Phan, Chi; You, Yuncheng Exponential attractor for Hindmarsh-Rose equations in neurodynamics. (English) Zbl 1460.35049 J. Appl. Anal. Comput. 10, No. 5, 2036-2057 (2020). MSC: 35B41 35K51 35K57 35Q92 37L30 37N25 92C20 PDF BibTeX XML Cite \textit{C. Phan} and \textit{Y. You}, J. Appl. Anal. Comput. 10, No. 5, 2036--2057 (2020; Zbl 1460.35049) Full Text: DOI arXiv OpenURL
Anikushin, Mikhail A non-local reduction principle for cocycles in Hilbert spaces. (English) Zbl 07212493 J. Differ. Equations 269, No. 9, 6699-6731 (2020). MSC: 47D06 47J35 37B55 34G20 PDF BibTeX XML Cite \textit{M. Anikushin}, J. Differ. Equations 269, No. 9, 6699--6731 (2020; Zbl 07212493) Full Text: DOI arXiv OpenURL
Anikushin, Mikhaĭl M. On the Smith reduction theorem for almost periodic ODEs satisfying the squeezing property. (English) Zbl 1420.34063 Russ. J. Nonlinear Dyn. 15, No. 1, 97-108 (2019). MSC: 34C20 34C27 37C60 PDF BibTeX XML Cite \textit{M. M. Anikushin}, Russ. J. Nonlinear Dyn. 15, No. 1, 97--108 (2019; Zbl 1420.34063) Full Text: DOI MNR OpenURL
Cui, Hongyong; Freitas, Mirelson M.; Langa, José A. Squeezing and finite dimensionality of cocycle attractors for 2D stochastic Navier-Stokes equation with non-autonomous forcing. (English) Zbl 1402.35048 Discrete Contin. Dyn. Syst., Ser. B 23, No. 3, 1297-1324 (2018). Reviewer: Titus Petrila (Cluj-Napoca) MSC: 35B41 35B40 37H05 35Q30 35R60 PDF BibTeX XML Cite \textit{H. Cui} et al., Discrete Contin. Dyn. Syst., Ser. B 23, No. 3, 1297--1324 (2018; Zbl 1402.35048) Full Text: DOI OpenURL
Kwak, Chulkwang Periodic fourth-order cubic NLS: local well-posedness and non-squeezing property. (English) Zbl 1390.35331 J. Math. Anal. Appl. 461, No. 2, 1327-1364 (2018). MSC: 35Q55 PDF BibTeX XML Cite \textit{C. Kwak}, J. Math. Anal. Appl. 461, No. 2, 1327--1364 (2018; Zbl 1390.35331) Full Text: DOI arXiv OpenURL
Zhou, Xiao-peng; Yin, Fu-qi; Zhou, Sheng-fan Uniform exponential attractors for second order non-autonomous lattice dynamical systems. (English) Zbl 1372.37122 Acta Math. Appl. Sin., Engl. Ser. 33, No. 3, 587-606 (2017). Reviewer: Eszter Gselmann (Debrecen) MSC: 37L30 37L60 34K31 34D45 PDF BibTeX XML Cite \textit{X.-p. Zhou} et al., Acta Math. Appl. Sin., Engl. Ser. 33, No. 3, 587--606 (2017; Zbl 1372.37122) Full Text: DOI OpenURL
Lin, Guoguang; Lv, Penghui; Lou, Ruijin Exponential attractors and inertial manifolds for a class of nonlinear generalized Kirchhoff-Boussinesq model. (English) Zbl 1386.35139 Far East J. Math. Sci. (FJMS) 101, No. 9, 1913-1945 (2017). MSC: 35K10 35B42 PDF BibTeX XML Cite \textit{G. Lin} et al., Far East J. Math. Sci. (FJMS) 101, No. 9, 1913--1945 (2017; Zbl 1386.35139) Full Text: DOI Link OpenURL
Wang, Wenting; Ma, Qiaozhen The existence of exponential attractors for the suspension bridge equation. (Chinese. English summary) Zbl 1374.37095 Acta Anal. Funct. Appl. 18, No. 2, 212-219 (2016). MSC: 37L30 35B41 70C20 PDF BibTeX XML Cite \textit{W. Wang} and \textit{Q. Ma}, Acta Anal. Funct. Appl. 18, No. 2, 212--219 (2016; Zbl 1374.37095) Full Text: DOI OpenURL
