Li, Yanjiao; Li, Bowen; Li, Xiaojun Uniform random attractors for a non-autonomous stochastic strongly damped wave equation on \(\mathbb{R}^{\mathbb{N}}\). (English) Zbl 07517430 Z. Angew. Math. Phys. 73, No. 3, Paper No. 106, 30 p. (2022). MSC: 37L55 35B40 60H15 35L05 37L05 PDF BibTeX XML Cite \textit{Y. Li} et al., Z. Angew. Math. Phys. 73, No. 3, Paper No. 106, 30 p. (2022; Zbl 07517430) Full Text: DOI OpenURL
Hong, Jialin; Hou, Baohui; Sun, Liying Energy-preserving fully-discrete schemes for nonlinear stochastic wave equations with multiplicative noise. (English) Zbl 07517148 J. Comput. Phys. 451, Article ID 110829, 20 p. (2022). MSC: 60Hxx 65Mxx 65Cxx PDF BibTeX XML Cite \textit{J. Hong} et al., J. Comput. Phys. 451, Article ID 110829, 20 p. (2022; Zbl 07517148) Full Text: DOI OpenURL
Kim, Ildoo An \(L_p\)-maximal regularity estimate of moments of solutions to second-order stochastic partial differential equations. (English) Zbl 07507363 Stoch. Partial Differ. Equ., Anal. Comput. 10, No. 1, 278-316 (2022). MSC: 60H15 35R60 PDF BibTeX XML Cite \textit{I. Kim}, Stoch. Partial Differ. Equ., Anal. Comput. 10, No. 1, 278--316 (2022; Zbl 07507363) Full Text: DOI OpenURL
Li, Zonghao; Zeng, Caibin Center manifolds for ill-posed stochastic evolution equations. (English) Zbl 07506978 Discrete Contin. Dyn. Syst., Ser. B 27, No. 5, 2483-2499 (2022). MSC: 37H05 37L10 47D62 45D05 47D06 PDF BibTeX XML Cite \textit{Z. Li} and \textit{C. Zeng}, Discrete Contin. Dyn. Syst., Ser. B 27, No. 5, 2483--2499 (2022; Zbl 07506978) Full Text: DOI OpenURL
Yuan, Linglong Kingman’s model with random mutation probabilities: convergence and condensation. I. (English) Zbl 07500631 Adv. Appl. Probab. 54, No. 1, 311-335 (2022). MSC: 92D15 92D25 60F05 60G10 PDF BibTeX XML Cite \textit{L. Yuan}, Adv. Appl. Probab. 54, No. 1, 311--335 (2022; Zbl 07500631) Full Text: DOI OpenURL
Kozitsky, Yuri; Tanaś, Agnieszka Evolution of states of an infinite particle system with nonlocal branching. (English) Zbl 07490269 J. Evol. Equ. 22, No. 1, Paper No. 7, 25 p. (2022). MSC: 35Q84 37A50 60J80 93E03 PDF BibTeX XML Cite \textit{Y. Kozitsky} and \textit{A. Tanaś}, J. Evol. Equ. 22, No. 1, Paper No. 7, 25 p. (2022; Zbl 07490269) Full Text: DOI arXiv OpenURL
Carrizo Vergara, Ricardo; Allard, Denis; Desassis, Nicolas A general framework for SPDE-based stationary random fields. (English) Zbl 07467712 Bernoulli 28, No. 1, 1-32 (2022). MSC: 62Mxx 60Gxx 86Axx PDF BibTeX XML Cite \textit{R. Carrizo Vergara} et al., Bernoulli 28, No. 1, 1--32 (2022; Zbl 07467712) Full Text: DOI arXiv Link OpenURL
Bignamini, D. A.; Ferrari, S. On generators of transition semigroups associated to semilinear stochastic partial differential equations. (English) Zbl 07451098 J. Math. Anal. Appl. 508, No. 1, Article ID 125878, 40 p. (2022). MSC: 60J35 46E35 47D06 60H15 PDF BibTeX XML Cite \textit{D. A. Bignamini} and \textit{S. Ferrari}, J. Math. Anal. Appl. 508, No. 1, Article ID 125878, 40 p. (2022; Zbl 07451098) Full Text: DOI arXiv OpenURL
