×

Pinching of the first eigenvalue for second order operators on hypersurfaces of the Euclidean space. (English) Zbl 1366.35107

The authors prove stability results related to upper bounds for the first eigenvalue of certain second order differential operators on hypersurfaces of the Euclidean space.

MSC:

35P15 Estimates of eigenvalues in context of PDEs
53C20 Global Riemannian geometry, including pinching
53C24 Rigidity results
53C42 Differential geometry of immersions (minimal, prescribed curvature, tight, etc.)
58C40 Spectral theory; eigenvalue problems on manifolds
PDFBibTeX XMLCite
Full Text: DOI arXiv Link

References:

[1] Alencar, H., DoCarmo, M., Colares, A.: Stable hypersurfaces with constant scalar curvature. Math. Z. 213(1), 117-131 (1993) · Zbl 0792.53057 · doi:10.1007/BF03025712
[2] Alencar, H., Do Carmo, M., Marques, F.C.: Upper bounds for the first eigenvalue of the operator \[L_rLr\] and some applications. Ill. J. Math. 45(3), 851-863 (2001) · Zbl 0990.53058
[3] Alencar, H., Do Carmo, M., Rosenberg, H.: On the first eigenvalue of the linearized operator of the r-th mean curvature of a hypersurface. Ann. Glob. Anal. Geom. 11(4), 387-395 (1993) · Zbl 0816.53031
[4] Alias, L., Malacarne, M.: On the first eigenvalue of the linearized operator of the higher order mean curvature for closed hypersurfaces in space forms. Ill. J. Math. 48(1), 219-240 (2004) · Zbl 1038.53061
[5] Aubry, E.: Finiteness of \[\pi_1\] π1 and geometric inequalities in almost positive Ricci curvature. Ann. Sci. Éc. Norm. Supér. (4) 40(4), 675-695 (2007) · Zbl 1141.53034
[6] Aubry, E.: Diameter pinching in almost positive Ricci curvature. Comment. Math. Helv. 84(2), 223-233 (2009) · Zbl 1167.53033 · doi:10.4171/CMH/160
[7] Aubry, E., Grosjean, J.F.: Spectrum of hypersurfaces with small extrinsic radius or large \[\lambda_1\] λ1 in Euclidean spaces. J. Funct. Anal. 271(5), 1213-1242 (2016) · Zbl 1342.53005 · doi:10.1016/j.jfa.2016.06.011
[8] Aubry, E., Grosjean, J.F., Roth, J.: Hypersurfaces with small extrinsic radius or large \[\lambda_1\] λ1 in Euclidean spaces. Preprint arXiv:1009.2010 · Zbl 1342.53005
[9] Barbosa, J., Colares, A.: Stability of hypersurfaces with constant r-mean curvature. Ann. Glob. Anal. Geom. 15(3), 277-297 (1997) · Zbl 0891.53044 · doi:10.1023/A:1006514303828
[10] Barbosa, J., Do Carmo, M.: Stability of hypersurfaces with constant mean curvature. Math. Z. 185(3), 339-353 (1984) · Zbl 0513.53002
[11] Barbosa, J., Do Carmo, M., Eschenburg, J.H.: Stability of hypersurfaces of constant mean curvature in Riemannian manifolds. Math. Z. 197(1), 123-138 (1988) · Zbl 0653.53045
[12] Bleecker, D., Weiner, J.: Extrinsic bound on \[\lambda_1\] λ1 of \[\delta\] δ on a compact manifold. Comment. Math. Helv. 51, 601-609 (1976) · Zbl 0341.53034 · doi:10.1007/BF02568177
[13] Cheng, X.: A generalization of almost-Schur lemma for closed Riemannian manifolds. Ann. Glob. Anal. Geom. 43, 153-160 (2013) · Zbl 1276.53054 · doi:10.1007/s10455-012-9339-8
[14] Colbois, B., Grosjean, J.F.: A pinching theorem for the first eigenvalue of the Laplacian on hypersurfaces of the Euclidean space. Comment. Math. Helv. 82(1), 175-195 (2007) · Zbl 1112.53003
[15] De Lellis, C., Topping, P.: Almost-Schur lemma. Calc. Var. Partial Differ. Equ. 43(3-4), 347-354 (2012) · Zbl 1236.53036 · doi:10.1007/s00526-011-0413-z
[16] El Soufi, A., Ilias, S.: Une inégalité du type “Reilly” pour les sous-variétés de l’espace hyperbolique. Comment. Math. Helv. 67, 167-181 (1992) · Zbl 0758.53029 · doi:10.1007/BF02566494
