1409.90203 Numer. Algorithms 79, No. 4, 1283-1303 (2018). MSC: 90C33 65H10 PDF BibTeX XML Cite \textit{Y.-F. Ke} et al., Numer. Algorithms 79, No. 4, 1283--1303 (2018; Zbl 1409.90203) Full Text: DOI
Fan, Hong-Tao; Zhu, Xin-Yun; Zheng, Bing The generalized double shift-splitting preconditioner for nonsymmetric generalized saddle point problems from the steady Navier-Stokes equations. (English) Zbl 1416.65082 Comput. Appl. Math. 37, No. 3, 3256-3266 (2018). MSC: 65F10 65F08 65F50 PDF BibTeX XML Cite \textit{H.-T. Fan} et al., Comput. Appl. Math. 37, No. 3, 3256--3266 (2018; Zbl 1416.65082) Full Text: DOI
Salkuyeh, Davod Khojasteh; Abdolmaleki, Maryam; Karimi, Saeed On a splitting preconditioner for saddle point problems. (English) Zbl 1451.65034 J. Appl. Math. Inform. 36, No. 5-6, 459-474 (2018). MSC: 65F10 65F50 65N22 PDF BibTeX XML Cite \textit{D. K. Salkuyeh} et al., J. Appl. Math. Inform. 36, No. 5--6, 459--474 (2018; Zbl 1451.65034) Full Text: DOI
Wang, Yazhou; Qin, Guoliang An improved time-splitting method for simulating natural convection heat transfer in a square cavity by Legendre spectral element approximation. (English) Zbl 1410.76319 Comput. Fluids 174, 122-134 (2018). MSC: 76M22 65M70 76R10 PDF BibTeX XML Cite \textit{Y. Wang} and \textit{G. Qin}, Comput. Fluids 174, 122--134 (2018; Zbl 1410.76319) Full Text: DOI
Zheng, Hua; Luo, Jing A preconditioned two-steps modulus-based matrix splitting iteration method for solving linear complementarity problems of \(H\)-matrices. (Chinese. English summary) Zbl 1413.65054 Math. Numer. Sin. 40, No. 1, 24-32 (2018). MSC: 65F08 65F10 PDF BibTeX XML Cite \textit{H. Zheng} and \textit{J. Luo}, Math. Numer. Sin. 40, No. 1, 24--32 (2018; Zbl 1413.65054)
Ke, Yi-Fen; Ma, Chang-Feng A new relaxed splitting preconditioner for the generalized saddle point problems from the incompressible Navier-Stokes equations. (English) Zbl 1397.65043 Comput. Appl. Math. 37, No. 1, 515-524 (2018). MSC: 65F08 65F10 65F50 PDF BibTeX XML Cite \textit{Y.-F. Ke} and \textit{C.-F. Ma}, Comput. Appl. Math. 37, No. 1, 515--524 (2018; Zbl 1397.65043) Full Text: DOI
Bai, Zhong-Zhi On spectral clustering of HSS preconditioner for generalized saddle-point matrices. (English) Zbl 1398.65036 Linear Algebra Appl. 555, 285-300 (2018). MSC: 65F08 65F10 65F15 65F22 PDF BibTeX XML Cite \textit{Z.-Z. Bai}, Linear Algebra Appl. 555, 285--300 (2018; Zbl 1398.65036) Full Text: DOI
Aminikhah, Hossein; Yousefi, Mahsa A special generalized HSS method for discrete ill-posed problems. (English) Zbl 1405.65041 Comput. Appl. Math. 37, No. 2, 1507-1523 (2018). Reviewer: Constantin Popa (Constanţa) MSC: 65F10 94A08 65F22 15B57 PDF BibTeX XML Cite \textit{H. Aminikhah} and \textit{M. Yousefi}, Comput. Appl. Math. 37, No. 2, 1507--1523 (2018; Zbl 1405.65041) Full Text: DOI
Huang, Zhengge; Wang, Ligong; Xu, Zhong; Cui, Jingjing The generalized Uzawa-SHSS method for non-Hermitian saddle-point problems. (English) Zbl 1408.65014 Comput. Appl. Math. 37, No. 2, 1213-1231 (2018). Reviewer: Jurjen Duintjer Tebbens (Praha) MSC: 65F10 65F08 65F50 65F35 PDF BibTeX XML Cite \textit{Z. Huang} et al., Comput. Appl. Math. 37, No. 2, 1213--1231 (2018; Zbl 1408.65014) Full Text: DOI
Chang, Shih-sen; Wen, Ching-Feng; Yao, Jen-Chih Common zero point for a finite family of inclusion problems of accretive mappings in Banach spaces. (English) Zbl 1402.90119 Optimization 67, No. 8, 1183-1196 (2018). MSC: 90C25 90C48 PDF BibTeX XML Cite \textit{S.-s. Chang} et al., Optimization 67, No. 8, 1183--1196 (2018; Zbl 1402.90119) Full Text: DOI
Ke, Yifen; Ma, Changfeng; Ren, Zhiru A new alternating positive semidefinite splitting preconditioner for saddle point problems from time-harmonic eddy current models. (English) Zbl 1398.65040 Front. Math. China 13, No. 2, 313-340 (2018). MSC: 65F08 65F10 65F50 PDF BibTeX XML Cite \textit{Y. Ke} et al., Front. Math. China 13, No. 2, 313--340 (2018; Zbl 1398.65040) Full Text: DOI