Wu, Weina; Zhai, Jianliang Stochastic generalized porous media equations driven by Lévy noise with increasing Lipschitz nonlinearities. (English) Zbl 1481.35420 J. Evol. Equ. 21, No. 4, 4845-4871 (2021). MSC: 35R60 35K65 35K90 47D06 PDF BibTeX XML Cite \textit{W. Wu} and \textit{J. Zhai}, J. Evol. Equ. 21, No. 4, 4845--4871 (2021; Zbl 1481.35420) Full Text: DOI arXiv OpenURL
Kovács, M.; Sikolya, E. Stochastic reaction-diffusion equations on networks. (English) Zbl 1481.35416 J. Evol. Equ. 21, No. 4, 4213-4260 (2021). MSC: 35R60 35K57 35R02 47D06 PDF BibTeX XML Cite \textit{M. Kovács} and \textit{E. Sikolya}, J. Evol. Equ. 21, No. 4, 4213--4260 (2021; Zbl 1481.35416) Full Text: DOI arXiv OpenURL
Bauzet, Caroline; Lebon, Frédéric; Maitlo, Asghar Ali; Zimmermann, Aleksandra Well-posedness for the coupling of a random heat equation with a multiplicative stochastic Barenblatt equation. (English) Zbl 1479.60121 Stochastic Anal. Appl. 39, No. 6, 1095-1129 (2021). MSC: 60H15 47J35 35K05 35R60 PDF BibTeX XML Cite \textit{C. Bauzet} et al., Stochastic Anal. Appl. 39, No. 6, 1095--1129 (2021; Zbl 1479.60121) Full Text: DOI arXiv OpenURL
Kovács, Mihály; Sikolya, Eszter Corrigendum to “On the stochastic Allen-Cahn equation on networks with multiplicative noise” [Electron. J. Qual. Theory Differ. Equ. 2021, No. 7, 24 p.]. (English) Zbl 07444209 Electron. J. Qual. Theory Differ. Equ. 2021, Paper No. 52, 4 p. (2021). MSC: 60H15 35R60 35R02 47D06 PDF BibTeX XML Cite \textit{M. Kovács} and \textit{E. Sikolya}, Electron. J. Qual. Theory Differ. Equ. 2021, Paper No. 52, 4 p. (2021; Zbl 07444209) Full Text: DOI OpenURL
Liu, Xianming Random invariant manifolds of stochastic evolution equations driven by Gaussian and non-Gaussian noises. (English) Zbl 07441719 J. Math. Phys. 62, No. 11, 112702, 20 p. (2021). MSC: 60H30 60G51 60H10 37L25 PDF BibTeX XML Cite \textit{X. Liu}, J. Math. Phys. 62, No. 11, 112702, 20 p. (2021; Zbl 07441719) Full Text: DOI OpenURL
Breckner, Brigitte E.; Lisei, Hannelore; Ionuţ Şimon, Gheorghe Optimal control results for a class of stochastic Schrödinger equations. (English) Zbl 07424193 Appl. Math. Comput. 407, Article ID 126310, 17 p. (2021). MSC: 93E20 81Q05 60H15 PDF BibTeX XML Cite \textit{B. E. Breckner} et al., Appl. Math. Comput. 407, Article ID 126310, 17 p. (2021; Zbl 07424193) Full Text: DOI OpenURL
Feng, Sheng-Ya; Chang, Der-Chen Evolution equations and diffusion operators for demographic dynamics. (English) Zbl 1471.91385 Appl. Anal. 100, No. 12, 2668-2683 (2021). MSC: 91D20 35Q91 35K08 60J60 PDF BibTeX XML Cite \textit{S.-Y. Feng} and \textit{D.-C. Chang}, Appl. Anal. 100, No. 12, 2668--2683 (2021; Zbl 1471.91385) Full Text: DOI OpenURL
