Acosta, Claudia; Jerez, Silvia Convergence of entropy stable schemes for degenerate parabolic equations with a discontinuous convection term. (English) Zbl 07737663 ESAIM, Math. Model. Numer. Anal. 57, No. 3, 1445-1472 (2023). MSC: 65-XX 35K65 65M12 65M06 PDF BibTeX XML Cite \textit{C. Acosta} and \textit{S. Jerez}, ESAIM, Math. Model. Numer. Anal. 57, No. 3, 1445--1472 (2023; Zbl 07737663) Full Text: DOI
Vabishchevich, Petr N. Operator-difference schemes on non-uniform grids for second-order evolutionary equations. (English) Zbl 07727573 Russ. J. Numer. Anal. Math. Model. 38, No. 4, 267-277 (2023). MSC: 65M06 65L06 65M12 35R20 PDF BibTeX XML Cite \textit{P. N. Vabishchevich}, Russ. J. Numer. Anal. Math. Model. 38, No. 4, 267--277 (2023; Zbl 07727573) Full Text: DOI arXiv
Botoroeva, M. N.; Bulatov, M. V. Stability analysis of nonclassical difference schemes for nonlinear Volterra integral equations of the second kind. (English. Russian original) Zbl 07723269 Comput. Math. Math. Phys. 63, No. 6, 919-928 (2023); translation from Zh. Vychisl. Mat. Mat. Fiz. 63, No. 6, 881-890 (2023). MSC: 65R20 45D05 PDF BibTeX XML Cite \textit{M. N. Botoroeva} and \textit{M. V. Bulatov}, Comput. Math. Math. Phys. 63, No. 6, 919--928 (2023; Zbl 07723269); translation from Zh. Vychisl. Mat. Mat. Fiz. 63, No. 6, 881--890 (2023) Full Text: DOI
Bansal, Saurabh; Natesan, Srinivasan Richardson extrapolation technique for generalized Black-Scholes PDEs for European options. (English) Zbl 07714796 Comput. Appl. Math. 42, No. 5, Paper No. 238, 17 p. (2023). MSC: 65M06 65M12 65M15 PDF BibTeX XML Cite \textit{S. Bansal} and \textit{S. Natesan}, Comput. Appl. Math. 42, No. 5, Paper No. 238, 17 p. (2023; Zbl 07714796) Full Text: DOI
Vabishchevich, Petr N. Exponent splitting schemes for evolution equations with fractional powers of operators. (English) Zbl 07709145 Int. J. Numer. Anal. Model. 20, No. 3, 371-390 (2023). MSC: 26A33 35R11 65F60 65M06 PDF BibTeX XML Cite \textit{P. N. Vabishchevich}, Int. J. Numer. Anal. Model. 20, No. 3, 371--390 (2023; Zbl 07709145) Full Text: DOI
Deluzet, Fabrice; Narski, Jacek; Ndiaye, Moctar; Hagelaar, Gerjan; Boeuf, Jean-Pierre Numerical methods and macroscopic models of magnetically confined low temperature plasmas. (English) Zbl 07705755 Kinet. Relat. Models 16, No. 5, 624-653 (2023). MSC: 76X05 82D10 65N30 65M06 76W05 65N12 76M20 PDF BibTeX XML Cite \textit{F. Deluzet} et al., Kinet. Relat. Models 16, No. 5, 624--653 (2023; Zbl 07705755) Full Text: DOI
del Teso, Félix; Endal, Jørgen; Jakobsen, Espen R. Uniform tail estimates and \(L^p( {\mathbb{R}}^N) \)-convergence for finite-difference approximations of nonlinear diffusion equations. (English) Zbl 07700760 Discrete Contin. Dyn. Syst. 43, No. 3-4, 1319-1346 (2023). MSC: 65-XX 35K15 35K65 35D30 35R09 35R11 65M06 65M12 76S05 PDF BibTeX XML Cite \textit{F. del Teso} et al., Discrete Contin. Dyn. Syst. 43, No. 3--4, 1319--1346 (2023; Zbl 07700760) Full Text: DOI arXiv
Mehta, Akansha; Singh, Gurjinder; Ramos, Higinio Numerical solution of time dependent nonlinear partial differential equations using a novel block method coupled with compact finite difference schemes. (English) Zbl 07700508 Comput. Appl. Math. 42, No. 4, Paper No. 201, 25 p. (2023). MSC: 65M06 65N35 35F50 PDF BibTeX XML Cite \textit{A. Mehta} et al., Comput. Appl. Math. 42, No. 4, Paper No. 201, 25 p. (2023; Zbl 07700508) Full Text: DOI
Yamaleev, Nail K.; Upperman, Johnathon High-order positivity-preserving entropy stable schemes for the 3-D compressible Navier-Stokes equations. (English) Zbl 1517.65099 J. Sci. Comput. 95, No. 1, Paper No. 11, 29 p. (2023). Reviewer: Abdallah Bradji (Annaba) MSC: 65M70 65M60 65M08 65M06 65N35 65N30 65N08 65M12 76N06 35Q30 PDF BibTeX XML Cite \textit{N. K. Yamaleev} and \textit{J. Upperman}, J. Sci. Comput. 95, No. 1, Paper No. 11, 29 p. (2023; Zbl 1517.65099) Full Text: DOI arXiv
Wang, Lan; Kong, Linghua; Chen, Meng; Zhu, Pengfei; Guo, Huacheng Structure-preserving combined high-order compact schemes for multiple order spatial derivatives differential equations. (English) Zbl 07698879 J. Sci. Comput. 96, No. 1, Paper No. 8, 21 p. (2023). MSC: 65M06 65N06 65P10 65M12 65Z05 35Q55 35Q41 PDF BibTeX XML Cite \textit{L. Wang} et al., J. Sci. Comput. 96, No. 1, Paper No. 8, 21 p. (2023; Zbl 07698879) Full Text: DOI
Vabishchevich, P. N. On stability of an approximate solution of the Cauchy problem for some first-order integrodifferential equations. (English. Russian original) Zbl 07681794 Comput. Math. Math. Phys. 63, No. 2, 311-318 (2023); translation from Zh. Vychisl. Mat. Mat. Fiz. 63, No. 2, 328-335 (2023). MSC: 65-XX 35-XX PDF BibTeX XML Cite \textit{P. N. Vabishchevich}, Comput. Math. Math. Phys. 63, No. 2, 311--318 (2023; Zbl 07681794); translation from Zh. Vychisl. Mat. Mat. Fiz. 63, No. 2, 328--335 (2023) Full Text: DOI
Kumar, Naresh Supercloseness analysis of a stabilizer-free weak Galerkin finite element method for viscoelastic wave equations with variable coefficients. (English) Zbl 1514.65131 Adv. Comput. Math. 49, No. 2, Paper No. 12, 36 p. (2023). MSC: 65M60 65M06 65N30 65M12 65M15 76A10 86A15 76Q05 74D05 PDF BibTeX XML Cite \textit{N. Kumar}, Adv. Comput. Math. 49, No. 2, Paper No. 12, 36 p. (2023; Zbl 1514.65131) Full Text: DOI