Miyasita, Tosiya A dynamical system for a nonlocal parabolic equation with exponential nonlinearity. (English) Zbl 1338.35234 Rocky Mt. J. Math. 45, No. 6, 1897-1917 (2015). Reviewer: Zdzisław Dzedzej (Gdansk) MSC: 35K55 35J60 37L25 PDF BibTeX XML Cite \textit{T. Miyasita}, Rocky Mt. J. Math. 45, No. 6, 1897--1917 (2015; Zbl 1338.35234) Full Text: DOI Euclid OpenURL
Abdallah, Ahmed Y. Uniform exponential attractors for non-autonomous Klein-Gordon-Schrödinger lattice systems in weighted spaces. (English) Zbl 1323.37046 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 127, 279-297 (2015). Reviewer: Matheus Cheque Bortolan (Lima) MSC: 37L60 37L30 PDF BibTeX XML Cite \textit{A. Y. Abdallah}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 127, 279--297 (2015; Zbl 1323.37046) Full Text: DOI OpenURL
Lu, Dao-ming Quantum properties of single-mode squeezing and two-mode squeezing repeated role two-mode vacuum state. (English) Zbl 1327.81232 Int. J. Theor. Phys. 54, No. 7, 2289-2298 (2015). MSC: 81R30 81V80 PDF BibTeX XML Cite \textit{D.-m. Lu}, Int. J. Theor. Phys. 54, No. 7, 2289--2298 (2015; Zbl 1327.81232) Full Text: DOI OpenURL
Mu, Gui; Liu, Jun Exponential attractor for coupled Ginzburg-Landau equations describing Bose-Einstein condensates and nonlinear optical waveguides and cavities. (English) Zbl 1275.35049 Abstr. Appl. Anal. 2013, Article ID 390476, 8 p. (2013). MSC: 35B41 35Q56 PDF BibTeX XML Cite \textit{G. Mu} and \textit{J. Liu}, Abstr. Appl. Anal. 2013, Article ID 390476, 8 p. (2013; Zbl 1275.35049) Full Text: DOI OpenURL
Kang, Yahu; Ma, Qiaozhen The existence of exponential attractors for a nonlinear reaction-diffusion equation with derivative term. (Chinese. English summary) Zbl 1289.35162 J. Syst. Sci. Math. Sci. 32, No. 11, 1407-1412 (2012). MSC: 35K57 35B41 PDF BibTeX XML Cite \textit{Y. Kang} and \textit{Q. Ma}, J. Syst. Sci. Math. Sci. 32, No. 11, 1407--1412 (2012; Zbl 1289.35162) OpenURL
Abdallah, Ahmed Y. Uniform exponential attractors for first order non-autonomous lattice dynamical systems. (English) Zbl 1258.37070 J. Differ. Equations 251, No. 6, 1489-1504 (2011). Reviewer: Bixiang Wang (Socorro) MSC: 37L30 37L60 PDF BibTeX XML Cite \textit{A. Y. Abdallah}, J. Differ. Equations 251, No. 6, 1489--1504 (2011; Zbl 1258.37070) Full Text: DOI OpenURL
Li, Xiaojun; Wei, Kaijin; Zhang, Haiyun Exponential attractors for lattice dynamical systems in weighted spaces. (English) Zbl 1220.37074 Acta Appl. Math. 114, No. 3, 157-172 (2011). Reviewer: Athanasios Yannacopoulos (Athens) MSC: 37L30 37L25 PDF BibTeX XML Cite \textit{X. Li} et al., Acta Appl. Math. 114, No. 3, 157--172 (2011; Zbl 1220.37074) Full Text: DOI OpenURL
Bulíček, Miroslav; Pražák, Dalibor A note on the dimension of the global attractor for an abstract semilinear hyperbolic problem. (English) Zbl 1179.37104 Appl. Math. Lett. 22, No. 7, 1025-1028 (2009). MSC: 37L30 PDF BibTeX XML Cite \textit{M. Bulíček} and \textit{D. Pražák}, Appl. Math. Lett. 22, No. 7, 1025--1028 (2009; Zbl 1179.37104) Full Text: DOI OpenURL
