×

The locally stationary dual-tree complex wavelet model. (English) Zbl 1430.62214

Summary: We here harmonise two significant contributions to the field of wavelet analysis in the past two decades, namely the locally stationary wavelet process and the family of dual-tree complex wavelets. By combining these two components, we furnish a statistical model that can simultaneously access benefits from these two constructions. On the one hand, our model borrows the debiased spectrum and auto-covariance estimator from the locally stationary wavelet model. On the other hand, the enhanced directional selectivity is obtained from the dual-tree complex wavelets over the regular lattice. The resulting model allows for the description and identification of wavelet fields with significantly more directional fidelity than was previously possible. The corresponding estimation theory is established for the new model, and some stationarity detection experiments illustrate its practicality.

MSC:

62M40 Random fields; image analysis
42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Anantrasirichai, N., Achim, A., Bull, D.R., Kingsbury, N.: Atmospheric turbulence mitigation using complex wavelet-based fusion. IEEE Trans. Image Process. 22(6), 2398-2408 (2013) · Zbl 1373.94024
[2] Bayram, I., Selesnick, I.W.: On the dual-tree complex wavelet packet and M-band transforms. IEEE Trans. Signal Process. 56(6), 2298-2310 (2008) · Zbl 1390.94090
[3] Cardinali, A., Nason, G.P.: Costationarity of locally stationary time series. J. Time Ser. Econom. 2(2), 1-33 (2010) · Zbl 1266.91064
[4] Cardinali, A., Nason, G.P.: Practical powerful wavelet packet tests for second-order stationarity. Appl. Comput. Harmon. Anal. (2016). https://doi.org/10.1016/j.acha.2016.06.006 · Zbl 1387.62099
[5] Chaux, C., Duval, L., Pesquet, J.-C.: Image analysis using a dual-tree M-band wavelet transform. IEEE Trans. Image Process. 15(8), 2397-2412 (2006)
[6] Cho, H., Fryzlewicz, P.: Multiple change-point detection for high-dimensional time series via sparsified binary segmentation. J. R. Stat. Soc. B 77, 475-507 (2015) · Zbl 1414.62356
[7] Dahlhaus, R.: Fitting time series models to nonstationary processes. Ann. Stat. 25, 1-37 (1997) · Zbl 0871.62080
[8] Daubechies, I.: Ten Lectures on Wavelets. SIAM, Philadelphia (1992) · Zbl 0776.42018
[9] Davison, A., Hinkley, D.: Bootstrap Methods and Their Application. Cambridge University Press, Cambridge (1997) · Zbl 0886.62001
[10] Do, M.N., Vetterli, M.: Contourlets: a directional multiresolution image representation. In: IEEE International Conference on Image Processing, pp. 357-360 (2002)
[11] Eckley, I.A., Nason, G.P.: LS2W: locally stationary wavelet fields in R. J. Stat. Softw. 43(3), 1-23 (2011)
[12] Eckley, I.A., Nason, G.P., Treloar, R.L.: Locally stationary wavelet fields with application to the modeling and analysis of image texture. J. R. Stat. Soc. Ser. C (Appl. Stat.) 59(4), 595-616 (2010). https://doi.org/10.1111/j.1467-9876.2009.00721.x
[13] Fryzlewicz, P.: Modelling and forecasting financial log-returns as locally stationary wavelet processes. J. Appl. Stat. 32, 503-528 (2005)
[14] Fryzlewicz, P., Nason, G.P.: Haar-fisz estimation of evolutionary wavelet spectra. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 68, 611-634 (2006) · Zbl 1110.62121
[15] Gibberd, A.J., Nelson, J.D.B.: Regularised estimation of 2d-locally stationary wavelet processes. In: 2016 IEEE Statistical Signal Processing Workshop (SSP) (2016). https://doi.org/10.1109/ssp.2016.7551838
[16] Hill, P.R., Anantrasirichai, N., Achim, A., Al-Mualla, M.E., Bull, D.R.: Undecimated dual-tree complex wavelet transforms. Signal Process. Image Commun. 35, 61-70 (2015)
[17] Hubel, D.H., Wiesel, T.N.: Receptive fields, binocular interaction and functional architecture in the cats visual cortex. J. Physiol. 160(1), 106-154.2 (1962)
[18] Hussain, M., Chen, D., Cheng, A., Wei, H., Stanley, D.: Change detection from remotely sensed images: from pixel-based to object-based approaches. ISPRS J. Photogram. Remote Sens. 80, 91-106 (2013)
[19] Killick, R., Eckley, I.A., Jonathan, P.: A wavelet-based approach for detecting changes in second order structure within nonstationary time series. Electron. J. Stat. 7, 1167-1183 (2013) · Zbl 1337.62269
[20] Kingsbury, N.G.: Complex wavelets for shift invariant analysis and filtering of signals. J. Appl. Comput. Harmon. Anal. 10(3), 234-253 (2001) · Zbl 0990.94005
[21] Kingsbury, N.G.: Design of q-shift complex wavelets for image processing using frequency domain energy minimisation. In: IEEE International Conference on Image Processing (2003)