Neelan, A. Arun Govind; Chandran, R. Jishnu; Diaz, Manuel A.; Bürger, Raimund An efficient three-level weighted essentially non-oscillatory scheme for hyperbolic equations. (English) Zbl 1509.65084 Comput. Appl. Math. 42, No. 2, Paper No. 70, 23 p. (2023). MSC: 65M08 65M06 65N08 65L06 65M12 35F61 35L50 76N15 76J20 76L05 76Q05 35Q31 PDF BibTeX XML Cite \textit{A. A. G. Neelan} et al., Comput. Appl. Math. 42, No. 2, Paper No. 70, 23 p. (2023; Zbl 1509.65084) Full Text: DOI
Burman, Erik; Fernández, Miguel A.; Gerosa, Fannie M. Convergence analysis of an unfitted mesh semi-implicit coupling scheme for incompressible fluid-structure interaction. (English) Zbl 1507.65177 Vietnam J. Math. 51, No. 1, 37-69 (2023). Reviewer: Bülent Karasözen (Ankara) MSC: 65M60 65M06 65N30 65N50 65M20 65M12 65M15 76M10 76M20 74F10 74K35 PDF BibTeX XML Cite \textit{E. Burman} et al., Vietnam J. Math. 51, No. 1, 37--69 (2023; Zbl 1507.65177) Full Text: DOI
Deng, Dingwen; Wang, Qihong A class of weighted energy-preserving Du Fort-Frankel difference schemes for solving sine-Gordon-type equations. (English) Zbl 1504.65171 Commun. Nonlinear Sci. Numer. Simul. 117, Article ID 106916, 30 p. (2023). MSC: 65M06 65N06 65M12 65M15 35L05 35Q53 PDF BibTeX XML Cite \textit{D. Deng} and \textit{Q. Wang}, Commun. Nonlinear Sci. Numer. Simul. 117, Article ID 106916, 30 p. (2023; Zbl 1504.65171) Full Text: DOI
Vabishchevich, P. N. Subdomain solution decomposition method for nonstationary problems. (English) Zbl 07620363 J. Comput. Phys. 472, Article ID 111679, 20 p. (2023). MSC: 65Mxx 35Kxx 65Yxx PDF BibTeX XML Cite \textit{P. N. Vabishchevich}, J. Comput. Phys. 472, Article ID 111679, 20 p. (2023; Zbl 07620363) Full Text: DOI arXiv
Iqbal, Muhammad Sajid; Yasin, Muhammad Waqas; Ahmed, Nauman; Akgül, Ali; Rafiq, Muhammad; Raza, Ali Numerical simulations of nonlinear stochastic Newell-Whitehead-Segel equation and its measurable properties. (English) Zbl 1499.60223 J. Comput. Appl. Math. 418, Article ID 114618, 16 p. (2023). MSC: 60H15 65C30 65M06 35R60 PDF BibTeX XML Cite \textit{M. S. Iqbal} et al., J. Comput. Appl. Math. 418, Article ID 114618, 16 p. (2023; Zbl 1499.60223) Full Text: DOI
Deng, Dingwen; Li, Zhijun High-order structure-preserving Du Fort-Frankel schemes and their analyses for the nonlinear Schrödinger equation with wave operator. (English) Zbl 1502.65057 J. Comput. Appl. Math. 417, Article ID 114616, 31 p. (2023). MSC: 65M06 65M12 65M15 35Q55 35Q41 PDF BibTeX XML Cite \textit{D. Deng} and \textit{Z. Li}, J. Comput. Appl. Math. 417, Article ID 114616, 31 p. (2023; Zbl 1502.65057) Full Text: DOI
Beshtokov, Murat Khamidbievich Boundary value problems for Sobolev type equations of fractional order with memory effect. (Russian. English summary) Zbl 07666036 Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki 26, No. 4, 607-629 (2022). MSC: 65L05 65N12 65R20 PDF BibTeX XML Cite \textit{M. K. Beshtokov}, Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki 26, No. 4, 607--629 (2022; Zbl 07666036) Full Text: DOI MNR
Ladonkina, Marina Evgen’evna; Poveshchenko, Yuriĭ Andreevich; Ragimli, Orkhan Ragimovich; Zhang, Haochen Theoretical study of stability of nodal completely conservative difference schemes with viscous filling for gas dynamics equations in Euler variables. (Russian. English summary) Zbl 07663128 Zh. Sredn. Mat. Obshch. 24, No. 3, 317-330 (2022). MSC: 65M22 PDF BibTeX XML Cite \textit{M. E. Ladonkina} et al., Zh. Sredn. Mat. Obshch. 24, No. 3, 317--330 (2022; Zbl 07663128) Full Text: DOI MNR
Abdi, N.; Aminikhah, H.; Refahi Sheikhani, A. H. High-order compact finite difference schemes for the time-fractional Black-Scholes model governing European options. (English) Zbl 1506.91181 Chaos Solitons Fractals 162, Article ID 112423, 18 p. (2022). MSC: 91G60 91G20 65M06 65M12 PDF BibTeX XML Cite \textit{N. Abdi} et al., Chaos Solitons Fractals 162, Article ID 112423, 18 p. (2022; Zbl 1506.91181) Full Text: DOI
Berselli, Luigi C.; Spirito, Stefano Convergence of second-order in time numerical discretizations for the evolution Navier-Stokes equations. (English) Zbl 07636111 Adv. Contin. Discrete Models 2022, Paper No. 65, 25 p. (2022). MSC: 35Q30 65N12 65M12 76M20 PDF BibTeX XML Cite \textit{L. C. Berselli} and \textit{S. Spirito}, Adv. Contin. Discrete Models 2022, Paper No. 65, 25 p. (2022; Zbl 07636111) Full Text: DOI
Yan, Jinliang; Zhu, Ling; Lu, Fuqiang; Zheng, Sihui Linearly implicit and second-order energy-preserving schemes for the modified Korteweg-de Vries equation. (English) Zbl 1502.65166 Numer. Algorithms 91, No. 4, 1511-1546 (2022). MSC: 65M70 65M06 65N35 65B05 65M12 35Q53 PDF BibTeX XML Cite \textit{J. Yan} et al., Numer. Algorithms 91, No. 4, 1511--1546 (2022; Zbl 1502.65166) Full Text: DOI
Beshtokova, Z. V. Finite-difference methods for solving a nonlocal boundary value problem for a multidimensional parabolic equation with boundary conditions of integral form. (Russian. English summary) Zbl 1500.65038 Dal’nevost. Mat. Zh. 22, No. 1, 3-27 (2022). MSC: 65M06 65M12 35B45 35A01 35A02 35K05 35K10 PDF BibTeX XML Cite \textit{Z. V. Beshtokova}, Dal'nevost. Mat. Zh. 22, No. 1, 3--27 (2022; Zbl 1500.65038) Full Text: DOI MNR