Zhong, Yansheng; Zhong, Chengkui Exponential attractors for reaction-diffusion equations with arbitrary polynomial growth. (English) Zbl 1170.35349 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 71, No. 3-4, 751-765 (2009). MSC: 35B41 35K57 PDF BibTeX XML Cite \textit{Y. Zhong} and \textit{C. Zhong}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 71, No. 3--4, 751--765 (2009; Zbl 1170.35349) Full Text: DOI OpenURL
Abdallah, Ahmed Y. Exponential attractors for second order lattice dynamical systems. (English) Zbl 1167.37037 Commun. Pure Appl. Anal. 8, No. 3, 803-813 (2009). Reviewer: Boris V. Loginov (Ul’yanovsk) MSC: 37L30 37L60 PDF BibTeX XML Cite \textit{A. Y. Abdallah}, Commun. Pure Appl. Anal. 8, No. 3, 803--813 (2009; Zbl 1167.37037) Full Text: DOI OpenURL
Abdallah, Ahmed Y. Exponential attractors for first-order lattice dynamical systems. (English) Zbl 1127.37051 J. Math. Anal. Appl. 339, No. 1, 217-224 (2008). MSC: 37L30 37L60 PDF BibTeX XML Cite \textit{A. Y. Abdallah}, J. Math. Anal. Appl. 339, No. 1, 217--224 (2008; Zbl 1127.37051) Full Text: DOI OpenURL
Kloeden, Peter E.; Langa, José A. Flattening, squeezing and the existence of random attractors. (English) Zbl 1133.37323 Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 463, No. 2077, 163-181 (2007). MSC: 37H10 35B41 37B55 37L30 60H15 PDF BibTeX XML Cite \textit{P. E. Kloeden} and \textit{J. A. Langa}, Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 463, No. 2077, 163--181 (2007; Zbl 1133.37323) Full Text: DOI Link OpenURL
Song, Jun; Shen, Jinling; Zhang, Gang; Zhang, Suimeng Quantum properties of the light field of two atoms in Bell states in a cavity. (Chinese. English summary) Zbl 1160.81503 J. Hefei Univ. Technol., Nat. Sci. 29, No. 5, 623-626 (2006). MSC: 81V80 81R30 81P68 PDF BibTeX XML Cite \textit{J. Song} et al., J. Hefei Univ. Technol., Nat. Sci. 29, No. 5, 623--626 (2006; Zbl 1160.81503) OpenURL
Shang, Yadong; Guo, Boling Exponential attractor for the generalized symmetric regularized long wave equation with damping term. (English. Chinese original) Zbl 1144.76304 Appl. Math. Mech., Engl. Ed. 26, No. 3, 283-291 (2005); translation from Appl. Math. Mech. 26, No. 3, 259-266 (2005). MSC: 37L30 35B41 35Q53 37L05 PDF BibTeX XML Cite \textit{Y. Shang} and \textit{B. Guo}, Appl. Math. Mech., Engl. Ed. 26, No. 3, 283--291 (2005; Zbl 1144.76304); translation from Appl. Math. Mech. 26, No. 3, 259--266 (2005) Full Text: DOI OpenURL
Zheng, Songmu; Milani, Albert Exponential attractors and inertial manifolds for singular perturbations of the Cahn-Hilliard equations. (English) Zbl 1055.35028 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 57, No. 5-6, 843-877 (2004). Reviewer: Bruno Scarpellini (Basel) MSC: 35B41 35B42 35Q55 35B25 PDF BibTeX XML Cite \textit{S. Zheng} and \textit{A. Milani}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 57, No. 5--6, 843--877 (2004; Zbl 1055.35028) Full Text: DOI OpenURL
