×

Rates of convergence in the functional CLT for multidimensional continuous time martingales. (English) Zbl 1047.60026

A speed of convergence in the multidimensional functional CLT for martingales can be measured by means of the Prokhorov’s distance between a Brownian motion and the martingale. Assuming square integrability the paper presents an estimation of that distance. The estimate contains uniform Ky Fan’s distance between quadratic variation of the considered martingale and the variance of Brownian bridge, and the influence of jumps measured by their uniform Ky Fan’s distance from zero process, only. The last section of the paper compares the reached result with known results.

MSC:

60F17 Functional limit theorems; invariance principles
60G44 Martingales with continuous parameter
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Berkes, I.; Philipp, W., Approximation theorems for independent and weakly dependent random vectors, Ann. Probab., 7, 1, 29-54 (1979) · Zbl 0392.60024
[2] Coquet, F.; Mémin, J.; Vostrikova, L., Rate of convergence in the functional central limit theorem for likelihood ratio processes, Math. Methods Statist., 3, 2, 89-113 (1994) · Zbl 0824.60031
[3] Courbot, B., 1998. Vitesses de convergence pour les martingales dans le théorème central limite fonctionnel: comparaison de méthodes, cadres uni et multidimensionnel. Thèse de doctorat de l’Université de Rennes I.; Courbot, B., 1998. Vitesses de convergence pour les martingales dans le théorème central limite fonctionnel: comparaison de méthodes, cadres uni et multidimensionnel. Thèse de doctorat de l’Université de Rennes I.
[4] Courbot, B., Rates of convergence in the functional CLT for martingales, C.R. Acad. Sci. Paris, Sér. I, 328, 509-513 (1999) · Zbl 0951.60032
[5] Courbot, B., 2000. Rates of convergence in the functional CLT for real martingales and applications to the multidimensional case. In: Proceedings of the Fourth Hungarian Colloquium on Limit Theorems of János Bolyai Mathematical Society, to appear.; Courbot, B., 2000. Rates of convergence in the functional CLT for real martingales and applications to the multidimensional case. In: Proceedings of the Fourth Hungarian Colloquium on Limit Theorems of János Bolyai Mathematical Society, to appear. · Zbl 1025.60016
[6] Dudley, R. M., Real Analysis and Probability. (1989), Wadsworth & Brooks Cole Mathematical Series: Wadsworth & Brooks Cole Mathematical Series Pacific Grove, CA · Zbl 0686.60001
[7] Eberlein, E., Strong approximation of continuous time stochastic processes, J. Multivariate Anal., 31, 220-235 (1989) · Zbl 0689.60037
[8] Eberlein, E.; Römersperger, M., Strong approximation of semimartingales and statistical processes, Probab. Theory Related Fields, 104, 539-567 (1996) · Zbl 0840.62021
[9] Fuk, D. K.; Nagaev, S. V., Probability inequalities for sums of independent random variables, Theory Probab. Appl., 16, 4, 643-660 (1971) · Zbl 0259.60024
[10] Haeusler, E., An exact rate of convergence in the functional central limit theorem for special martingale difference arrays, Z. Wahrsch. Verw. Gebiete, 65, 523-534 (1984) · Zbl 0539.60032
[11] Haeusler, E., 1986. On the rate of convergence in ordinary and functional central limit theorems for martingales. In: Proceedings of the First World Congress of the Bernoulli Society, Vol. 1, Tashkent.; Haeusler, E., 1986. On the rate of convergence in ordinary and functional central limit theorems for martingales. In: Proceedings of the First World Congress of the Bernoulli Society, Vol. 1, Tashkent. · Zbl 0673.60022
[12] Hall, P.; Heyde, C. C., Martingale Limit Theory and its Application (1980), Academic Press: Academic Press New York · Zbl 0462.60045
[13] Jacod, J.; Mano, P., Une évaluation de la distance entre les lois d’une semimartingale et d’un processus à accroissements indépendants, Stochastics, 25, 2, 87-124 (1988) · Zbl 0673.60003
[14] Jacod, J.; Shiryaev, A. N., Limit Theorems for Stochastic Processes (1987), Springer: Springer Berlin · Zbl 0635.60021
[15] Komlós, J.; Major, P.; Tusnády, G., An approximation of partial sums of independent RV’s, and the sample DF. I, Z. Wahrsch. Verw. Gebiete, 32, 111-131 (1975) · Zbl 0308.60029
[16] Komlós, J.; Major, P.; Tusnády, G., An approximation of partial sums of independent RV’s, and the sample DF. II, Z. Wahrsch. Verw. Gebiete, 34, 33-58 (1976) · Zbl 0307.60045
[17] Kubilius, K., Rate of convergence in the functional central limit theorem for semimartingales, Liet. Mat. Rinkinys, 25, 84-96 (1985)
[18] Liptser, R. S.; Shiryaev, A. N., Theory of Martingales. (1986), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht
[19] Monrad, D.; Philipp, W., Nearby variables with nearby conditionnal laws and a strong approximation theorem for Hilbert space valued martingales, Probab. Theory Related Fields, 88, 381-404 (1991) · Zbl 0722.60006
[20] Morrow, G.; Philipp, W., An almost sure invariance principle for Hilbert space valued martingales, Trans. AMS, 273, 1, 231-251 (1982) · Zbl 0508.60014
[21] Revuz, D.; Yor, M., Continuous Martingales and Brownian Motion. (1994), Springer: Springer Berlin · Zbl 0804.60001
[22] Römersperger, M., A note on nearby variables with nearby conditional laws, Probab. Theory Related Fields, 106, 371-377 (1996) · Zbl 0857.60022
[23] Sakhanenko, A.I., 1980. On unimprovable estimates of the rate of convergence in invariance principle. In: Nonparametric Statistical Inference, Colloquia Mathematica Societatis János Bolyai, Vol. 32, Budapest. North-Holland, Amsterdam, pp. 779-784.; Sakhanenko, A.I., 1980. On unimprovable estimates of the rate of convergence in invariance principle. In: Nonparametric Statistical Inference, Colloquia Mathematica Societatis János Bolyai, Vol. 32, Budapest. North-Holland, Amsterdam, pp. 779-784.
[24] Sakhanenko, A. I., On estimates of the rate of convergence in the invariance principle., (Borovkov, A. A., Advances in Probability Theory: Limit Theorems and Related Problems. (1984), Springer: Springer New York), 124-135
[25] Sakhanenko, A. I., Convergence rate in invariance principle for non-identically distributed variables with exponential moments., (Borovkov, A. A., Limit Theorems for Sums of Random Variables, Advances in Probability Theory. (1985), Springer: Springer New York), 2-73
[26] Zaitsev, A. Y., Multidimensional version of the results of Komlós, Major and Tusnády for vectors with finite exponential moments, ESAIM, Probab. Statist., 2, 41-108 (1998) · Zbl 0897.60033
[27] Zaitsev, A.Y., 1998b. Multidimensional version of a result of Sakhanenko in the invariance principle for vectors with finite exponential moments. Preprint, Universität Bielefeld.; Zaitsev, A.Y., 1998b. Multidimensional version of a result of Sakhanenko in the invariance principle for vectors with finite exponential moments. Preprint, Universität Bielefeld.
[28] Zolotarev, V. M., Probability metrics, Theory Probab. Appl., 28, 278-302 (1984) · Zbl 0533.60025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.