×

A trade-off between simplicity and robustness? Illustration on a lattice-gas model of swarming. (English) Zbl 1402.37017

Louis, Pierre-Yves (ed.) et al., Probabilistic cellular automata. Theory, applications and future perspectives. Cham: Springer (ISBN 978-3-319-65556-7/hbk; 978-3-319-65558-1/ebook). Emergence, Complexity and Computation 27, 239-259 (2018).
Summary: We re-examine a cellular automaton model of swarm formation. The local rule is stochastic and defined simply as a force that aligns particles with their neighbours. This lattice-gas cellular automaton was proposed by Deutsch to mimic the self-organisation process observed in various natural systems (birds, fishes, bacteria, etc.). We explore the various patterns the self-organisation process may adopt. We observe that, according to the values of the two parameters that define the model, the alignment sensitivity and density of particles, the system may display a great variety of patterns. We analyse this surprising diversity of patterns with numerical simulations. We ask where this richness comes from. Is it an intrinsic characteristic of the model or a mere effect of the modelling simplifications?
For the entire collection see [Zbl 1401.68010].

MSC:

37B15 Dynamical aspects of cellular automata
37H10 Generation, random and stochastic difference and differential equations
68Q80 Cellular automata (computational aspects)
PDFBibTeX XMLCite
Full Text: DOI HAL

References:

[1] Barberousse, A., Imbert, C.: New mathematics for old physics: the case of lattice fluids. Stud. Hist. Philos. Sci. Part B: Stud. Hist. Philos. Mod. Phys. 44(3), 231-241 (2013). https://doi.org/10.1016/j.shpsb.2013.03.003 · Zbl 1281.76004 · doi:10.1016/j.shpsb.2013.03.003
[2] Bouré, O., Fatès, N., Chevrier, V.: First steps on asynchronous lattice-gas models with an application to a swarming rule. Nat. Comput. 12(4), 551-560 (2013). https://doi.org/10.1007/s11047-013-9389-2 · Zbl 1333.68190 · doi:10.1007/s11047-013-9389-2
[3] Bouré, O., Fatès, N., Chevrier, V.: A robustness approach to study metastable behaviours in a lattice-gas model of swarming. In: Kari, J., Kutrib, M., Malcher, A. (eds.) Proceedings of Automata’13. Lecture Notes in Computer Science, vol. 8155, pp. 84-97. Springer, Berlin (2013). https://doi.org/10.1007/978-3-642-40867-06 (Extended version available as a tech. report at https://hal.inria.fr/hal-00768831) · Zbl 1338.37019 · doi:10.1007/978-3-642-40867-06
[4] Bussemaker, H.J., Deutsch, A., Geigant, E.: Mean-field analysis of a dynamical phase transition in a cellular automaton model for collective motion. Phys. Rev. Lett. 78(26), 5018-5021 (1997). https://doi.org/10.1103/PhysRevLett.78.5018 · doi:10.1103/PhysRevLett.78.5018
[5] Deutsch, A.: Orientation-induced pattern formation: swarm dynamics in a lattice-gas automaton model. Int. J. Bifurc. Chaos 06(09), 1735-1752 (1996). https://doi.org/10.1142/S0218127496001077 · Zbl 0900.92028 · doi:10.1142/S0218127496001077
[6] Deutsch, A., Dormann, S.: Cellular Automaton Modeling of Biological Pattern Formation - Characterization, Applications, and Analysis. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Basel (2005) · Zbl 1154.37007
[7] Fatès, N.: FiatLux: a simulation program in Java for cellular automata and discrete dynamical systems available, http://fiatlux.loria.fr (Cecill licence) APP IDDN.FR.001.300004.000.S.P.2013.000.10000
[8] Fatès, N.: A guided tour of asynchronous cellular automata. J. Cell. Autom. 9(5-6), 387-416 (2014)
[9] Mairesse, J., Marcovici, I.: Around probabilistic cellular automata. Theor. Comput. Sci. 559, 42-72 (2014). https://doi.org/10.1016/j.tcs.2014.09.009 · Zbl 1360.68615 · doi:10.1016/j.tcs.2014.09.009
[10] Marcovici, I.: Automates cellulaires probabilistes et mesures spécifiques sur des espaces symboliques. Ph.D. thesis, Université Paris 7 (2013). https://tel.archives-ouvertes.fr/tel-00933977 (Text in English)
[11] Regnault, D., Schabanel, N., Thierry, E.: Progresses in the analysis of stochastic 2D cellular automata: a study of asynchronous 2D minority. Theor. Comput. Sci. 410(47-49), 4844-4855 (2009). https://doi.org/10.1016/j.tcs.2009.06.024 · Zbl 1191.68423 · doi:10.1016/j.tcs.2009.06.024
[12] Taggi, L.: Critical probabilities and convergence time of percolation probabilistic cellular automata. J. Stat. Phys. 159(4), 853-892 (2015) · Zbl 1320.82055 · doi:10.1007/s10955-015-1199-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.