Shang, Yadong; Guo, Boling Exponential attractor for a class of nonclassical diffusion equation. (English) Zbl 1050.35105 J. Partial Differ. Equations 16, No. 4, 289-298 (2003). Reviewer: A. Cichocka (Katowice) MSC: 35Q55 37L30 PDF BibTeX XML Cite \textit{Y. Shang} and \textit{B. Guo}, J. Partial Differ. Equations 16, No. 4, 289--298 (2003; Zbl 1050.35105) OpenURL
Guo, Boling; Li, Donglong Exponential attractor for complex Ginzburg-Landau equation in three-dimensions. (English) Zbl 1041.35017 J. Partial Differ. Equations 16, No. 2, 97-110 (2003). Reviewer: Messoud A. Efendiev (Berlin) MSC: 35B41 37L30 35B30 35G25 35Q55 PDF BibTeX XML Cite \textit{B. Guo} and \textit{D. Li}, J. Partial Differ. Equations 16, No. 2, 97--110 (2003; Zbl 1041.35017) OpenURL
Koksch, Norbert; Siegmund, Stefan Cone invariance and squeezing properties for inertial manifolds for nonautonomous evolution equations. (English) Zbl 1037.34039 Picard, Rainer (ed.) et al., Evolution equations. Propagation phenomena, global existence, influence on non-linearities. Based on the workshop, Warsaw, Poland, July 1–July 7, 2001. Warsaw: Polish Academy of Sciences, Institute of Mathematics. Banach Cent. Publ. 60, 27-48 (2003). Reviewer: Jozef Myjak (L’Aquila) MSC: 34C30 34D45 34G20 35B42 37L25 PDF BibTeX XML Cite \textit{N. Koksch} and \textit{S. Siegmund}, Banach Cent. Publ. 60, 27--48 (2003; Zbl 1037.34039) OpenURL
Zhu, Chaosheng; Pu, Zhilin Global attractors and exponential attractors for the generalized B-BBM equation. (Chinese. English summary) Zbl 1033.35112 Math. Appl. 16, No. 2, 134-138 (2003). MSC: 35Q53 37L30 35B40 PDF BibTeX XML Cite \textit{C. Zhu} and \textit{Z. Pu}, Math. Appl. 16, No. 2, 134--138 (2003; Zbl 1033.35112) OpenURL
Chen, Hanlin; Dai, Zhengde Exponential attractor of the Cauchy problem of dissipative Zakharov equations in \(\mathbb{R}\). (Chinese. English summary) Zbl 0987.35141 Acta Math. Sci., Ser. A, Chin. Ed. 21, No. 3, 373-383 (2001). MSC: 35Q53 37L30 35Q55 PDF BibTeX XML Cite \textit{H. Chen} and \textit{Z. Dai}, Acta Math. Sci., Ser. A, Chin. Ed. 21, No. 3, 373--383 (2001; Zbl 0987.35141) OpenURL
Dai, Zhengde; Jiang, Murong Exponential attractors for the Ginzburg-Landau-BBM equations. (English) Zbl 0988.35034 J. Math. Res. Expo. 21, No. 3, 317-322 (2001). MSC: 35B41 35B40 PDF BibTeX XML Cite \textit{Z. Dai} and \textit{M. Jiang}, J. Math. Res. Expo. 21, No. 3, 317--322 (2001; Zbl 0988.35034) OpenURL
Miranville, Alain Long-time behavior of some models of Cahn-Hilliard equations in deformable continua. (English) Zbl 0989.35066 Nonlinear Anal., Real World Appl. 2, No. 3, 273-304 (2001). Reviewer: Jan Cholewa (Katowice) MSC: 35K35 35B41 35A15 PDF BibTeX XML Cite \textit{A. Miranville}, Nonlinear Anal., Real World Appl. 2, No. 3, 273--304 (2001; Zbl 0989.35066) Full Text: DOI OpenURL