Hoang, Manh Tuan Dynamically consistent nonstandard finite difference schemes for a virus-patch dynamic model. (English) Zbl 1505.92001 J. Appl. Math. Comput. 68, No. 5, 3397-3423 (2022). MSC: 92-08 65L12 65L20 92D30 PDF BibTeX XML Cite \textit{M. T. Hoang}, J. Appl. Math. Comput. 68, No. 5, 3397--3423 (2022; Zbl 1505.92001) Full Text: DOI
Qiao, Leijie; Guo, Jing; Qiu, Wenlin Fast BDF2 ADI methods for the multi-dimensional tempered fractional integrodifferential equation of parabolic type. (English) Zbl 07595277 Comput. Math. Appl. 123, 89-104 (2022). MSC: 65R20 35R11 65M06 65M12 PDF BibTeX XML Cite \textit{L. Qiao} et al., Comput. Math. Appl. 123, 89--104 (2022; Zbl 07595277) Full Text: DOI
Fu, Yayun; Hu, Dongdong; Zhang, Gengen Arbitrary high-order exponential integrators conservative schemes for the nonlinear Gross-Pitaevskii equation. (English) Zbl 07585759 Comput. Math. Appl. 121, 102-114 (2022). MSC: 65P10 35Q55 65M06 65M12 65M70 PDF BibTeX XML Cite \textit{Y. Fu} et al., Comput. Math. Appl. 121, 102--114 (2022; Zbl 07585759) Full Text: DOI
Cakir, Firat; Cakir, Musa; Cakir, Hayriye Guckir A robust numerical technique for solving non-linear Volterra integro-differential equations with boundary layer. (English) Zbl 1502.65271 Commun. Korean Math. Soc. 37, No. 3, 939-955 (2022). MSC: 65R20 45J05 45G10 45D05 65L03 65L11 65L12 65L20 PDF BibTeX XML Cite \textit{F. Cakir} et al., Commun. Korean Math. Soc. 37, No. 3, 939--955 (2022; Zbl 1502.65271) Full Text: DOI
Zhang, Houchao; Zhu, Weijun Superconvergence analysis of a nonconforming MFEM for nonlinear Schrödinger equation. (English) Zbl 1497.65187 Appl. Anal. 101, No. 14, 4942-4964 (2022). MSC: 65M60 65M06 65N30 65N15 65N12 35A01 35A02 35Q55 35Q41 PDF BibTeX XML Cite \textit{H. Zhang} and \textit{W. Zhu}, Appl. Anal. 101, No. 14, 4942--4964 (2022; Zbl 1497.65187) Full Text: DOI
Vabishchevich, P. N. Splitting schemes for one class of operator differential equations. (English. Russian original) Zbl 1496.65131 Comput. Math. Math. Phys. 62, No. 7, 1033-1040 (2022); translation from Zh. Vychisl. Mat. Mat. Fiz. 62, No. 7, 1059-1066 (2022). MSC: 65M06 65N06 35K70 76A10 35Q35 PDF BibTeX XML Cite \textit{P. N. Vabishchevich}, Comput. Math. Math. Phys. 62, No. 7, 1033--1040 (2022; Zbl 1496.65131); translation from Zh. Vychisl. Mat. Mat. Fiz. 62, No. 7, 1059--1066 (2022) Full Text: DOI
De Luna, Manuel Quezada; Ketcheson, David I. Maximum principle preserving space and time flux limiting for diagonally implicit Runge-Kutta discretizations of scalar convection-diffusion equations. (English) Zbl 1503.65198 J. Sci. Comput. 92, No. 3, Paper No. 102, 28 p. (2022). Reviewer: Abdallah Bradji (Annaba) MSC: 65M08 65M06 65L06 65N08 65M12 35L65 76R50 76M12 76M20 PDF BibTeX XML Cite \textit{M. Q. De Luna} and \textit{D. I. Ketcheson}, J. Sci. Comput. 92, No. 3, Paper No. 102, 28 p. (2022; Zbl 1503.65198) Full Text: DOI arXiv
Boscheri, Walter; Tavelli, Maurizio; Paoluzzi, Nicola High order finite difference/discontinuous Galerkin schemes for the incompressible Navier-Stokes equations with implicit viscosity. (English) Zbl 1492.76077 Commun. Appl. Ind. Math. 13, No. 1, 21-38 (2022). MSC: 76M10 76M20 76D05 65M20 65M06 65M60 65M12 PDF BibTeX XML Cite \textit{W. Boscheri} et al., Commun. Appl. Ind. Math. 13, No. 1, 21--38 (2022; Zbl 1492.76077) Full Text: DOI
Beshtokova, Zar’yana Vladimirovna Numerical method for solving an initial-boundary value problem for a multidimensional loaded parabolic equation of a general form with conditions of the third kind. (Russian. English summary) Zbl 1499.65607 Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki 26, No. 1, 7-35 (2022). MSC: 65N06 65N12 35K20 PDF BibTeX XML Cite \textit{Z. V. Beshtokova}, Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki 26, No. 1, 7--35 (2022; Zbl 1499.65607) Full Text: DOI MNR
Kuldeep; Kumar, Sunil An efficient finite difference method for coupled systems of singularly perturbed parabolic convection-diffusion problems. (English) Zbl 1490.65155 J. Difference Equ. Appl. 28, No. 5, 676-694 (2022). MSC: 65M06 65M12 65M15 PDF BibTeX XML Cite \textit{Kuldeep} and \textit{S. Kumar}, J. Difference Equ. Appl. 28, No. 5, 676--694 (2022; Zbl 1490.65155) Full Text: DOI
Cakir, Hayriye Guckir; Cakir, Firat; Çakir, Musa A numerical method on Bakhvalov-Shishkin mesh for Volterra integro-differential equations with a boundary layer. (English) Zbl 1489.65169 Commun. Fac. Sci. Univ. Ank., Sér. A1, Math. Stat. 71, No. 1, 51-67 (2022). MSC: 65R20 45J05 45D05 65L11 65L12 65L20 PDF BibTeX XML Cite \textit{H. G. Cakir} et al., Commun. Fac. Sci. Univ. Ank., Sér. A1, Math. Stat. 71, No. 1, 51--67 (2022; Zbl 1489.65169) Full Text: DOI
Shaidurov, Vladimir V.; Novikov, Anton E. Difference schemes for second-order ordinary differential equations with corrector and predictor properties. (English) Zbl 1496.65091 Russ. J. Numer. Anal. Math. Model. 37, No. 3, 175-187 (2022). MSC: 65L06 65L20 PDF BibTeX XML Cite \textit{V. V. Shaidurov} and \textit{A. E. Novikov}, Russ. J. Numer. Anal. Math. Model. 37, No. 3, 175--187 (2022; Zbl 1496.65091) Full Text: DOI
Bessaih, Hakima; Millet, Annie Strong rates of convergence of space-time discretization schemes for the 2D Navier-Stokes equations with additive noise. (English) Zbl 07537123 Stoch. Dyn. 22, No. 2, Article ID 2240005, 40 p. (2022). MSC: 35Q30 35R60 65M60 65M06 65N30 60H15 60H35 76D06 76M35 76M10 76M20 65M12 65M15 35D35 PDF BibTeX XML Cite \textit{H. Bessaih} and \textit{A. Millet}, Stoch. Dyn. 22, No. 2, Article ID 2240005, 40 p. (2022; Zbl 07537123) Full Text: DOI arXiv
