×

Multistationarity in the space of total concentrations for systems that admit a monomial parametrization. (English) Zbl 1427.92039

Summary: We apply tools from real algebraic geometry to the problem of multistationarity of chemical reaction networks. A particular focus is on the case of reaction networks whose steady states admit a monomial parametrization. For such systems, we show that in the space of total concentrations multistationarity is scale invariant: If there is multistationarity for some value of the total concentrations, then there is multistationarity on the entire ray containing this value (possibly for different rate constants) – and vice versa. Moreover, for these networks it is possible to decide about multistationarity independent of the rate constants by formulating semi-algebraic conditions that involve only concentration variables. These conditions can easily be extended to include total concentrations. Hence, quantifier elimination may give new insights into multistationarity regions in the space of total concentrations. To demonstrate this, we show that for the distributive phosphorylation of a protein at two binding sites multistationarity is only possible if the total concentration of the substrate is larger than either the total concentration of the kinase or the total concentration of the phosphatase. This result is enabled by the chamber decomposition of the space of total concentrations from polyhedral geometry. Together with the corresponding sufficiency result of F. Bihan et al. [J. Algebra 542, 367–411 (2020; Zbl 1453.92120)], this yields a characterization of multistationarity up to lower-dimensional regions.

MSC:

92C42 Systems biology, networks
92C45 Kinetics in biochemical problems (pharmacokinetics, enzyme kinetics, etc.)
13P15 Solving polynomial systems; resultants

Citations:

Zbl 1453.92120
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Banaji M, Craciun G (2009) Graph-theoretic approaches to injectivity and multiple equilibria in systems of interacting elements. Commun Math Sci 7(4):867-900 · Zbl 1195.05038
[2] Banaji M, Craciun G (2010) Graph-theoretic criteria for injectivity and unique equilibria in general chemical reaction systems. Adv Appl Math 44(2):168-184 · Zbl 1228.05204
[3] Bates DJ, Hauenstein JD, Sommese AJ, Wampler CW (2006) Bertini: Software for Numerical Algebraic Geometry. https://bertini.nd.edu with permanent https://doi.org/10.7274/R0H41PB5
[4] Becker E, Neuhaus R (1993) Computation of real radicals of polynomial ideals. Computational algebraic geometry. Springer, Berlin, pp 1-20 · Zbl 0804.13010
[5] Bihan F, Dickenstein A, Giaroli M (2018) Lower bounds for positive roots and regions of multistationarity in chemical reaction networks. preprint, arXiv:1807.05157 · Zbl 1453.92120
[6] Bradford R, Davenport J, England M, Errami H, Gerdt VP, Grigoriev D, Hoyt C, Kosta M, Radulescu O, Sturm T, Weber A (2017) A case study on the parametric occurrence of multiple steady states. In: Proceedings of the 42nd international symposium on symbolic and algebraic computation (ISSAC ’17), ACM, pp 45-52 · Zbl 1444.92034
[7] Brake D, Niemberg M (2016) Paramotopy. http://paramotopy.com
[8] Brown CW (2003) QEPCAD B: a program for computing with semi-algebraic sets using CADs. ACM SIGSAM Bull 37(4):97-108 · Zbl 1083.68148
[9] Brown CW, Strzeboński A (2010) Black-box/white-box simplification and applications to quantifier elimination. In: Proceedings of the 2010 international symposium on symbolic and algebraic computation. ACM, pp 69-76 · Zbl 1321.68525
[10] Conradi C, Flockerzi D (2012) Multistationarity in mass action networks with applications to ERK activation. J Math Biol 65(1):107-156 · Zbl 1278.37058
[11] Conradi C, Mincheva M (2014) Catalytic constants enable the emergence of bistability in dual phosphorylation. J R Soc Interface 11(95):20140158
[12] Conradi C, Shiu A (2018) Dynamics of posttranslational modification systems: recent progress and future directions. Biophys J 114(3):507-515
[13] Conradi, C.; Pantea, C.; Robeva, R. (ed.); Macauley, M. (ed.), Chapter 9-multistationarity in biochemical networks: results, analysis, and examples, 279-317 (2019), Cambridge · Zbl 1409.92095
[14] Conradi C, Saez-Rodriguez J, Gilles E-D, Raisch J (2005) Using chemical reaction network theory to discard a kinetic mechanism hypothesis, systems biology. IEE Proc (now IET Syst Biol) 152(4):243-248
[15] Conradi C, Flockerzi D, Raisch J (2008) Multistationarity in the activation of a MAPK: parametrizing the relevant region in parameter space. Math Biosci 211(1):105-131 · Zbl 1130.92024
[16] Conradi C, Feliu E, Mincheva M, Wiuf C (2017) Identifying parameter regions for multistationarity. PLOS Comput Biol 13(10):1-25
[17] Coste M (2002) An introduction to semialgebraic geometry. RAAG Netw Sch 145:30
[18] Cox DA, Little JB, O’Shea D (1996) Ideals, varieties, and algorithms, 2nd edn. Springer, New York · Zbl 0861.13012
[19] Craciun G, Dickenstein A, Shiu A, Sturmfels B (2009) Toric dynamical systems. J Symb Comput 44(11):1551-1565 Ordner: Gatermann · Zbl 1188.37082
[20] Craciun G, Pantea C, Rempala GA (2009) Algebraic methods for inferring biochemical networks: a maximum likelihood approach. Comput Biol Chem 33(5):361-367 · Zbl 1403.92090
[21] De Loera JA, Kim ED, Onn S, Santos F (2009) Graphs of transportation polytopes. J Comb Theory Ser A 116(8):1306-1325 · Zbl 1229.05190
[22] Dickenstein A (2016) Biochemical reaction networks: an invitation for algebraic geometers, vol 656. Mathematical congress of the Americas. American Mathematical Society, Providence, pp 65-83 · Zbl 1346.13063
[23] Dickenstein A, Péréz-Millán M, Shiu A, Tang X (2019) Multistationarity in structured reaction networks. Bull Math Biol 81(5):1527-1581 · Zbl 1415.92083
[24] Dolzmann A, Sturm T (1997) REDLOG: computer algebra meets computer logic. SIGSAM Bull 31(2):2-9
[25] Eisenbud D, Sturmfels B (1996) Binomial ideals. Duke Math J 84(1):1-45 · Zbl 0873.13021
[26] Ellison PR (1998) The Advanced Deficiency Algorithm and its applications to mechanism discrimination, Ph.D. thesis, The University of Rochester
[27] Ellison P, Feinberg M (2000) How catalytic mechanisms reveal themselves in multiple steady-state data: I. Basic principles. J Mol Catal A Chem 154(1-2):155-167
[28] Ellison P, Feinberg M, Yueb M-H, Saltsburg H (2000) How catalytic mechanisms reveal themselves in multiple steady-state data: II. An ethylene hydrogenation example. J Mol Catal A Chem 154(1-2):169-184