Robinson, James C. Infinite-dimensional dynamical systems. An introduction to dissipative parabolic PDEs and the theory of global attractors. (English) Zbl 0980.35001 Cambridge Texts in Applied Mathematics. Cambridge: Cambridge University Press. xvii, 461 p. (2001). Reviewer: Jan Cholewa (Katowice) MSC: 35-01 37-01 35B41 35B42 PDF BibTeX XML Cite \textit{J. C. Robinson}, Infinite-dimensional dynamical systems. An introduction to dissipative parabolic PDEs and the theory of global attractors. Cambridge: Cambridge University Press (2001; Zbl 0980.35001) OpenURL
Eden, A.; Kalantarov, V.; Miranville, A. Finite-dimensional attractors for a general class of nonautonomous wave equations. (English) Zbl 0985.37090 Appl. Math. Lett. 13, No. 5, 17-22 (2000). Reviewer: Messoud Efendiev (Berlin) MSC: 37L30 35L70 35B41 PDF BibTeX XML Cite \textit{A. Eden} et al., Appl. Math. Lett. 13, No. 5, 17--22 (2000; Zbl 0985.37090) Full Text: DOI OpenURL
Guo, Boling; Wang, Bixiang Exponential attractors for the generalized Ginzburg-Landau equation. (English) Zbl 0965.35016 Acta Math. Sin., Engl. Ser. 16, No. 3, 515-526 (2000). Reviewer: Wenming Bian (Glasgow) MSC: 35B41 35B40 35P10 PDF BibTeX XML Cite \textit{B. Guo} and \textit{B. Wang}, Acta Math. Sin., Engl. Ser. 16, No. 3, 515--526 (2000; Zbl 0965.35016) Full Text: DOI OpenURL
Chen, Hanlin; Dai, Zhengde Exponential attractor of weakly damped driven nonlinear Schrödinger equations in \(\mathbb{R}^3\). (Chinese. English summary) Zbl 1010.35099 Math. Appl. 12, No. 3, 15-20 (1999). MSC: 35Q55 37L30 PDF BibTeX XML Cite \textit{H. Chen} and \textit{Z. Dai}, Math. Appl. 12, No. 3, 15--20 (1999; Zbl 1010.35099) OpenURL
Li, Donglong; Dai, Zhende Exponential attractor of the Navier-Stokes equation with damping on the whole plane. (Chinese. English summary) Zbl 0958.37063 J. Math. Study 32, No. 4, 369-376 (1999). MSC: 37L30 35Q30 35B41 76D05 PDF BibTeX XML Cite \textit{D. Li} and \textit{Z. Dai}, J. Math. Study 32, No. 4, 369--376 (1999; Zbl 0958.37063) OpenURL
Gao, Ping; Dai, Zhende Exponential attractor for Schrödinger type equation in an unbounded domain. (Chinese. English summary) Zbl 0962.35163 J. Math. Study 32, No. 3, 253-259 (1999). MSC: 35Q55 37L30 PDF BibTeX XML Cite \textit{P. Gao} and \textit{Z. Dai}, J. Math. Study 32, No. 3, 253--259 (1999; Zbl 0962.35163) OpenURL
Miranville, A. Exponential attractors for nonautonomous evolution equations. (English) Zbl 1337.34064 Appl. Math. Lett. 11, No. 2, 19-22 (1998). MSC: 34G20 PDF BibTeX XML Cite \textit{A. Miranville}, Appl. Math. Lett. 11, No. 2, 19--22 (1998; Zbl 1337.34064) Full Text: DOI OpenURL
Dai, Zhengde; Ma, Dacai Exponential attractors of the nonlinear wave equations. (English) Zbl 1002.35024 Chin. Sci. Bull. 43, No. 16, 1331-1335 (1998). Reviewer: Messoud Efendiev (Berlin) MSC: 35B41 35L70 35B40 35L20 37C70 PDF BibTeX XML Cite \textit{Z. Dai} and \textit{D. Ma}, Chin. Sci. Bull. 43, No. 16, 1331--1335 (1998; Zbl 1002.35024) Full Text: DOI OpenURL
Cheng, Hanlin; Dai, Zhengde Exponential attractor for periodic initial value problem for a coupled nonlinear wave equation. (Chinese. English summary) Zbl 0922.35093 J. Math. Study 31, No. 3, 269-277 (1998). MSC: 35L70 35B40 35L55 35L20 PDF BibTeX XML Cite \textit{H. Cheng} and \textit{Z. Dai}, J. Math. Study 31, No. 3, 269--277 (1998; Zbl 0922.35093) OpenURL