Li, Xiaoli; Wang, Weilong; Shen, Jie Stability and error analysis of IMEX SAV schemes for the magneto-hydrodynamic equations. (English) Zbl 1492.65269 SIAM J. Numer. Anal. 60, No. 3, 1026-1054 (2022). Reviewer: Qifeng Zhang (Hangzhou) MSC: 65M60 65M06 65N30 65M12 65M15 76E25 76W05 76M10 76M20 35Q35 PDF BibTeX XML Cite \textit{X. Li} et al., SIAM J. Numer. Anal. 60, No. 3, 1026--1054 (2022; Zbl 1492.65269) Full Text: DOI arXiv
Li, Jian; Wang, Xue; Al Mahbub, Md. Abdullah; Zheng, Haibiao; Chen, Zhangxin Local and parallel efficient BDF2 and BDF3 rotational pressure-correction schemes for a coupled Stokes/Darcy system. (English) Zbl 1491.65098 J. Comput. Appl. Math. 412, Article ID 114326, 18 p. (2022). Reviewer: Bülent Karasözen (Ankara) MSC: 65M60 65M06 65N30 65M12 65M55 65Y05 76S05 76D07 35J05 PDF BibTeX XML Cite \textit{J. Li} et al., J. Comput. Appl. Math. 412, Article ID 114326, 18 p. (2022; Zbl 1491.65098) Full Text: DOI
Li, Ruo; Zhong, Wei A general improvement in the WENO-Z-type schemes. (English) Zbl 1486.65114 Commun. Comput. Phys. 31, No. 5, 1362-1401 (2022). MSC: 65M06 65M12 PDF BibTeX XML Cite \textit{R. Li} and \textit{W. Zhong}, Commun. Comput. Phys. 31, No. 5, 1362--1401 (2022; Zbl 1486.65114) Full Text: DOI arXiv
Bonnet, Guillaume; Mirebeau, Jean-Marie Monotone discretization of the Monge-Ampère equation of optimal transport. (English) Zbl 1496.65197 ESAIM, Math. Model. Numer. Anal. 56, No. 3, 815-865 (2022). Reviewer: Ljiljana Teofanov (Novi Sad) MSC: 65N06 65N12 35J70 35J96 PDF BibTeX XML Cite \textit{G. Bonnet} and \textit{J.-M. Mirebeau}, ESAIM, Math. Model. Numer. Anal. 56, No. 3, 815--865 (2022; Zbl 1496.65197) Full Text: DOI
Vabishchevich, Petr N. Factorized schemes for first and second order evolution equations with fractional powers of operators. (English) Zbl 07516755 Comput. Methods Appl. Math. 22, No. 2, 493-510 (2022). MSC: 65Mxx 26A33 35R11 65F60 65M06 PDF BibTeX XML Cite \textit{P. N. Vabishchevich}, Comput. Methods Appl. Math. 22, No. 2, 493--510 (2022; Zbl 07516755) Full Text: DOI
Vabishchevich, Petr N. Splitting schemes for some second order evolutionary equations. (English) Zbl 1499.65199 Int. J. Numer. Anal. Model. 19, No. 1, 19-32 (2022). MSC: 65J08 65M06 65M12 PDF BibTeX XML Cite \textit{P. N. Vabishchevich}, Int. J. Numer. Anal. Model. 19, No. 1, 19--32 (2022; Zbl 1499.65199) Full Text: Link
Boscheri, Walter; Tavelli, Maurizio; Pareschi, Lorenzo On the construction of conservative semi-Lagrangian IMEX advection schemes for multiscale time dependent PDEs. (English) Zbl 1487.65112 J. Sci. Comput. 90, No. 3, Paper No. 97, 46 p. (2022). MSC: 65M06 65L06 65M08 65M22 65M12 76M20 PDF BibTeX XML Cite \textit{W. Boscheri} et al., J. Sci. Comput. 90, No. 3, Paper No. 97, 46 p. (2022; Zbl 1487.65112) Full Text: DOI arXiv
Addario-Berry, Louigi; Beckman, Erin; Lin, Jessica Asymmetric cooperative motion in one dimension. (English) Zbl 1484.60023 Trans. Am. Math. Soc. 375, No. 4, 2883-2913 (2022). MSC: 60F05 60K35 65M12 35F21 35F25 PDF BibTeX XML Cite \textit{L. Addario-Berry} et al., Trans. Am. Math. Soc. 375, No. 4, 2883--2913 (2022; Zbl 1484.60023) Full Text: DOI arXiv
Li, Minghui; Azaiez, Mejdi; Xu, Chuanju New efficient time-stepping schemes for the anisotropic phase-field dendritic crystal growth model. (English) Zbl 07483131 Comput. Math. Appl. 109, 204-215 (2022). MSC: 65M12 65M06 80A22 82D25 35R35 PDF BibTeX XML Cite \textit{M. Li} et al., Comput. Math. Appl. 109, 204--215 (2022; Zbl 07483131) Full Text: DOI arXiv
Kumar, Devendra; Deswal, Komal; Singh, Satpal A highly accurate algorithm for retrieving the predicted behavior of problems with piecewise-smooth initial data. (English) Zbl 1484.65260 Appl. Numer. Math. 173, 279-294 (2022). MSC: 65M70 65M06 65N35 65D07 65M12 65M15 35K10 PDF BibTeX XML Cite \textit{D. Kumar} et al., Appl. Numer. Math. 173, 279--294 (2022; Zbl 1484.65260) Full Text: DOI
Yousefi, Hassan; Rabczuk, Timon Wave propagation in generalized thermo-poro-elastic media via wavelet-based cell-adaptive central high resolution schemes using UNO limiters. (English) Zbl 1486.65135 Appl. Numer. Math. 173, 112-143 (2022). MSC: 65M06 35L65 65M12 65T60 74A15 74B10 76S05 35F20 PDF BibTeX XML Cite \textit{H. Yousefi} and \textit{T. Rabczuk}, Appl. Numer. Math. 173, 112--143 (2022; Zbl 1486.65135) Full Text: DOI
Bruned, Yvain; Schratz, Katharina Resonance-based schemes for dispersive equations via decorated trees. (English) Zbl 1504.65168 Forum Math. Pi 10, Paper No. e2, 76 p. (2022). Reviewer: Michael Jung (Dresden) MSC: 65M06 60L70 65M12 65M15 16T05 41A58 42A38 05C05 35B34 35Q53 35Q55 35Q41 60L30 81R50 PDF BibTeX XML Cite \textit{Y. Bruned} and \textit{K. Schratz}, Forum Math. Pi 10, Paper No. e2, 76 p. (2022; Zbl 1504.65168) Full Text: DOI arXiv
Aakansha; Kumar, Sunil; Singh, Joginder An efficient numerical method for coupled systems of singularly perturbed parabolic delay problems. (English) Zbl 1499.65365 Comput. Appl. Math. 41, No. 1, Paper No. 29, 19 p. (2022). MSC: 65M06 65N06 65M12 65M15 35R07 35B25 76R50 PDF BibTeX XML Cite \textit{Aakansha} et al., Comput. Appl. Math. 41, No. 1, Paper No. 29, 19 p. (2022; Zbl 1499.65365) Full Text: DOI