[17] Ge, Y., Wang, G.: An almost Schur theorem on 4-dimensional manifolds. Proc. Am. Math. Soc. 140(3), 1041-1044 (2012) · Zbl 1238.53026 · doi:10.1090/S0002-9939-2011-11065-7
[18] Gerhardt, C.: Curvature problems. In: Series in Geometry and Topology, vol. 39. International Press of Boston Inc., Somerville (2006) · Zbl 1131.53001
[19] Grosjean, J.F.: Upper bounds for the first eigenvalue of the Laplacian on compact submanifolds. Pac. J. Math. 206(1), 93-112 (2002) · Zbl 1050.58024
[20] Grosjean, J.F.: Extrinsic upper bounds for the first eigenvalue of elliptic operators. Hokkaido Math. J. 33(2), 319-339 (2004) · Zbl 1085.58024
[21] Grosjean, J.F., Roth, J.: Eigenvalue pinching and application to the stability and the almost umbilicity of hypersurfaces. Math. Z. 271(1-2), 469-488 (2012) · Zbl 1243.53071
[22] Hardy, G., Littlewood, J., Polya, G.: Inequalities. Cambridge University Press, Cambridge (1952) · Zbl 0047.05302
[23] Heintze, E.: Extrinsic upper bounds for \[\lambda_1\] λ1. Math. Ann. 280(3), 389-402 (1988) · Zbl 0628.53044 · doi:10.1007/BF01456332
[24] Hiroshima, T.: Construction of the Green function on Riemannian manifold using harmonic coordinates. J. Math. Tokyo Univ. 36(1), 1-30 (1996) · Zbl 0867.58066 · doi:10.1215/kjm/1250518601
[25] Hoffmann, D., Spruck, J.: Sobolev and isoperimetric inequalities for Riemannian submanifolds. Commun. Pure Appl. Math. 27(6), 715-727 (1974) · Zbl 0295.53025 · doi:10.1002/cpa.3160270601
[26] Hu, Y., Xu, H., Zhao, E.: First eigenvalue pinching for Euclidean hypersurfaces via k-th mean curvatures. Ann. Glob. Anal. Geom. 48(1), 23-35 (2015) · Zbl 1317.53007 · doi:10.1007/s10455-015-9454-4
[27] Michael, J., Simon, L.: Sobolev and mean-value inequalities on generalized submanifolds of \[\mathbb{R}^nRn\]. Commun. Pure Appl. Math. 26(3), 361-379 (1973) · Zbl 0256.53006 · doi:10.1002/cpa.3160260305
[28] Reilly, R.: Variational properties of functions of the mean curvatures for hypersurfaces in space forms. J. Differ. Geom. 8(3), 465-477 (1973) · Zbl 0277.53030 · doi:10.4310/jdg/1214431802
[29] Reilly, R.: On the first eigenvalue of the Laplacian for compact submanifolds of Euclidean space. Comment. Math. Helv. 52(4), 525-533 (1977) · Zbl 0382.53038 · doi:10.1007/BF02567385
[30] Ros, A.: Compact hypersurfaces with constant higher order mean curvatures. Rev. Mat. Iberoam. 3(3-4), 447-453 (1987) · Zbl 0673.53003 · doi:10.4171/RMI/58
[31] Roth, J.: Pinching of the first eigenvalue of the Laplacian and almost-Einstein hypersurfaces of the Euclidean space. Ann. Glob. Anal. Geom. 33(3), 293-306 (2008) · Zbl 1151.53010 · doi:10.1007/s10455-007-9086-4
[32] Roth, J.: A remark on almost umbilical hypersurfaces. Arch. Math. 49(1), 1-7 (2013) · Zbl 1299.53012 · doi:10.5817/AM2013-1-1
[33] Roth, J.: Upper bounds for the first eigenvalue of the Laplacian of hypersurfaces in terms of anisotropic mean curvatures. Result. Math. 64(3-4), 383-403 (2013) · Zbl 1278.53011 · doi:10.1007/s00025-013-0322-x
[34] Roth, J.: General Reilly-type inequalities for submanifolds of weighted Euclidean spaces. Colloq. Math. 144(1), 127-136 (2016) · Zbl 1348.53066
[35] Scheuer, J.: Quantitative oscillation estimates for almost-umbilical closed hypersurfaces in Euclidean space. Bull. Aust. Math. Soc. 92(1), 133-144 (2015) · Zbl 1322.53011
[36] Takahashi, T.: Minimal immersions of Riemannian manifolds. J. Math. Soc. Jpn. 18(4), 380-385 (1966) · Zbl 0145.18601 · doi:10.2969/jmsj/01840380
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.