Kuksin, Sergei B. Elements of a qualitative theory of Hamiltonian PDEs. (English) Zbl 0967.35123 Doc. Math. Extra Vol. ICM Berlin 1998, Vol. II, 819-829 (1998). MSC: 35Q53 37K05 37K55 PDF BibTeX XML Cite \textit{S. B. Kuksin}, Doc. Math. Extra Vol., 819--829 (1998; Zbl 0967.35123) Full Text: EuDML EMIS OpenURL
Eden, A.; Foias, C.; Kalantarov, V. A remark on two constructions of exponential attractors for \(\alpha\)-contractions. (English) Zbl 0898.58035 J. Dyn. Differ. Equations 10, No. 1, 37-45 (1998). Reviewer: William J.Satzer jun.(St.Paul) MSC: 37C70 PDF BibTeX XML Cite \textit{A. Eden} et al., J. Dyn. Differ. Equations 10, No. 1, 37--45 (1998; Zbl 0898.58035) Full Text: DOI OpenURL
Fabrie, P.; Galusinski, C. Exponential attractors for a partially dissipative reaction system. (English) Zbl 1028.35026 Asymptotic Anal. 12, No. 4, 329-354 (1996). MSC: 35B41 35K55 35Q80 80A30 37L30 PDF BibTeX XML Cite \textit{P. Fabrie} and \textit{C. Galusinski}, Asymptotic Anal. 12, No. 4, 329--354 (1996; Zbl 1028.35026) OpenURL
Guo, Boling Existence of the inertial manifold for generalized Kuramoto-Sivashinsky type equation. (Chinese. English summary) Zbl 0918.58066 J. Math. Study 29, No. 1, 38-51 (1996). Reviewer: Messoud Efendiev (Berlin) MSC: 35-XX PDF BibTeX XML Cite \textit{B. Guo}, J. Math. Study 29, No. 1, 38--51 (1996; Zbl 0918.58066) OpenURL
Fabrie, Pierre; Galusinski, Cédric Exponential attractors for partially dissipative reaction system. (Attracteurs exponentiels pour un système de réaction partiellement dissipatif.) (French. Abridged English version) Zbl 0836.35072 C. R. Acad. Sci., Paris, Sér. I 320, No. 12, 1529-1534 (1995). MSC: 35K57 47H06 58D25 PDF BibTeX XML Cite \textit{P. Fabrie} and \textit{C. Galusinski}, C. R. Acad. Sci., Paris, Sér. I 320, No. 12, 1529--1534 (1995; Zbl 0836.35072) OpenURL
Bourgain, Jean Aspects of long time behaviour of solutions of nonlinear Hamiltonian evolution equations. (English) Zbl 0879.35024 Geom. Funct. Anal. 5, No. 2, 105-140 (1995). Reviewer: R.Cascaval (Memphis) MSC: 35B40 35Q55 PDF BibTeX XML Cite \textit{J. Bourgain}, Geom. Funct. Anal. 5, No. 2, 105--140 (1995; Zbl 0879.35024) Full Text: DOI EuDML OpenURL
Temam, Roger Navier-Stokes equations and nonlinear functional analysis. 2nd ed. (English) Zbl 0833.35110 CBMS-NSF Regional Conference Series in Applied Mathematics. 66. Philadelphia, PA: SIAM, Society for Industrial and Applied Mathematics. xiv, 141 p. (1995). Reviewer: B.Scarpellini (Basel) MSC: 35Q30 35-02 46E35 46N20 76-02 PDF BibTeX XML Cite \textit{R. Temam}, Navier-Stokes equations and nonlinear functional analysis. 2nd ed. Philadelphia, PA: SIAM (1995; Zbl 0833.35110) OpenURL
Li, Hongcai; Lin, Xiumin The phase displacement operators and their coherent states. (Chinese. English summary) Zbl 0886.47041 J. Fujian Norm. Univ., Nat. Sci. 11, No. 3, 38-43 (1995). MSC: 47N50 81R30 PDF BibTeX XML Cite \textit{H. Li} and \textit{X. Lin}, J. Fujian Norm. Univ., Nat. Sci. 11, No. 3, 38--43 (1995; Zbl 0886.47041) OpenURL