Yeganeh, S. Mousavi; Farzi, J. Maximum principle and positivity-preserving high order spectral volume schemes with parametrized flux limiters for solving hyperbolic conservation laws. (English) Zbl 1503.65272 J. Comput. Appl. Math. 404, Article ID 113893, 25 p. (2022). MSC: 65M70 35L65 65M06 65M12 76M20 PDF BibTeX XML Cite \textit{S. M. Yeganeh} and \textit{J. Farzi}, J. Comput. Appl. Math. 404, Article ID 113893, 25 p. (2022; Zbl 1503.65272) Full Text: DOI
Both, J. W.; Barnafi, N. A.; Radu, F. A.; Zunino, P.; Quarteroni, A. Iterative splitting schemes for a soft material poromechanics model. (English) Zbl 1507.74113 Comput. Methods Appl. Mech. Eng. 388, Article ID 114183, 29 p. (2022). MSC: 74F10 65M06 65M12 65M60 90C25 90C90 PDF BibTeX XML Cite \textit{J. W. Both} et al., Comput. Methods Appl. Mech. Eng. 388, Article ID 114183, 29 p. (2022; Zbl 1507.74113) Full Text: DOI arXiv
Qiao, Leijie; Xu, Da; Qiu, Wenlin The formally second-order BDF ADI difference/compact difference scheme for the nonlocal evolution problem in three-dimensional space. (English) Zbl 1484.65345 Appl. Numer. Math. 172, 359-381 (2022). MSC: 65R20 45K05 35R11 65M06 65M12 PDF BibTeX XML Cite \textit{L. Qiao} et al., Appl. Numer. Math. 172, 359--381 (2022; Zbl 1484.65345) Full Text: DOI
González-Pinto, S.; Hernández-Abreu, D. Convergence in the maximum norm of ADI-type methods for parabolic problems. (English) Zbl 07418837 Appl. Numer. Math. 171, 269-280 (2022). MSC: 65M06 65N06 65M08 65N08 65L06 65M12 35K58 35B35 PDF BibTeX XML Cite \textit{S. González-Pinto} and \textit{D. Hernández-Abreu}, Appl. Numer. Math. 171, 269--280 (2022; Zbl 07418837) Full Text: DOI arXiv
Gande, Naga Raju; Madduri, H. Higher order numerical schemes for the solution of fractional delay differential equations. (English) Zbl 1491.65056 J. Comput. Appl. Math. 402, Article ID 113810, 30 p. (2022). MSC: 65L03 34K37 65L20 65L70 PDF BibTeX XML Cite \textit{N. R. Gande} and \textit{H. Madduri}, J. Comput. Appl. Math. 402, Article ID 113810, 30 p. (2022; Zbl 1491.65056) Full Text: DOI
Li, Tingting; Lu, Jianfang; Shu, Chi-Wang Stability analysis of inverse Lax-Wendroff boundary treatment of high order compact difference schemes for parabolic equations. (English) Zbl 1481.65145 J. Comput. Appl. Math. 400, Article ID 113711, 26 p. (2022). MSC: 65M06 65L06 65M20 65N25 65M12 35K10 PDF BibTeX XML Cite \textit{T. Li} et al., J. Comput. Appl. Math. 400, Article ID 113711, 26 p. (2022; Zbl 1481.65145) Full Text: DOI
Ishwariya, R.; Miller, John J. H.; Sigamani, Valarmathi A parameter-uniform essentially first-order convergence of a fitted mesh method for a class of parabolic singularly perturbed system of Robin problems. (English) Zbl 1506.65123 Sigamani, Valarmathi (ed.) et al., Differential equations and applications. Selected papers based on the presentations at the international conference on applications of basic science, ICABS 2019, Tiruchirappalli, India, November 19–21, 2019. Singapore: Springer. Springer Proc. Math. Stat. 368, 117-145 (2021). MSC: 65M06 35K57 65M12 PDF BibTeX XML Cite \textit{R. Ishwariya} et al., Springer Proc. Math. Stat. 368, 117--145 (2021; Zbl 1506.65123) Full Text: DOI arXiv
Mariappan, Manikandan; Miller, John J. H.; Sigamani, Valarmathi A first-order convergent parameter-uniform numerical method for a singularly perturbed second-order delay-differential equation of reaction-diffusion type with a discontinuous source term. (English) Zbl 1506.65092 Sigamani, Valarmathi (ed.) et al., Differential equations and applications. Selected papers based on the presentations at the international conference on applications of basic science, ICABS 2019, Tiruchirappalli, India, November 19–21, 2019. Singapore: Springer. Springer Proc. Math. Stat. 368, 73-94 (2021). MSC: 65L03 34K26 65L10 65L11 65L12 65L20 PDF BibTeX XML Cite \textit{M. Mariappan} et al., Springer Proc. Math. Stat. 368, 73--94 (2021; Zbl 1506.65092) Full Text: DOI
Alikhanov, Anatoliĭ Alievich; Apekov, Aslan Martinovich; Khibiev, Aslanbek Khizirovich Higher-order approximation difference scheme for the generalized aller equation of fractional order. (Russian. English summary) Zbl 1513.65273 Vladikavkaz. Mat. Zh. 23, No. 3, 5-15 (2021). MSC: 65M06 65N06 65N12 65M15 35B65 41A25 PDF BibTeX XML Cite \textit{A. A. Alikhanov} et al., Vladikavkaz. Mat. Zh. 23, No. 3, 5--15 (2021; Zbl 1513.65273) Full Text: DOI MNR
Yang, Xiaoxia; Zhang, Houchao Discontinuous Galerkin finite element analysis of for the extended Fisher-Kolmogorov equation. (Chinese. English summary) Zbl 1513.65390 Acta Math. Sci., Ser. A, Chin. Ed. 41, No. 6, 1880-1896 (2021). MSC: 65M60 65M06 65N30 65N12 65N15 35Q92 PDF BibTeX XML Cite \textit{X. Yang} and \textit{H. Zhang}, Acta Math. Sci., Ser. A, Chin. Ed. 41, No. 6, 1880--1896 (2021; Zbl 1513.65390) Full Text: Link
Bokanowski, Olivier; Debrabant, Kristian Backward differentiation formula finite difference schemes for diffusion equations with an obstacle term. (English) Zbl 1501.65027 IMA J. Numer. Anal. 41, No. 2, 900-934 (2021). MSC: 65M06 65N06 65M12 65M15 35D40 PDF BibTeX XML Cite \textit{O. Bokanowski} and \textit{K. Debrabant}, IMA J. Numer. Anal. 41, No. 2, 900--934 (2021; Zbl 1501.65027) Full Text: DOI arXiv
