×

Smoothing by mollifiers. I: Semi-infinite optimization. (English) Zbl 1166.90017

The authors study the standard semi-infinite programming problem where the index set is described by finitely many inequality constraints and all functions involved are twice continuously differentiable. They begin with a summary of the essential definitions and properties respectively of the feasible set, the lower level problem, regularity, stationarity, the Reduction Ansatz, and so-called mollifiers. Then they prove that, under some regularity assumptions, the nonempty compact feasible set of the problem can be approximated arbitrary well by a level set of a single smooth function which is constructed as the mollification of the optimal value function of the lower level problem. Next correspondences are shown between the Karush-Kuhn-Tucker points of the original and the smooth finite optimization problem defined via the approximated feasible set, and a result concerning the associated Morse indices is presented. The latter result, which is proved in part II of the paper (appearing in J. Glob. Optimiz.), finally enables the prove of the connectedness of the so-called min-max digraph for semi-infinite programming problems.

MSC:

90C34 Semi-infinite programming
90C31 Sensitivity, stability, parametric optimization
57R12 Smooth approximations in differential topology
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abbe L. (2001). Two logarithmic barrier methods for convex semi-infinite problems. In: Goberna, M.A. and López, M.A. (eds) Semi-infinite Programming–Recent Advances., pp 169–195. Kluwer, Dordrecht · Zbl 1055.90076
[2] Brosowski B. (1982). Parametric Semi-infinite Optimization. Peter Lang, Frankfurt a.M. · Zbl 0502.49001
[3] Cheney E.W. (1966). Introduction to Approximation Theory. McGraw-Hill, New York · Zbl 0161.25202
[4] Clarke F.H. (1975). Generalized gradients and applications. Trans. Am. Math. Soc. 205: 247–262 · Zbl 0307.26012
[5] Danskin J.M. (1967). The Theory of Max–Min and its Applications to Weapons Allocation Problems. Springer, New York · Zbl 0154.20009
[6] Ermoliev Y.M., Norkin V.I. and Wets R.J.B. (1995). The minimization of semicontinuous functions: mollifier subgradients. SIAM J. Control Optim. 33: 149–167 · Zbl 0822.49016
[7] Evans L.C. (1998). Partial Differential Equations. American Mathematical Society, Providence · Zbl 0902.35002
[8] Fiacco A.V. and McCormick G.P. (1968). Nonlinear Programming: Sequential Unconstrained Minimization Techniques. Wiley, New York · Zbl 0193.18805
[9] Floudas, C.A., Stein, O.: The adaptive convexification algorithm: a feasible point method for semi-infinite programming SIAM J Optim, to appear. · Zbl 1216.90094
[10] Glashoff K. and Gustafson S.A. (1983). Linear Optimization and Approximation. Springer, Berlin · Zbl 0526.90058
[11] Goberna M.A. and López M.A. (1998). Linear Semi-infinite Optimization. Wiley, Chichester · Zbl 0909.90257
[12] Guddat J., Jongen H.Th. and Rückmann J.-J. (1986). On stability and stationary points in nonlinear optimization. J. Aust. Math. Soc. B28: 36–56 · Zbl 0621.49016
[13] Guerra Vasquez F. and Rückmann J.-J. (2002). An approximation of feasible sets in semi-infinite optimization. Top 10: 325–336 · Zbl 1073.90045
[14] Guerra Vasquez F., Günzel H. and Jongen H.Th. (2001). On logarithmic smoothing of the maximum function. Ann. Oper. Res. 101: 209–220 · Zbl 0997.90081
[15] Günzel H. and Jongen H.Th. (2005). On absorbing cycles in min–max digraphs. J. Glob. Optim. 31: 85–92 · Zbl 1274.90479
[16] Hettich R. and Jongen H.Th. (1978). Semi-infinite programming: conditions of optimality and applications. In: Stoer, J. (eds) Optimization Techniques, Part 2, Lecture Notes in Control and Information Sciences, vol. 7, pp 1–11. Springer, Berlin · Zbl 0381.90085