[22] Knight, M.I., Nunes, M.A., Nason, G.P.: Spectral estimation for locally stationary time series with missing observations. Stat. Comput. 22(4), 877-895 (2012) · Zbl 1252.60034
[23] Mondal, D., Percival, D.B.: Wavelet variance analysis for random fields on a regular lattice. IEEE Trans. Image Process. 21(2), 537-549 (2012) · Zbl 1373.62476
[24] Nadaraya, E.: On estimating regression. Theory Probab. Appl. 9(1), 141-142 (2016)
[25] Nason, G.P.: A test for second-order stationarity and approximate confidence intervals for localized autocovariances for locally stationary time series. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 75, 879-904 (2013) · Zbl 1411.62259
[26] Nason, G., Stevens, K.: Bayesian wavelet shrinkage of the Haar-Fisz transformed wavelet periodogram. PLoS One 10(9), e0137662 (2015). https://doi.org/10.1371/journal.pone.0137662
[27] Nason, G.P., von Sachs, R., Kroisandt, G.: Wavelet processes and adaptive estimation of the evolutionary wavelet spectrum. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 62, 271-292 (2000)
[28] Nelson, J.D.B.: Enhanced B-wavelets via mixed, composite packets. IEEE Trans. Signal Process. 63(12), 3191-3203 (2015) · Zbl 1394.94420
[29] Nelson, J.D.B., Gibberd, A.J.: Introducing the locally stationary dual-tree complex wavelet model. In: IEEE International Conference on Image Processing (2016)
[30] Nelson, J.D.B., Kingsbury, N.G.: Fractal dimension based sand ripple suppression for mine hunting with sidescan sonar. In: International Conference on Synthetic Aperture Sonar and Synthetic Aperture Radar (2010)
[31] Nelson, J.D.B., Kingsbury, N.G.: Fractal dimension, wavelet shrinkage and anomaly detection for mine hunting. IET Signal Process. 6(5), 484-493 (2012)
[32] Nelson, J.D.B., Nafornita, C., Isar, A.: Semi-local scaling exponent estimation with box-penalty constraints and total-variation regularization. IEEE Trans. Image Process. 25(7), 3167-3181 (2016) · Zbl 1408.94505
[33] Ng, J., Bharath, A.A., Zhaoping, L.: A survey of architecture and function of the primary visual cortex (V1). EURASIP J. Adv. Signal Process. 2007(1), 097961 (2006). https://doi.org/10.1155/2007/97961
[34] Nunes, M.A., Taylor, S., Eckley, I.A.: A multiscale test of spatial stationarity for textured images in R. R J. 6, 20-30 (2014)
[35] Portilla, J., Simoncelli, E.P.: A parametric texture model based on joint statistics of complex wavelet coefficients. Int. J. Comput. Vis. 40, 49-70 (2000) · Zbl 1012.68698
[36] Raj, R.G., Bovik, A.C., Geisler, W.S.: Non-stationarity detection in natural images. In: IEEE International Conference on Image Processing (2007)
[37] Sanderson, J., Fryzlewicz, P., Jones, M.W.: Estimating linear dependence between nonstationary time series using the locally stationary wavelet model. Biometrika 97(2), 435-446 (2010) · Zbl 1406.62100
[38] Selesnick, I.W., Baraniuk, R.G., Kingsbury, N.G.: The dual-tree complex wavelet transform. IEEE Signal Process. Mag. 22(6), 123-151 (2005)
[39] Starck, J.-L., Cands, E.J., Donoho, D.L.: The curvelet transform for image denoising. IEEE Trans. Image Process. 11(6), 670-684 (2002) · Zbl 1288.94011
[40] Taylor, S., Eckley, I.A., Nunes, M.A.: A test of stationarity for textured images. Technometrics 56, 291-301 (2014)
[41] Taylor, S., Eckley, I.A., Nunes, M.A.: Multivariate locally stationary 2d wavelet processes with application to colour texture analysis. Stat. Comput. (2017) · Zbl 1384.62297
[42] Thon, K., Geilhufe, M., Percival, D.B.: A multiscale wavelet-based test for isotropy of random fields on a regular lattice. IEEE Trans. Image Process. 24(2), 694-708 (2015) · Zbl 1408.94644
[43] Unser, M., Sage, D., Van De Ville, D.: Multiresolution monogenic signal analysis using the Riesz-Laplace wavelet transform. IEEE Trans. Image Process. 18(11), 2402-2418 (2009) · Zbl 1371.94541
[44] van Bellegem, S., von Sachs, R.: Locally adaptive estimation of evolutionary wavelet spectra. Ann. Stat. 36, 1879-1024 (2008) · Zbl 1142.62067
[45] von Sachs, R., Nason, G. P., Kroisandt, G.: Spectral representation and estimation for locally-stationary wavelet processes. In: Dubuc, S. (eds.) CRM Proceedings and Lecture Notes, vol. 18, pp. 381-397 (1998) · Zbl 0963.62084
[46] Watson, G.: Smooth regression analysis. Indian J. Stat. 26, 359-372 (1964) · Zbl 0137.13002
[47] Zhang, G., Kingsbury, N.: Variational Bayesian image restoration with group-sparse modeling of wavelet coefficients. Digit. Signal Process. (Special Issue in Honour of William J. (Bill) Fitzgerald) 47, 157-168 (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.