Yang, Xiangdong Invariant manifolds for nonautonomous stochastic evolution equation. (English) Zbl 07402997 Osaka J. Math. 58, No. 3, 711-729 (2021). Reviewer: Latifa Debbi (M’Sila) MSC: 60H15 37D10 37L25 37L55 60J65 PDF BibTeX XML Cite \textit{X. Yang}, Osaka J. Math. 58, No. 3, 711--729 (2021; Zbl 07402997) Full Text: Link OpenURL
Lü, Qi; Zhang, Haisen; Zhang, Xu Second order necessary conditions for optimal control problems of stochastic evolution equations. (English) Zbl 1478.93738 SIAM J. Control Optim. 59, No. 4, 2924-2954 (2021). Reviewer: Hector Jasso (Ciudad de México) MSC: 93E20 60H07 60H15 PDF BibTeX XML Cite \textit{Q. Lü} et al., SIAM J. Control Optim. 59, No. 4, 2924--2954 (2021; Zbl 1478.93738) Full Text: DOI arXiv OpenURL
Dai, Haoran; Zhou, Jianjun; Li, Han Infinite horizon stochastic maximum principle for stochastic delay evolution equations in Hilbert spaces. (English) Zbl 1470.93163 Bull. Malays. Math. Sci. Soc. (2) 44, No. 5, 3229-3258 (2021). MSC: 93E20 93C25 60H30 49K27 49N10 PDF BibTeX XML Cite \textit{H. Dai} et al., Bull. Malays. Math. Sci. Soc. (2) 44, No. 5, 3229--3258 (2021; Zbl 1470.93163) Full Text: DOI OpenURL
Sun, Xiao-ke; He, Ping Existence of \(P\)-mean almost periodic mild solution for fractional stochastic neutral functional differential equation. (English) Zbl 1472.34132 Acta Math. Appl. Sin., Engl. Ser. 37, No. 3, 645-656 (2021). MSC: 34K14 34K37 34K40 34K50 47D06 47N20 34K30 PDF BibTeX XML Cite \textit{X.-k. Sun} and \textit{P. He}, Acta Math. Appl. Sin., Engl. Ser. 37, No. 3, 645--656 (2021; Zbl 1472.34132) Full Text: DOI OpenURL
Almi, Stefano; Morandotti, Marco; Solombrino, Francesco A multi-step Lagrangian scheme for spatially inhomogeneous evolutionary games. (English) Zbl 1476.35282 J. Evol. Equ. 21, No. 2, 2691-2733 (2021). MSC: 35Q91 60J76 37C10 47J35 58D25 91A22 91A15 91A16 35R60 PDF BibTeX XML Cite \textit{S. Almi} et al., J. Evol. Equ. 21, No. 2, 2691--2733 (2021; Zbl 1476.35282) Full Text: DOI arXiv OpenURL
Hayashi, Kohei Spatial-segregation limit for exclusion processes with two components under unbalanced reaction. (English) Zbl 1470.76108 Electron. J. Probab. 26, Paper No. 51, 36 p. (2021). MSC: 76V05 76R50 76M35 35Q35 PDF BibTeX XML Cite \textit{K. Hayashi}, Electron. J. Probab. 26, Paper No. 51, 36 p. (2021; Zbl 1470.76108) Full Text: DOI arXiv OpenURL
Priola, Enrico An optimal regularity result for Kolmogorov equations and weak uniqueness for some critical SPDEs. (English) Zbl 1467.35367 Ann. Probab. 49, No. 3, 1310-1346 (2021). MSC: 35R60 35B65 60H15 PDF BibTeX XML Cite \textit{E. Priola}, Ann. Probab. 49, No. 3, 1310--1346 (2021; Zbl 1467.35367) Full Text: DOI arXiv OpenURL