Tian, Lixin; Xu, Zhenyuan; Liu, Zhengrong Attractors of dissipative soliton equation. (English) Zbl 0811.35117 Appl. Math. Mech., Engl. Ed. 15, No. 6, 571-578 (1994). MSC: 35Q51 37C70 PDF BibTeX XML Cite \textit{L. Tian} et al., Appl. Math. Mech., Engl. Ed. 15, No. 6, 571--578 (1994; Zbl 0811.35117) Full Text: DOI OpenURL
Eden, A.; Rakotoson, J. M. Exponential attractors for a doubly nonlinear equation. (English) Zbl 0806.35074 J. Math. Anal. Appl. 185, No. 2, 321-339 (1994). Reviewer: B.Scarpellini (Basel) MSC: 35K57 35K60 35B40 PDF BibTeX XML Cite \textit{A. Eden} and \textit{J. M. Rakotoson}, J. Math. Anal. Appl. 185, No. 2, 321--339 (1994; Zbl 0806.35074) Full Text: DOI OpenURL
Jakubík, Ján On systems of sequences of reals. (English) Zbl 0791.40001 Tatra Mt. Math. Publ. 2, 19-23 (1993). Reviewer: J.Sándor (Jud.Harghita) MSC: 40A05 PDF BibTeX XML Cite \textit{J. Jakubík}, Tatra Mt. Math. Publ. 2, 19--23 (1993; Zbl 0791.40001) OpenURL
Robinson, James C. Inertial manifolds and the cone condition. (English) Zbl 0787.34036 Dyn. Syst. Appl. 2, No. 3, 311-330 (1993). MSC: 34C30 35B40 35G10 35K25 PDF BibTeX XML Cite \textit{J. C. Robinson}, Dyn. Syst. Appl. 2, No. 3, 311--330 (1993; Zbl 0787.34036) OpenURL
Eden, A.; Milani, A. J. Exponential attractors for extensible beam equations. (English) Zbl 0787.35113 Nonlinearity 6, No. 3, 457-479 (1993). Reviewer: J.A.Arango and L.P.Lebedev (Rostov-na-Donu) MSC: 35Q72 74H45 37-XX PDF BibTeX XML Cite \textit{A. Eden} and \textit{A. J. Milani}, Nonlinearity 6, No. 3, 457--479 (1993; Zbl 0787.35113) Full Text: DOI OpenURL
Ninomiya, Hirokazu Some remarks on inertial manifolds. (English) Zbl 0815.35037 J. Math. Kyoto Univ. 32, No. 4, 667-688 (1992). Reviewer: B.Scarpellini (Basel) MSC: 35G10 35K25 35B40 58D25 47H20 PDF BibTeX XML Cite \textit{H. Ninomiya}, J. Math. Kyoto Univ. 32, No. 4, 667--688 (1992; Zbl 0815.35037) Full Text: DOI OpenURL
Kukavica, Igor An upper bound for the winding number for solutions of the Ginzburg- Landau equation. (English) Zbl 0793.35075 Indiana Univ. Math. J. 41, No. 3, 825-836 (1992). Reviewer: G.Boillat (Aubiere) MSC: 35Q35 35K55 37C70 PDF BibTeX XML Cite \textit{I. Kukavica}, Indiana Univ. Math. J. 41, No. 3, 825--836 (1992; Zbl 0793.35075) Full Text: DOI OpenURL
Ou, Yuh-Roung; Sritharan, S. S. Analysis of regularized Navier-Stokes equations. I. (English) Zbl 0744.76039 Q. Appl. Math. 49, No. 4, 651-685 (1991). MSC: 76D05 35Q30 PDF BibTeX XML Cite \textit{Y.-R. Ou} and \textit{S. S. Sritharan}, Q. Appl. Math. 49, No. 4, 651--685 (1991; Zbl 0744.76039) OpenURL
Foias, C.; Nicolaenko, B.; Sell, G. R.; Temam, R. Inertial manifolds for the Kuramoto-Sivashinsky equation and an estimate of their lowest dimension. (English) Zbl 0694.35028 J. Math. Pures Appl., IX. Sér. 67, No. 3, 197-226 (1988). Reviewer: Y.Suyama MSC: 35G05 35K35 35B10 PDF BibTeX XML Cite \textit{C. Foias} et al., J. Math. Pures Appl. (9) 67, No. 3, 197--226 (1988; Zbl 0694.35028) OpenURL