×

Found 186 Documents (Results 1–100)

Polyhedral products and features of their homotopy theory. (English) Zbl 1476.55024

Miller, Haynes (ed.), Handbook of homotopy theory. Boca Raton, FL: CRC Press. CRC Press/Chapman Hall Handb. Math. Ser., 103-144 (2020).
PDF BibTeX XML Cite
Full Text: DOI arXiv

A survey of group invariant Butson matrices and their relation to generalized bent functions and various other objects. (English) Zbl 1444.05034

Schmidt, Kai-Uwe (ed.) et al., Combinatorics and finite fields. Difference sets, polynomials, pseudorandomness and applications. Selected papers based on the presentations at the workshop on pseudo-randomness and finite fields, Linz, Austria, October 15–18, 2018. Berlin: De Gruyter. Radon Ser. Comput. Appl. Math. 23, 241-253 (2019).
MSC:  05B20 05B10 94D10
PDF BibTeX XML Cite
Full Text: DOI

A new conjecture, a new invariant, and a new non-splitting result. (English) Zbl 1427.32007

Cisneros-Molina, José Luis (ed.) et al., Singularities in geometry, topology, foliations and dynamics. A celebration of the 60th birthday of José Seade. Selected papers based on the presentations at the workshop, Mérida, Mexico, December 8–19, 2014. Cham: Birkhäuser. Trends Math., 171-181 (2017).
PDF BibTeX XML Cite
Full Text: DOI arXiv

An introduction to total variation for image analysis. (English) Zbl 1209.94004

Fornasier, Massimo (ed.), Theoretical foundations and numerical methods for sparse recovery. Papers based on the presentations of the summer school “Theoretical foundations and numerical methods for sparse recovery”, Vienna, Austria, August 31 – September 4, 2009. Berlin: Walter de Gruyter (ISBN 978-3-11-022614-0/hbk; 978-3-11-022615-7/ebook). Radon Series on Computational and Applied Mathematics 9, 263-340 (2010).
PDF BibTeX XML Cite

What \(v\)-coprimality can do for you. (English) Zbl 1138.13001

Brewer, James W. (ed.) et al., Multiplicative ideal theory in commutative algebra. A tribute to the work of Robert Gilmer. New York, NY: Springer (ISBN 978-0-387-24600-0/hbk). 387-404 (2006).
PDF BibTeX XML Cite

Pons, Reed-Muller codes, and group algebras. (English) Zbl 1090.94009

Byrnes, Jim (ed.) et al., Computational noncommutative algebra and applications. Proceedings of the NATO Advanced Study Institute, Il Ciocco, Italy, July 6–19, 2003. Dordrecht: Kluwer Academic Publishers (ISBN 1-4020-1983-1/pbk; 1-4020-1982-3/hbk; 1-4020-2307-3/e-book). NATO Science Series II: Mathematics, Physics and Chemistry 136, 155-196 (2004).
PDF BibTeX XML Cite

Filter Results by …

Document Type

Reviewing State

all top 5

Author

all top 5

Serial

all top 5

Year of Publication

all top 3

Main Field

all top 3

Software