Kovács, Mihály; Sikolya, Eszter On the stochastic Allen-Cahn equation on networks with multiplicative noise. (English) Zbl 1474.60163 Electron. J. Qual. Theory Differ. Equ. 2021, Paper No. 7, 24 p. (2021). MSC: 60H15 35R60 35R02 47D06 PDF BibTeX XML Cite \textit{M. Kovács} and \textit{E. Sikolya}, Electron. J. Qual. Theory Differ. Equ. 2021, Paper No. 7, 24 p. (2021; Zbl 1474.60163) Full Text: DOI arXiv OpenURL
Berg, André; Cohen, David; Dujardin, Guillaume Lie-Trotter splitting for the nonlinear stochastic Manakov system. (English) Zbl 07359311 J. Sci. Comput. 88, No. 1, Paper No. 6, 31 p. (2021). MSC: 65C30 65C50 65J08 60H15 60-08 35Q55 PDF BibTeX XML Cite \textit{A. Berg} et al., J. Sci. Comput. 88, No. 1, Paper No. 6, 31 p. (2021; Zbl 07359311) Full Text: DOI arXiv OpenURL
Cheng, Lijuan; Ren, Yong Perturbed second-order stochastic evolution equations. (English) Zbl 1478.60173 Qual. Theory Dyn. Syst. 20, No. 2, Paper No. 37, 21 p. (2021). MSC: 60H10 60H20 34K50 PDF BibTeX XML Cite \textit{L. Cheng} and \textit{Y. Ren}, Qual. Theory Dyn. Syst. 20, No. 2, Paper No. 37, 21 p. (2021; Zbl 1478.60173) Full Text: DOI OpenURL
Hotta, Ikkei; Schleißinger, Sebastian Limits of radial multiple SLE and a Burgers-Loewner differential equation. (English) Zbl 1470.37100 J. Theor. Probab. 34, No. 2, 755-783 (2021). MSC: 37L55 37L05 46L54 60J67 PDF BibTeX XML Cite \textit{I. Hotta} and \textit{S. Schleißinger}, J. Theor. Probab. 34, No. 2, 755--783 (2021; Zbl 1470.37100) Full Text: DOI arXiv OpenURL
Bukal, Mario Well-posedness and convergence of a numerical scheme for the corrected Derrida-Lebowitz-Speer-Spohn equation using the Hellinger distance. (English) Zbl 1476.65165 Discrete Contin. Dyn. Syst. 41, No. 7, 3389-3414 (2021). Reviewer: Marius Ghergu (Dublin) MSC: 65M06 65N06 65M12 65M15 35B45 35A01 35A02 35D30 82C31 35Q82 PDF BibTeX XML Cite \textit{M. Bukal}, Discrete Contin. Dyn. Syst. 41, No. 7, 3389--3414 (2021; Zbl 1476.65165) Full Text: DOI arXiv OpenURL
Lyu, Meng-Ze; Wang, Jin-Min; Chen, Jian-Bing Closed-form solutions for the probability distribution of time-variant maximal value processes for some classes of Markov processes. (English) Zbl 1481.60142 Commun. Nonlinear Sci. Numer. Simul. 99, Article ID 105803, 23 p. (2021). MSC: 60J25 60G70 60J76 PDF BibTeX XML Cite \textit{M.-Z. Lyu} et al., Commun. Nonlinear Sci. Numer. Simul. 99, Article ID 105803, 23 p. (2021; Zbl 1481.60142) Full Text: DOI OpenURL
Su, Xiaofeng; Fu, Xianlong Approximate controllability of second-order stochastic differential systems driven by a Lévy process. (English) Zbl 1465.34086 Appl. Math. Optim. 83, No. 2, 1053-1079 (2021). MSC: 34K35 34K30 34K50 60G51 93B05 PDF BibTeX XML Cite \textit{X. Su} and \textit{X. Fu}, Appl. Math. Optim. 83, No. 2, 1053--1079 (2021; Zbl 1465.34086) Full Text: DOI OpenURL