Wu, Shi-Liang; Guo, Peng Modulus-based matrix splitting algorithms for the quasi-complementarity problems. (English) Zbl 06902346 Appl. Numer. Math. 132, 127-137 (2018). MSC: 65 PDF BibTeX XML Cite \textit{S.-L. Wu} and \textit{P. Guo}, Appl. Numer. Math. 132, 127--137 (2018; Zbl 06902346) Full Text: DOI
Griesmaier, Roland; Sylvester, John Uncertainty principles for inverse source problems for electromagnetic and elastic waves. (English) Zbl 1452.78018 Inverse Probl. 34, No. 6, Article ID 065003, 37 p. (2018). MSC: 78A46 74J25 PDF BibTeX XML Cite \textit{R. Griesmaier} and \textit{J. Sylvester}, Inverse Probl. 34, No. 6, Article ID 065003, 37 p. (2018; Zbl 1452.78018) Full Text: DOI
Li, Rui; Yin, Jun-Feng On the convergence of modulus-based matrix splitting iteration methods for a class of nonlinear complementarity problems with \(H_+\)-matrices. (English) Zbl 06887283 J. Comput. Appl. Math. 342, 202-209 (2018). MSC: 65M08 PDF BibTeX XML Cite \textit{R. Li} and \textit{J.-F. Yin}, J. Comput. Appl. Math. 342, 202--209 (2018; Zbl 06887283) Full Text: DOI
Mena, Hermann; Ostermann, Alexander; Pfurtscheller, Lena-Maria; Piazzola, Chiara Numerical low-rank approximation of matrix differential equations. (English) Zbl 1432.65090 J. Comput. Appl. Math. 340, 602-614 (2018). MSC: 65L05 49J20 65L10 65F45 PDF BibTeX XML Cite \textit{H. Mena} et al., J. Comput. Appl. Math. 340, 602--614 (2018; Zbl 1432.65090) Full Text: DOI arXiv
Moursi, Walaa M. The forward-backward algorithm and the normal problem. (English) Zbl 06872628 J. Optim. Theory Appl. 176, No. 3, 605-624 (2018). MSC: 47H09 49M27 65K05 65K10 47H05 47H14 49M29 49N15 PDF BibTeX XML Cite \textit{W. M. Moursi}, J. Optim. Theory Appl. 176, No. 3, 605--624 (2018; Zbl 06872628) Full Text: DOI arXiv
Huang, Zheng-Ge; Wang, Li-Gong; Xu, Zhong; Cui, Jing-Jing A modified generalized shift-splitting preconditioner for nonsymmetric saddle point problems. (English) Zbl 1392.65032 Numer. Algorithms 78, No. 1, 297-331 (2018). MSC: 65F08 65F10 PDF BibTeX XML Cite \textit{Z.-G. Huang} et al., Numer. Algorithms 78, No. 1, 297--331 (2018; Zbl 1392.65032) Full Text: DOI
Pham Ky Anh; Trinh Ngoc Hai A splitting algorithm for equilibrium problem given by the difference of two bifunctions. (English) Zbl 06858745 J. Fixed Point Theory Appl. 20, No. 1, Paper No. 53, 15 p. (2018). MSC: 47H05 47J25 65K10 65Y05 90C25 90C33 PDF BibTeX XML Cite \textit{Pham Ky Anh} and \textit{Trinh Ngoc Hai}, J. Fixed Point Theory Appl. 20, No. 1, Paper No. 53, 15 p. (2018; Zbl 06858745) Full Text: DOI
Nguyen, Trong Phong; Pauwels, Edouard; Richard, Emile; Suter, Bruce W. Extragradient method in optimization: convergence and complexity. (English) Zbl 1386.49051 J. Optim. Theory Appl. 176, No. 1, 137-162 (2018). MSC: 49M37 65K05 90C25 90C30 90C52 49J45 PDF BibTeX XML Cite \textit{T. P. Nguyen} et al., J. Optim. Theory Appl. 176, No. 1, 137--162 (2018; Zbl 1386.49051) Full Text: DOI arXiv
Blagojević, Pavle V. M.; Soberón, Pablo Thieves can make sandwiches. (English) Zbl 1390.52008 Bull. Lond. Math. Soc. 50, No. 1, 108-123 (2018). Reviewer: Alexey Alimov (Moskva) MSC: 52A20 52A37 55S91 05A18 PDF BibTeX XML Cite \textit{P. V. M. Blagojević} and \textit{P. Soberón}, Bull. Lond. Math. Soc. 50, No. 1, 108--123 (2018; Zbl 1390.52008) Full Text: DOI
Garrigos, Guillaume; Rosasco, Lorenzo; Villa, Silvia Iterative regularization via dual diagonal descent. (English) Zbl 1425.94013 J. Math. Imaging Vis. 60, No. 2, 189-215 (2018). MSC: 94A08 PDF BibTeX XML Cite \textit{G. Garrigos} et al., J. Math. Imaging Vis. 60, No. 2, 189--215 (2018; Zbl 1425.94013) Full Text: DOI
Vuong, Phan Tu; Strodiot, Jean Jacques The Glowinski-Le Tallec splitting method revisited in the framework of equilibrium problems in Hilbert spaces. (English) Zbl 1414.90340 J. Glob. Optim. 70, No. 2, 477-495 (2018). MSC: 90C33 90C48 PDF BibTeX XML Cite \textit{P. T. Vuong} and \textit{J. J. Strodiot}, J. Glob. Optim. 70, No. 2, 477--495 (2018; Zbl 1414.90340) Full Text: DOI