Elmahdi, Emadidin Gahalla Mohmed; Huang, Jianfei Two linearized finite difference schemes for time fractional nonlinear diffusion-wave equations with fourth order derivative. (English) Zbl 1484.65179 AIMS Math. 6, No. 6, 6356-6376 (2021). MSC: 65M06 35R11 65M12 PDF BibTeX XML Cite \textit{E. G. M. Elmahdi} and \textit{J. Huang}, AIMS Math. 6, No. 6, 6356--6376 (2021; Zbl 1484.65179) Full Text: DOI
Zlotnik, Alexander; Kireeva, Olga On compact 4th order finite-difference schemes for the wave equation. (English) Zbl 1483.65145 Math. Model. Anal. 26, No. 3, 479-502 (2021). MSC: 65M06 65M12 65M15 PDF BibTeX XML Cite \textit{A. Zlotnik} and \textit{O. Kireeva}, Math. Model. Anal. 26, No. 3, 479--502 (2021; Zbl 1483.65145) Full Text: DOI
Li, Ruo; Zhong, Wei A modified adaptive improved mapped WENO method. (English) Zbl 1482.65146 Commun. Comput. Phys. 30, No. 5, 1545-1588 (2021). MSC: 65M06 65M12 PDF BibTeX XML Cite \textit{R. Li} and \textit{W. Zhong}, Commun. Comput. Phys. 30, No. 5, 1545--1588 (2021; Zbl 1482.65146) Full Text: DOI arXiv
Krivovichev, G. V. Characteristic-based finite-difference schemes for the simulation of convection-diffusion equation by the finite-difference-based lattice Boltzmann methods. (English) Zbl 1480.65212 Int. J. Comput. Math. 98, No. 10, 1991-2007 (2021). MSC: 65M06 65M12 PDF BibTeX XML Cite \textit{G. V. Krivovichev}, Int. J. Comput. Math. 98, No. 10, 1991--2007 (2021; Zbl 1480.65212) Full Text: DOI
Bassetto, Sabrina; Cancès, Clément; Enchéry, Guillaume; Tran, Quang-Huy Upstream mobility finite volumes for the Richards equation in heterogenous domains. (English) Zbl 1489.65126 ESAIM, Math. Model. Numer. Anal. 55, No. 5, 2101-2139 (2021). Reviewer: Abdallah Bradji (Annaba) MSC: 65M08 65M06 65N08 65M12 35D30 76S05 35Q35 PDF BibTeX XML Cite \textit{S. Bassetto} et al., ESAIM, Math. Model. Numer. Anal. 55, No. 5, 2101--2139 (2021; Zbl 1489.65126) Full Text: DOI arXiv
Handlovičová, Angela; Mikula, Karol Finite volume schemes for the affine morphological scale space (AMSS) model. (English) Zbl 1482.65163 Tatra Mt. Math. Publ. 80, 53-70 (2021). Reviewer: Abdallah Bradji (Annaba) MSC: 65M08 65M06 65N08 65M12 65M15 35K20 PDF BibTeX XML Cite \textit{A. Handlovičová} and \textit{K. Mikula}, Tatra Mt. Math. Publ. 80, 53--70 (2021; Zbl 1482.65163) Full Text: DOI
Neelan, A. Arun Govind; Nair, Manoj T.; Bürger, Raimund Three-level order-adaptive weighted essentially non-oscillatory schemes. (English) Zbl 07455171 Results Appl. Math. 12, Article ID 100217, 28 p. (2021). MSC: 65-XX 35F61 35L50 35Q31 76N15 65M06 65M08 65M12 76J20 76Q05 PDF BibTeX XML Cite \textit{A. A. G. Neelan} et al., Results Appl. Math. 12, Article ID 100217, 28 p. (2021; Zbl 07455171) Full Text: DOI
Michel-Dansac, Victor; Thomann, Andrea On high-precision \(L^\infty \)-stable IMEX schemes for scalar hyperbolic multi-scale equations. (English) Zbl 1482.65150 Muñoz-Ruiz, María Luz (ed.) et al., Recent advances in numerical methods for hyperbolic PDE systems. NumHyp 2019. Selected papers based on the presentations at the 6th international conference on numerical methods for hyperbolic problems, Málaga, Spain, June 17–21, 2019. Cham: Springer. SEMA SIMAI Springer Ser. 28, 79-94 (2021). Reviewer: Bülent Karasözen (Ankara) MSC: 65M06 65N06 65M20 65M12 65L06 35B45 PDF BibTeX XML Cite \textit{V. Michel-Dansac} and \textit{A. Thomann}, SEMA SIMAI Springer Ser. 28, 79--94 (2021; Zbl 1482.65150) Full Text: DOI
Chehab, Jean-Paul Damping, stabilization, and numerical filtering for the modeling and the simulation of time dependent PDEs. (English) Zbl 07451792 Discrete Contin. Dyn. Syst., Ser. S 14, No. 8, 2693-2728 (2021). MSC: 65-XX 35B40 35K55 65M06 65M55 65M60 PDF BibTeX XML Cite \textit{J.-P. Chehab}, Discrete Contin. Dyn. Syst., Ser. S 14, No. 8, 2693--2728 (2021; Zbl 07451792) Full Text: DOI
Hoang, Manh Tuan; Nagy, A. M. On a new fractional-order logistic model with feedback control. (English) Zbl 1499.34271 Appl. Math., Ser. B (Engl. Ed.) 36, No. 3, 390-402 (2021). MSC: 34C60 92D25 34C05 34D20 93B52 65L12 34A08 PDF BibTeX XML Cite \textit{M. T. Hoang} and \textit{A. M. Nagy}, Appl. Math., Ser. B (Engl. Ed.) 36, No. 3, 390--402 (2021; Zbl 1499.34271) Full Text: DOI
Wang, Cheng Convergence analysis of Fourier pseudo-spectral schemes for three-dimensional incompressible Navier-Stokes equations. (English) Zbl 1479.35636 Electron Res. Arch. 29, No. 5, 2915-2944 (2021). MSC: 35Q30 35B45 65M12 65M70 65M06 65T40 65D05 65D25 PDF BibTeX XML Cite \textit{C. Wang}, Electron Res. Arch. 29, No. 5, 2915--2944 (2021; Zbl 1479.35636) Full Text: DOI
Huang, Jianfei; Qiao, Zhi; Zhang, Jingna; Arshad, Sadia; Tang, Yifa Two linearized schemes for time fractional nonlinear wave equations with fourth-order derivative. (English) Zbl 1475.65072 J. Appl. Math. Comput. 66, No. 1-2, 561-579 (2021). MSC: 65M06 65M12 PDF BibTeX XML Cite \textit{J. Huang} et al., J. Appl. Math. Comput. 66, No. 1--2, 561--579 (2021; Zbl 1475.65072) Full Text: DOI
Nishikawa, Hiroaki On false accuracy verification of UMUSCL scheme. (English) Zbl 1473.65118 Commun. Comput. Phys. 30, No. 4, 1037-1060 (2021). MSC: 65M06 65M12 76M12 76M20 PDF BibTeX XML Cite \textit{H. Nishikawa}, Commun. Comput. Phys. 30, No. 4, 1037--1060 (2021; Zbl 1473.65118) Full Text: DOI arXiv