Borisov, L. A.; Orlov, Y. N. Generalized evolution equation of Wigner function for an arbitrary linear quantization. (English) Zbl 1459.81065 Lobachevskii J. Math. 42, No. 1, 63-69 (2021). MSC: 81S20 81S30 70H05 PDF BibTeX XML Cite \textit{L. A. Borisov} and \textit{Y. N. Orlov}, Lobachevskii J. Math. 42, No. 1, 63--69 (2021; Zbl 1459.81065) Full Text: DOI OpenURL
Nguyen, Nhu N.; Yin, George Stochastic Lotka-Volterra competitive reaction-diffusion systems perturbed by space-time white noise: modeling and analysis. (English) Zbl 1459.60140 J. Differ. Equations 282, 184-232 (2021). MSC: 60H15 60H30 60H40 92D15 92D25 92D40 35K57 PDF BibTeX XML Cite \textit{N. N. Nguyen} and \textit{G. Yin}, J. Differ. Equations 282, 184--232 (2021; Zbl 1459.60140) Full Text: DOI arXiv OpenURL
Fagnola, F.; Mora, C. M. Supercritical Poincaré-Andronov-Hopf bifurcation in a mean-field quantum laser equation. (English) Zbl 1471.37068 Ann. Henri Poincaré 22, No. 1, 171-217 (2021). Reviewer: Irina V. Konopleva (Ul’yanovsk) MSC: 37L10 37L05 37L15 37A60 37N20 47A55 60H30 81S22 82C10 PDF BibTeX XML Cite \textit{F. Fagnola} and \textit{C. M. Mora}, Ann. Henri Poincaré 22, No. 1, 171--217 (2021; Zbl 1471.37068) Full Text: DOI arXiv OpenURL
Li, Xiaojun Uniform random attractors for 2D non-autonomous stochastic Navier-Stokes equations. (English) Zbl 1458.35303 J. Differ. Equations 276, 1-42 (2021). MSC: 35Q30 35B40 37B55 35B41 35B65 76D05 60J65 37L30 37L05 35R60 PDF BibTeX XML Cite \textit{X. Li}, J. Differ. Equations 276, 1--42 (2021; Zbl 1458.35303) Full Text: DOI OpenURL
Bishop, Sheila A.; Eke, Kanayo S.; Okagbue, Hilary I. Advances on asymptotic stability of impulsive stochastic evolution equations. (English) Zbl 1453.37053 Int. J. Math. Comput. Sci. 16, No. 1, 99-109 (2021). MSC: 37H30 37L55 47J35 47H10 PDF BibTeX XML Cite \textit{S. A. Bishop} et al., Int. J. Math. Comput. Sci. 16, No. 1, 99--109 (2021; Zbl 1453.37053) Full Text: Link OpenURL
Mahmudov, N. I. Finite-approximate controllability of semilinear fractional stochastic integro-differential equations. (English) Zbl 07505125 Chaos Solitons Fractals 139, Article ID 110277, 7 p. (2020). MSC: 93-XX 35-XX PDF BibTeX XML Cite \textit{N. I. Mahmudov}, Chaos Solitons Fractals 139, Article ID 110277, 7 p. (2020; Zbl 07505125) Full Text: DOI OpenURL
Han, Yong; Wang, Yuefei An introduction to the stochastic Loewner evolution. (Chinese. English summary) Zbl 07494897 Sci. Sin., Math. 50, No. 6, 795-828 (2020). MSC: 60J67 60J65 30C35 28A80 PDF BibTeX XML Cite \textit{Y. Han} and \textit{Y. Wang}, Sci. Sin., Math. 50, No. 6, 795--828 (2020; Zbl 07494897) Full Text: DOI OpenURL
Hyder, Abd-Allah White noise theory and general improved Kudryashov method for stochastic nonlinear evolution equations with conformable derivatives. (English) Zbl 1482.35251 Adv. Difference Equ. 2020, Paper No. 236, 19 p. (2020). MSC: 35R11 35Q53 60H15 26A33 35Q51 37L55 PDF BibTeX XML Cite \textit{A.-A. Hyder}, Adv. Difference Equ. 2020, Paper No. 236, 19 p. (2020; Zbl 1482.35251) Full Text: DOI OpenURL