[17] Hettich R. and Kortanek K.O. (1993). Semi-infinite programming: theory, methods and applications. SIAM Rev. 35: 380–429 · Zbl 0784.90090
[18] Hettich R. and Zencke P. (1982). Numerische Methoden der Approximation und semi-infiniten Optimierung. Teubner, Stuttgart · Zbl 0481.65033
[19] Hogan W.W. (1973). Point-to-set maps in mathematical programming. SIAM Rev. 15: 591–603 · Zbl 0256.90042
[20] Jarre, F.: Comparing two interior-point approaches for semi-infinite programs, Preprint, University of Trier (1999)
[21] John, F.: Extremum problems with inequalities as subsidiary conditions, In: Studies and Essays, R. Courant Anniversary Volume, pp. 187–204. Interscience, New York (1948)
[22] Jongen H.Th. and Ruiz Jhones A. (1999). Nonlinear optimization: on the min–max digraph and global smoothing. In: Ioffe, A., Reich, S. and Shafrir, I. (eds) Calculus of Variations and Differential Equations. Chapman and Hall/CRC Research Notes in Mathematics Series, vol. 410, pp 119–135. CRC Press, Boca Raton FL · Zbl 0997.90080
[23] Jongen H.Th. and Stein O. (2004). Constrained global optimization: adaptive gradient flows. In: Floudas, C.A. and Pardalos, P.M. (eds) Frontiers in Global Optimization, pp 223–236. Kluwer Academic Publishers, Boston · Zbl 1176.90571
[24] Jongen, H.Th., Stein, O.: Smoothing by mollifiers. Part II: Nonlinear optimization. J Glob Optim doi: 10.1007/s10898-007-9231-4 . · Zbl 1206.90179
[25] Jongen H.Th., Jonker P. and Twilt F. (1986). Critical sets in parametric optimization. Math. Program. 34: 333–353 · Zbl 0599.90114
[26] Jongen H.Th., Twilt F. and Weber G.-W. (1992). Semi-infinite optimization: structure and stability of the feasible set. J. Optim. Theory Appl. 72: 529–552 · Zbl 0807.90113
[27] Kaplan A. and Tichatschke R. (2001). Proximal interior point method for convex semi-infinite programming. Optim. Methods Softw. 15: 87–119 · Zbl 1099.90593
[28] Lim A.E.B. and Moore J.B. (1998). A path following algorithm for infinite quadratic programming on a Hilbert space. Discret. Contin. Dyn. Syst. 4: 653–670 · Zbl 0961.90073
[29] Mangasarian O.L. and Fromovitz S. (1967). The Fritz John necessary optimality conditions in the presence of equality and inequality constraints. J. Math. Anal. Appl. 17: 37–47 · Zbl 0149.16701
[30] Polak E. (1987). On the mathematical foundation of nondifferentiable optimization in engineering design. SIAM Rev. 29: 21–89
[31] Polak E. (1997). Optimization. Algorithms and Consistent Approximations. Springer, Berlin · Zbl 0899.90148
[32] Reemtsen R. and Görner S. (1998). Numerical methods for semi-infinite programming: a survey. In: Reemtsen, R. and Rückmann, J.-J. (eds) Semi-Infinite Programming, pp 195–275. Kluwer, Boston · Zbl 0908.90255
[33] Rückmann, J.-J.: Topological stability of feasible sets in semi-infinite optimization: a tutorial, In: Fiacco, A. (ed.) Mathematical programming with data perturbations. 17th symposium, George Washington University, Washington, DC, USA, May 1995. Lect. Notes Pure Appl. Math. vol. 195, pp. 339–361. Marcel Dekker, New York (1997) · Zbl 0891.90160
[34] Stein, O.: On parametric semi-infinite optimization. Thesis, Shaker, Aachen (1997)
[35] Stein O. (2004). On constraint qualifications in non-smooth optimization. J. Optim. Theory Appl. 121: 647–671 · Zbl 1062.49014
[36] Wetterling W. (1970). Definitheitsbedingungen für relative Extrema bei Optimierungs- und Approximationsaufgaben. Numerische Mathematik 15: 122–136 · Zbl 0184.39101
[37] Zwier, G.: Structural analysis in semi-infinite programming. Thesis, University of Twente (1987) · Zbl 0616.90070
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.