Efendiev, Yalchin; Vabishchevich, Petr N. Splitting methods for solution decomposition in nonstationary problems. (English) Zbl 1508.65101 Appl. Math. Comput. 397, Article ID 125785, 11 p. (2021). MSC: 65M06 65J08 65M12 PDF BibTeX XML Cite \textit{Y. Efendiev} and \textit{P. N. Vabishchevich}, Appl. Math. Comput. 397, Article ID 125785, 11 p. (2021; Zbl 1508.65101) Full Text: DOI arXiv
Ranocha, Hendrik; Mitsotakis, Dimitrios; Ketcheson, David I. A broad class of conservative numerical methods for dispersive wave equations. (English) Zbl 1473.65154 Commun. Comput. Phys. 29, No. 4, 979-1029 (2021). MSC: 65M12 65M06 65M60 65M70 65M20 65L06 35Q35 76B15 PDF BibTeX XML Cite \textit{H. Ranocha} et al., Commun. Comput. Phys. 29, No. 4, 979--1029 (2021; Zbl 1473.65154) Full Text: DOI arXiv
Yang, Junxiang; Tan, Zhijun; Kim, Junseok High-order time-accurate, efficient, and structure-preserving numerical methods for the conservative Swift-Hohenberg model. (English) Zbl 07419186 Comput. Math. Appl. 102, 160-174 (2021). MSC: 65M12 65M06 74N05 82D25 65M70 PDF BibTeX XML Cite \textit{J. Yang} et al., Comput. Math. Appl. 102, 160--174 (2021; Zbl 07419186) Full Text: DOI
Lobo, Diogo Fast stable finite difference schemes for nonlinear cross-diffusion. (English) Zbl 1486.65116 Comput. Math. Appl. 101, 23-37 (2021). MSC: 65M06 65N06 65F05 65M12 94A08 PDF BibTeX XML Cite \textit{D. Lobo}, Comput. Math. Appl. 101, 23--37 (2021; Zbl 1486.65116) Full Text: DOI arXiv
Alikhanov, Anatoly; Beshtokov, Murat; Mehra, Mani The Crank-Nicolson type compact difference schemes for a loaded time-fractional Hallaire equation. (English) Zbl 1498.65133 Fract. Calc. Appl. Anal. 24, No. 4, 1231-1256 (2021). MSC: 65M06 65M12 65M15 35R11 PDF BibTeX XML Cite \textit{A. Alikhanov} et al., Fract. Calc. Appl. Anal. 24, No. 4, 1231--1256 (2021; Zbl 1498.65133) Full Text: DOI arXiv
Cheng, Xiujun; Yan, Xiaoqiang; Qin, Hongyu; Wang, Huiru Optimal \(l^\infty\) error estimates of the conservative scheme for two-dimensional Schrödinger equations with wave operator. (English) Zbl 07411545 Comput. Math. Appl. 100, 74-82 (2021). MSC: 65M06 65M12 35Q55 65P10 65M60 PDF BibTeX XML Cite \textit{X. Cheng} et al., Comput. Math. Appl. 100, 74--82 (2021; Zbl 07411545) Full Text: DOI
Chai, Li; Liu, Yang; Li, Hong Fourth-order compact difference schemes for the two-dimensional nonlinear fractional mobile/immobile transport models. (English) Zbl 07411539 Comput. Math. Appl. 100, 1-10 (2021). MSC: 65M06 35R11 65M12 65M60 26A33 PDF BibTeX XML Cite \textit{L. Chai} et al., Comput. Math. Appl. 100, 1--10 (2021; Zbl 07411539) Full Text: DOI
Hoang, Manh Tuan; Egbelowo, Oluwaseun Francis Dynamically consistent nonstandard finite difference schemes for a vector-host epidemic model with nonlinear incidences. (English) Zbl 1492.92004 Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 28, No. 5, 359-376 (2021). MSC: 92-08 65L05 65L12 65L20 92D30 PDF BibTeX XML Cite \textit{M. T. Hoang} and \textit{O. F. Egbelowo}, Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 28, No. 5, 359--376 (2021; Zbl 1492.92004) Full Text: Link
Qiu, Zeshan; Cao, Xuenian Crank-Nicolson quasi-compact schemes for one-sided normalized tempered fractional diffusion equations with drift. (Chinese. English summary) Zbl 1488.65277 Math. Numer. Sin. 43, No. 2, 210-226 (2021). MSC: 65M06 65M12 26A33 35R11 PDF BibTeX XML Cite \textit{Z. Qiu} and \textit{X. Cao}, Math. Numer. Sin. 43, No. 2, 210--226 (2021; Zbl 1488.65277) Full Text: DOI
Ashordia, Malkhaz On the necessary and sufficient conditions for the convergence of the difference schemes for the general boundary value problem for the linear systems of ordinary differential equations. (English) Zbl 1513.65231 Math. Bohem. 146, No. 3, 333-362 (2021). MSC: 65L10 34B05 65L20 PDF BibTeX XML Cite \textit{M. Ashordia}, Math. Bohem. 146, No. 3, 333--362 (2021; Zbl 1513.65231) Full Text: DOI
Besse, Christophe; Coulombel, Jean-François; Noble, Pascal Discrete transparent boundary conditions for the two-dimensional leap-frog scheme: approximation and fast implementation. (English) Zbl 1481.65122 ESAIM, Math. Model. Numer. Anal. 55, Suppl., 535-571 (2021). MSC: 65M06 65M12 35Q49 PDF BibTeX XML Cite \textit{C. Besse} et al., ESAIM, Math. Model. Numer. Anal. 55, 535--571 (2021; Zbl 1481.65122) Full Text: DOI arXiv
Aakansha; Singh, Joginder; Kumar, Sunil Additive schemes based domain decomposition algorithm for solving singularly perturbed parabolic reaction-diffusion systems. (English) Zbl 1476.65227 Comput. Appl. Math. 40, No. 3, Paper No. 82, 15 p. (2021). MSC: 65M55 65M06 65M12 PDF BibTeX XML Cite \textit{Aakansha} et al., Comput. Appl. Math. 40, No. 3, Paper No. 82, 15 p. (2021; Zbl 1476.65227) Full Text: DOI
Chen, Minghua; Jiang, Suzhen; Bu, Weiping Two \(L1\) schemes on graded meshes for fractional Feynman-Kac equation. (English) Zbl 1500.65039 J. Sci. Comput. 88, No. 3, Paper No. 58, 24 p. (2021). MSC: 65M06 65M12 65M15 35B65 82C31 35Q82 26A33 35R11 PDF BibTeX XML Cite \textit{M. Chen} et al., J. Sci. Comput. 88, No. 3, Paper No. 58, 24 p. (2021; Zbl 1500.65039) Full Text: DOI