Andriatahina, Jocelyn Hajaniaina; Rakotonirina, Dina Miora; Rabeherimanana, Toussaint Joseph Stroock-Varadhan support theorem for random evolution equation in Besov-Orlicz spaces. (English) Zbl 1477.60083 Adv. Math., Sci. J. 9, No. 1, 187-203 (2020). MSC: 60H10 60J60 46E30 PDF BibTeX XML Cite \textit{J. H. Andriatahina} et al., Adv. Math., Sci. J. 9, No. 1, 187--203 (2020; Zbl 1477.60083) Full Text: Link OpenURL
Herman, John; Johnston, Ifan; Toniazzi, Lorenzo Space-time coupled evolution equations and their stochastic solutions. (English) Zbl 1469.35222 Electron. J. Probab. 25, Paper No. 147, 21 p. (2020). MSC: 35R11 35C15 45K05 60H30 PDF BibTeX XML Cite \textit{J. Herman} et al., Electron. J. Probab. 25, Paper No. 147, 21 p. (2020; Zbl 1469.35222) Full Text: DOI arXiv OpenURL
Singh, Vikram; Chaudhary, Renu; Pandey, Dwijendra N. Approximate controllability of second-order non-autonomous stochastic impulsive differential systems. (English) Zbl 1466.34058 Stochastic Anal. Appl. 39, No. 2, 339-356 (2020). MSC: 34G20 34F05 34A37 37C60 34H05 93B05 47N20 PDF BibTeX XML Cite \textit{V. Singh} et al., Stochastic Anal. Appl. 39, No. 2, 339--356 (2020; Zbl 1466.34058) Full Text: DOI OpenURL
Lü, Qi Stochastic linear quadratic optimal control problems for mean-field stochastic evolution equations. (English) Zbl 1467.93332 ESAIM, Control Optim. Calc. Var. 26, Paper No. 127, 28 p. (2020). Reviewer: Kurt Marti (München) MSC: 93E20 49N10 93B52 PDF BibTeX XML Cite \textit{Q. Lü}, ESAIM, Control Optim. Calc. Var. 26, Paper No. 127, 28 p. (2020; Zbl 1467.93332) Full Text: DOI OpenURL
Chen, Li; Wu, Zhen Stochastic optimal control problem in advertising model with delay. (English) Zbl 1455.93209 J. Syst. Sci. Complex. 33, No. 4, 968-987 (2020). MSC: 93E20 90B60 93C43 93C25 PDF BibTeX XML Cite \textit{L. Chen} and \textit{Z. Wu}, J. Syst. Sci. Complex. 33, No. 4, 968--987 (2020; Zbl 1455.93209) Full Text: DOI OpenURL
Cialenco, Igor; Delgado-Vences, Francisco; Kim, Hyun-Jung Drift estimation for discretely sampled SPDEs. (English) Zbl 1455.60081 Stoch. Partial Differ. Equ., Anal. Comput. 8, No. 4, 895-920 (2020). MSC: 60H15 65L09 62M99 PDF BibTeX XML Cite \textit{I. Cialenco} et al., Stoch. Partial Differ. Equ., Anal. Comput. 8, No. 4, 895--920 (2020; Zbl 1455.60081) Full Text: DOI arXiv OpenURL
Fukushima, Masatoshi Komatu-Loewner differential equations. (English. Japanese original) Zbl 1456.30021 Sugaku Expo. 33, No. 2, 239-260 (2020); translation from Sūgaku 69, No. 2, 137-156 (2017). Reviewer: Dmitri V. Prokhorov (Saratov) MSC: 30C20 60H30 60J67 PDF BibTeX XML Cite \textit{M. Fukushima}, Sugaku Expo. 33, No. 2, 239--260 (2020; Zbl 1456.30021); translation from Sūgaku 69, No. 2, 137--156 (2017) Full Text: DOI OpenURL