[29] Érdi P, Tóth J (1989) Mathematical models of chemical reactions: theory and applications of deterministic and stochastic models. Manchester University Press, Manchester · Zbl 0696.92027
[30] Feinberg M (1995a) The existence and uniqueness of steady states for a class of chemical reaction networks. Arch Ration Mech Anal 132(4):311-370 · Zbl 0853.92024
[31] Feinberg M (1995b) Multiple steady states for chemical reaction networks of deficiency one. Arch Ration Mech Anal 132(4):371-406 · Zbl 0853.92025
[32] Feliu E, Wiuf C (2012) Preclusion of switch behavior in networks with mass-action kinetics. Appl Math Comput 219(4):1449-1467 · Zbl 1417.37298
[33] Flockerzi D, Holstein K, Conradi C (2014) N-site phosphorylation systems with 2n-1 steady states. Bull Math Biol 76:1-25 · Zbl 1300.92028
[34] Gawrilow E, Joswig M (2000) polymake: a framework for analyzing convex polytopes, polytopes – combinatorics and computation, vol 29. Birkhäuser, Basel, pp 43-47 · Zbl 0960.68182
[35] Gleixner A, Bastubbe M, Eifler L, Gally T, Gamrath G, Gottwald RL, Hendel G, Hojny C, Koch T, Lübbecke ME, Maher SJ, Miltenberger M, Müller B, Pfetsch ME, Puchert C, Rehfeldt D, Schlösser F, Schubert C, Serrano F, Shinano Y, Viernickel JM, Walter M, Wegscheider F, Witt JT, Witzig J (2018) The SCIP optimization suite 6.0, Technical report, Optimization Online
[36] Gross E, Harrington HA, Rosen Z, Sturmfels B (2016) Algebraic systems biology: a case study for the wnt pathway. Bull Math Biol 78(1):21-51 · Zbl 1356.92038
[37] Holstein K, Flockerzi D, Conradi C (2013) Multistationarity in sequential distributed multisite phosphorylation networks. Bull Math Biol 75(11):2028-2058 · Zbl 1283.92030
[38] Kahle T, Miller E (2014) Decompositions of commutative monoid congruences and binomial ideals. Algebra Number Theory 8(6):1297-1364 · Zbl 1341.20062
[39] Lazard D, Rouillier F (2007) Solving parametric polynomial systems. J Symb Comput 42(6):636-667 · Zbl 1156.14044
[40] Maplesoft (2017) a division of Waterloo Maple Inc., Waterloo, Ontario, Maple
[41] Markevich NI, Hoek JB, Kholodenko BN (2004) Signaling switches and bistability arising from multisite phosphorylation in protein kinase cascades. J Cell Biology 164(3):353-359
[42] Müller S, Feliu E, Regensburger G, Conradi C, Shiu A, Dickenstein A (2016) Sign conditions for injectivity of generalized polynomial maps with applications to chemical reaction networks and real algebraic geometry. Found Comput Math 16(1):69-97 · Zbl 1382.92272
[43] Neuhaus R (1998) Computation of real radicals of polynomial ideals-II. J Pure Appl Algebra 124(1-3):261-280 · Zbl 0894.13002
[44] Péréz-Millán M, Dickenstein A (2018) The structure of MESSI biological systems. SIAM J Appl Dyn Syst 17(2):1650-1682 · Zbl 1395.92071
[45] Péréz-Millán M, Dickenstein A, Shiu A, Conradi C (2012) Chemical reaction systems with toric steady states. Bull Math Biol 74(5):1027-1065 · Zbl 1251.92016
[46] Rambau, J.; Arjeh, MC (ed.); Xiao-Shan, G. (ed.); Nobuki, T. (ed.), TOPCOM: triangulations of point configurations and oriented matroids, 330-340 (2002), Singapore · Zbl 1057.68150
[47] Rockafellar RT (1970) Convex analysis. Princeton University Press, Princeton · Zbl 0193.18401
[48] Sadeghimanesh AH, Feliu E (2019a) Gröbner bases of reaction networks with intermediate species. Adv Appl Math 107:74-101 · Zbl 1415.13015
[49] Sadeghimanesh AH, Feliu E (2019b) The multistationarity structure of networks with intermediates and a binomial core network. Bull Math Biol 81:2428-2462 · Zbl 1417.92058
[50] Schlosser PM, Feinberg M (1994) A theory of multiple steady states in isothermal homogeneous CFSTRs with many reactions. Chem Eng Sci 49(11):1749-1767
[51] Shinar G, Feinberg M (2012) Concordant chemical reaction networks. Math Biosci 240(2):92-113 · Zbl 1316.92100
[52] Shinar G, Feinberg M (2013) Concordant chemical reaction networks and the species-reaction graph. Math Biosci 241(1):1-23 · Zbl 1309.92094
[53] Shiu A (2010) Algebraic methods for biochemical reaction network theory, Ph.D. thesis, University of California, Berkeley
[54] Shiu A, Sturmfels B (2010) Siphons in chemical reaction networks. Bull Math Biol 72(6):1448-1463 Ordner: Gatermann · Zbl 1198.92020
[55] Wang L, Sontag E (2008) On the number of steady states in a multiple futile cycle. J Math Biol 57:29-52 · Zbl 1141.92022
[56] Wiuf C, Feliu E (2013) Power-law kinetics and determinant criteria for the preclusion of multistationarity in networks of interacting species. SIAM J Appl Dyn Syst 12(4):1685-1721 · Zbl 1278.92012
[57] Wolfram Research, Inc., Mathematica, Version 11.2, Champaign, IL (2017)
[58] Ziegler Günter M (2012) Lectures on polytopes, GTM, vol 152. Springer, Berlin
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.