×

Statistical analysis of tracking and parametric estimation errors in a 2-link robot based on Lyapunov function. (English) Zbl 1348.93201

Summary: A convergence analysis of the angular position and velocity tracking errors and parametric estimation errors for a 2-link robot dynamics in the absence of noise exist in the literature [J.-J. E. Slotine and W. Li, Applied nonlinear control. Englewood Cliffs, NJ: Prentice-Hall (1991; Zbl 0753.93036)]. In this paper, we consider the effect of noise on the robot dynamics as well as on the parameter update equation. Noise in the robot dynamics arises due to errors in reading \(q,\dot{q}\), i.e., the angular positions and velocities of the robot link that are used for calculating the errors \(e\), \(\dot{e}\) used to generate the feedback torque via the PD controller. Noise is chosen as Gaussian because it is produced as the cumulative effect of several small independent random effects like electrons moving in the motor wire and dust friction, and we know from the central limit theorem that the sum of a large number of small independent effects has a Gaussian distribution. Noise in the parametric update equation arises due to finite register effects in the digital computer. Both of these noises are modeled as white Gaussian, and the robot and parametric update dynamics have thus been modeled as nonlinear coupled stochastic differential equations. Using linearization of this coupled SDE system around the non-random components of the trajectory estimation error and parametric estimation errors, we first derive stochastic integral expressions for the random components in these errors. We then evaluate the average rate of change of the Lyapunov energy function using Ito calculus and obtain conditions on the noise amplitude so that the limiting value of this average rate of change is negative, guaranteeing asymptotic average stability of the system and parametric estimation algorithm. One of the novelties of this work is the new algorithm for parameter estimation which enables us to improve on the algorithm convergence rate as compared to previous work [Slotine and Li, loc. cit.]. Finally, our stochastic algorithm is verified by performing hardware experiments with the actual PHANToM Omni robot.

MSC:

93C85 Automated systems (robots, etc.) in control theory
70E60 Robot dynamics and control of rigid bodies
93B18 Linearizations
93E99 Stochastic systems and control

Citations:

Zbl 0753.93036

Software:

PHANSIM; OpenHaptics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Slotine, J.J.E., Li, W.: Applied Nonlinear Control. Prentice-Hall Inc, Englewood Cliffs NJ (1991) · Zbl 0753.93036
[2] Pan, H., Xin, M.: Nonlinear robust and optimal control of robot manipulators. Nonlinear Dyn. 76, 237-254 (2014) · Zbl 1319.93033 · doi:10.1007/s11071-013-1123-1
[3] Zhong, G., Kobayashi, Y., Hoshino, Y., Emaru, T.: System modeling and tracking control of mobile manipulator subjected to dynamic and uncertainty. Nonlinear Dyn. 73, 167-182 (2013) · Zbl 1281.70018 · doi:10.1007/s11071-013-0776-0
[4] Fateh, M.M., Khorashadizadeh, S.: Robust control of electrically driven robots by adaptive fuzzy estimation of uncertainty. Nonlinear Dyn. 69, 1465-1477 (2012) · Zbl 1253.93086 · doi:10.1007/s11071-012-0362-x
[5] Khorashadizadeh, S., Fateh, M.M.: Robust task-space control of robot manipulators using Legendre polynomials for uncertainty estimation. Nonlinear Dyn. 79(2), 1151-1161 (2015). doi:10.1007/11071-014-1730-5 · Zbl 1159.93345
[6] Fateh, M.M.: Proper uncertainty bound parameter to robust control of electrical manipulators using nominal model. Nonlinear Dyn. 61, 655-666 (2010) · Zbl 1204.93087 · doi:10.1007/s11071-010-9677-7
[7] Shang, W., Cong, S.: Nonlinear adaptive task space control for a 2-DOF redundantly actuated parallel manipulator. Nonlinear Dyn. 59, 61-72 (2010) · Zbl 1183.70029 · doi:10.1007/s11071-009-9520-1
[8] Shang, W.W., Cong, S., Ge, Y.: Coordination motion control in the task space for parallel manipulators with actuation redundancy. IEEE Trans. Autom. Sci. Eng. 10(3), 665-673 (2013) · doi:10.1109/TASE.2012.2210281
[9] Shang, W.W., Cong, S.: Motion control of parallel manipulators using acceleration feedback. IEEE Trans. Control Syst. Technol. 22(1), 314-321 (2014) · doi:10.1109/TCST.2013.2243149
[10] Shang, W.W., Cong, S.: Robust nonlinear control of a parallel manipulator with redundant actuation. Robot. Comput. Integr. Manuf. 30(6), 597-604 (2014) · doi:10.1016/j.rcim.2014.04.004
[11] Xu, Y., Vedula, P.: A moment-based approach for nonlinear stochastic tracking control. Nonlinear Dyn. 67, 119-128 (2012) · Zbl 1242.93125 · doi:10.1007/s11071-011-9963-z
[12] Zeinali, M., Notash, L.: Adaptive sliding mode control with uncertainty estimator for robot manipulators. Mech. Mach. Theory 45, 80-90 (2010) · Zbl 1281.70030 · doi:10.1016/j.mechmachtheory.2009.08.003
[13] Toannou, P.A., Tsakalis, K.: A robust direct adaptive controller. IEEE Trans. Autom. Control 31, 1033-1043 (1986) · Zbl 0628.93040 · doi:10.1109/TAC.1986.1104168
[14] Karimi, A., Landau, I.D.: Robust adaptive control of a flexible transmission system using multiple models. IEEE Trans. Control Syst. Technol. 8(2), 321-331 (2000) · doi:10.1109/87.826803
[15] Krstic, M., Kanellakopoulos, I., Kokotovic, P.: Nonlinear and Adaptive Control Design. Wiley, New York (1995) · Zbl 0763.93043
[16] Narendra, K.S., Mukhopadhyay, S.: Adaptive control using neural networks and approximate models. IEEE Trans. Neural Netw. 8(3), 475-485 (1997) · doi:10.1109/72.572089
[17] Narendra, K.S., Driollete, O.A., George, K., Feiler, M.: Adaptive control using multiple models, switching and tuning. Int. J. Adapt. Control Signal Process. 17, 87-102 (2003) · Zbl 1016.93034 · doi:10.1002/acs.740
[18] Sun, J.: A modified model reference adaptive control scheme for improved transient response. IEEE Trans. Autom. Control 34(3), 630-635 (1994) · Zbl 0821.93064 · doi:10.1109/9.280776
[19] Ydstie, B.E.: Transient performance and robustness of direct adaptive control. IEEE Trans. Autom. Control 18, 171-181 (2000)
[20] Huang, C.Q., Peng, X.F., Jia, C.Z., Huang, J.D.: Guaranteed Robustness/performance adaptive control with limited torque for robot manipulator. Mechatronics 18, 641-652 (2008) · doi:10.1016/j.mechatronics.2008.05.001
[21] Landau, Y.: Adaptive Control: The Model Reference Approach. Marcel Decker Inc, New York (Basel) (1979) · Zbl 0475.93002
[22] Astrom, K.J., Wittenmark, B.: Adaptive Control. Addison-Wesley, New York (1995) · Zbl 1163.93350
[23] Craig, J.J., Hsu, P., Sastry, S.S.: Adaptive control of mechanical manipulators. Int. J. Robot. Res. 6(2), 16-28 (1987) · doi:10.1177/027836498700600202
[24] Slotine, J.J.E., Coetsee, J.: Adaptive sliding controller synthesis for nonlinear systems. Int. J. Control 43, 1631-1635 (1986) · Zbl 0592.93037 · doi:10.1080/00207178608933564
[25] Seraji, H.: A new approach to adaptive control of manipulators. ASME J. Dyn. Syst. Meas. Control 109(3), 193-202 (1987) · Zbl 0634.93052 · doi:10.1115/1.3143844
[26] Seo, D., Akella, M.R.: Non-certainty equivalent adaptive control for robot manipulator systems. Syst. Control Lett. 58, 304-308 (2009) · Zbl 1159.93345 · doi:10.1016/j.sysconle.2008.11.008
[27] Ortega, R., Sheo, L., Astolfi, A.: Immersion and invariance adaptive control of linear multi variable systems. Syst. Control Lett. 49, 37-47 (2003) · Zbl 1157.93429 · doi:10.1016/S0167-6911(02)00341-9
[28] Astolfi, A., Ortega, R., Liu, H., Netto, M.S.: Two solutions to the adaptive visual servoing problem. IEEE Trans. Robot. Autom. 18, 387-392 (2002) · doi:10.1109/TRA.2002.1019475
[29] Koul, M.H., Kumar, P., Singh, P.K., Manivannan, M., Saha, S.K.: Gravity compensation for PHANToM, Omni haptic interface. In: The 1st Joint International Conference on Multibody System Dynamics, May 25-27, Finland (2010) · Zbl 1319.93033
[30] Mohammadi, A., Tavakoli, M., Jazayeri, A.: PHANSIM: a simulink toolkit for the sensable PHANToM haptic devices. In: Proceedings of the 23rd CANCAM, Canada, pp. 787-790 (2011)
[31] OpenHaptics Toolkit, The SenSable Technologies Inc., USA, http://www.sensable.com/products-openhapticstoolkit.htm/
[32] Mohammadi, A., Tavakoli, M., Marquez, H., Hashemzadeh, F.: Nonlinear disturbance observer design for robotic manipulators. Control Eng. Pract. 21, 253-267 (2013) · doi:10.1016/j.conengprac.2012.10.008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.