Alikhanov, A. A.; Beshtokov, M. Kh.; Shkhanukov-Lafishev, M. Kh. Local one-dimensional scheme for the first initial-boundary value problem for the multidimensional fractional-order convection-diffusion equation. (English. Russian original) Zbl 1496.65102 Comput. Math. Math. Phys. 61, No. 7, 1075-1093 (2021); translation from Zh. Vychisl. Mat. Mat. Fiz. 61, No. 7, 1082-1100 (2021). MSC: 65M06 65N06 65M12 35B50 35B45 26A33 35R11 76R50 35Q35 PDF BibTeX XML Cite \textit{A. A. Alikhanov} et al., Comput. Math. Math. Phys. 61, No. 7, 1075--1093 (2021; Zbl 1496.65102); translation from Zh. Vychisl. Mat. Mat. Fiz. 61, No. 7, 1082--1100 (2021) Full Text: DOI
Matus, P. P.; Hoang Thi Kieu Anh Compact difference schemes on a three-point stencil for second-order hyperbolic equations. (English. Russian original) Zbl 1496.65124 Differ. Equ. 57, No. 7, 934-946 (2021); translation from Differ. Uravn. 57, No. 7, 963-975 (2021). MSC: 65M06 65N06 65M12 35L10 35L72 35B20 35Q53 PDF BibTeX XML Cite \textit{P. P. Matus} and \textit{Hoang Thi Kieu Anh}, Differ. Equ. 57, No. 7, 934--946 (2021; Zbl 1496.65124); translation from Differ. Uravn. 57, No. 7, 963--975 (2021) Full Text: DOI
Galloway, David; Ivers, David Slow-burning instabilities of Dufort-Frankel finite differencing. (English) Zbl 1487.65117 ANZIAM J. 63, No. 1, 23-38 (2021). MSC: 65M06 65M12 PDF BibTeX XML Cite \textit{D. Galloway} and \textit{D. Ivers}, ANZIAM J. 63, No. 1, 23--38 (2021; Zbl 1487.65117) Full Text: DOI
González-Pinto, S.; Hairer, E.; Hernández-Abreu, D. Power boundedness in the maximum norm of stability matrices for ADI methods. (English) Zbl 1495.65133 BIT 61, No. 3, 805-827 (2021). MSC: 65M06 65N06 65M20 65M12 65M15 PDF BibTeX XML Cite \textit{S. González-Pinto} et al., BIT 61, No. 3, 805--827 (2021; Zbl 1495.65133) Full Text: DOI
Akrivis, Georgios; Li, Dongfang Structure-preserving Gauss methods for the nonlinear Schrödinger equation. (English) Zbl 1486.65158 Calcolo 58, No. 2, Paper No. 17, 25 p. (2021). MSC: 65M60 65M06 65N30 65M12 35Q41 35Q55 PDF BibTeX XML Cite \textit{G. Akrivis} and \textit{D. Li}, Calcolo 58, No. 2, Paper No. 17, 25 p. (2021; Zbl 1486.65158) Full Text: DOI
Dumitrescu, Roxana; Reisinger, Christoph; Zhang, Yufei Approximation schemes for mixed optimal stopping and control problems with nonlinear expectations and jumps. (English) Zbl 1514.65102 Appl. Math. Optim. 83, No. 3, 1387-1429 (2021). MSC: 65M06 65M12 65Y05 62L15 60J74 93E20 93B52 91G80 35A23 35A15 35D40 PDF BibTeX XML Cite \textit{R. Dumitrescu} et al., Appl. Math. Optim. 83, No. 3, 1387--1429 (2021; Zbl 1514.65102) Full Text: DOI arXiv
Belov, A. A.; Dombrovskaya, Zh. O.; Bogolyubov, A. N. A bicompact scheme and spectral decomposition method for difference solution of Maxwell’s equations in layered media. (English) Zbl 07362381 Comput. Math. Appl. 96, 178-187 (2021). MSC: 78M20 65M06 65M12 65M70 65-02 PDF BibTeX XML Cite \textit{A. A. Belov} et al., Comput. Math. Appl. 96, 178--187 (2021; Zbl 07362381) Full Text: DOI
Bazzaev, Alexander K.; Gutnova, Dzerassa K. About convergence of difference schemes for a third-order pseudo-parabolic equation with nonlocal boundary value condition. (English) Zbl 1473.65266 Sib. Èlektron. Mat. Izv. 18, No. 1, 548-560 (2021). MSC: 65N12 65N06 65N15 PDF BibTeX XML Cite \textit{A. K. Bazzaev} and \textit{D. K. Gutnova}, Sib. Èlektron. Mat. Izv. 18, No. 1, 548--560 (2021; Zbl 1473.65266) Full Text: DOI
Yang, Yun-Bo; Jiang, Yao-Lin; Yu, Bo-Hao Unconditional optimal error estimates of linearized, decoupled and conservative Galerkin FEMs for the Klein-Gordon-Schrödinger equation. (English) Zbl 1476.65259 J. Sci. Comput. 87, No. 3, Paper No. 89, 32 p. (2021). MSC: 65M60 65M06 65N30 65M15 65N15 65N12 35Q55 35Q41 PDF BibTeX XML Cite \textit{Y.-B. Yang} et al., J. Sci. Comput. 87, No. 3, Paper No. 89, 32 p. (2021; Zbl 1476.65259) Full Text: DOI
Zhu, Xiaozhi; Zhang, Yong-Tao Fast sparse grid simulations of fifth order WENO scheme for high dimensional hyperbolic PDEs. (English) Zbl 1473.65131 J. Sci. Comput. 87, No. 2, Paper No. 44, 38 p. (2021). MSC: 65M06 65M12 35L25 35Q83 PDF BibTeX XML Cite \textit{X. Zhu} and \textit{Y.-T. Zhang}, J. Sci. Comput. 87, No. 2, Paper No. 44, 38 p. (2021; Zbl 1473.65131) Full Text: DOI arXiv
Tan, Raynold; Ooi, Andrew; Sandberg, Richard D. Two dimensional analysis of hybrid spectral/finite difference schemes for linearized compressible Navier-Stokes equations. (English) Zbl 1471.65165 J. Sci. Comput. 87, No. 2, Paper No. 42, 41 p. (2021). MSC: 65M70 65M06 65N06 65M12 65L06 76Q05 76N06 35Q30 PDF BibTeX XML Cite \textit{R. Tan} et al., J. Sci. Comput. 87, No. 2, Paper No. 42, 41 p. (2021; Zbl 1471.65165) Full Text: DOI
Matus, P. P.; Utebaev, B. D. Compact and monotone difference schemes for parabolic equations. (Russian. English summary) Zbl 1468.65102 Mat. Model. 33, No. 4, 60-78 (2021). MSC: 65M06 65M12 35K58 35K59 65L06 PDF BibTeX XML Cite \textit{P. P. Matus} and \textit{B. D. Utebaev}, Mat. Model. 33, No. 4, 60--78 (2021; Zbl 1468.65102) Full Text: DOI MNR
Ostapenko, V. V.; Khandeeva, N. A. To justification of the integral convergence method for studying the finite-difference schemes accuracy. (Russian. English summary) Zbl 1468.65105 Mat. Model. 33, No. 4, 45-59 (2021). MSC: 65M06 65M12 PDF BibTeX XML Cite \textit{V. V. Ostapenko} and \textit{N. A. Khandeeva}, Mat. Model. 33, No. 4, 45--59 (2021; Zbl 1468.65105) Full Text: DOI MNR