Friesen, Martin; Kutoviy, Oleksandr Nonlinear perturbations of evolution systems in scales of Banach spaces. (English) Zbl 1452.35220 Nonlinearity 33, No. 11, 6134-6156 (2020). MSC: 35Q92 92D25 82C31 47H14 47H20 35Q84 PDF BibTeX XML Cite \textit{M. Friesen} and \textit{O. Kutoviy}, Nonlinearity 33, No. 11, 6134--6156 (2020; Zbl 1452.35220) Full Text: DOI arXiv OpenURL
Samadyar, Nasrin; Ordokhani, Yadollah; Mirzaee, Farshid Hybrid Taylor and block-pulse functions operational matrix algorithm and its application to obtain the approximate solution of stochastic evolution equation driven by fractional Brownian motion. (English) Zbl 07265405 Commun. Nonlinear Sci. Numer. Simul. 90, Article ID 105346, 13 p. (2020). MSC: 65C30 65R20 60H10 60G22 PDF BibTeX XML Cite \textit{N. Samadyar} et al., Commun. Nonlinear Sci. Numer. Simul. 90, Article ID 105346, 13 p. (2020; Zbl 07265405) Full Text: DOI OpenURL
McKibben, Mark A.; Webster, Micah A class of second-order McKean-Vlasov stochastic evolution equations driven by fractional Brownian motion and Poisson jumps. (English) Zbl 1448.60144 Comput. Math. Appl. 79, No. 2, 391-406 (2020). MSC: 60H15 35Q83 35R60 60G22 60J76 PDF BibTeX XML Cite \textit{M. A. McKibben} and \textit{M. Webster}, Comput. Math. Appl. 79, No. 2, 391--406 (2020; Zbl 1448.60144) Full Text: DOI OpenURL
Ang, Morris; Park, Minjae; Wang, Yilin Large deviations of radial \(SLE_{\infty}\). (English) Zbl 1459.60174 Electron. J. Probab. 25, Paper No. 102, 13 p. (2020). MSC: 60J67 60F10 PDF BibTeX XML Cite \textit{M. Ang} et al., Electron. J. Probab. 25, Paper No. 102, 13 p. (2020; Zbl 1459.60174) Full Text: DOI arXiv Euclid OpenURL
Calvez, Vincent; Iglesias, Susely Figueroa; Hivert, Hélène; Méléard, Sylvie; Melnykova, Anna; Nordmann, Samuel Horizontal gene transfer: numerical comparison between stochastic and deterministic approaches. (English. French summary) Zbl 1447.92248 ESAIM, Proc. Surv. 67, 135-160 (2020). MSC: 92D10 92D15 92D25 35Q92 PDF BibTeX XML Cite \textit{V. Calvez} et al., ESAIM, Proc. Surv. 67, 135--160 (2020; Zbl 1447.92248) Full Text: DOI arXiv OpenURL
Song, Mingzhan; Qian, Xu; Shen, Tianlong; Song, Songhe Stochastic conformal schemes for damped stochastic Klein-Gordon equation with additive noise. (English) Zbl 1436.35334 J. Comput. Phys. 411, Article ID 109300, 19 p. (2020). MSC: 35R60 60H15 35B06 PDF BibTeX XML Cite \textit{M. Song} et al., J. Comput. Phys. 411, Article ID 109300, 19 p. (2020; Zbl 1436.35334) Full Text: DOI OpenURL
Lods, B.; Mokhtar-Kharroubi, M.; Rudnicki, R. Invariant density and time asymptotics for collisionless kinetic equations with partly diffuse boundary operators. (English) Zbl 1439.82037 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 37, No. 4, 877-923 (2020). MSC: 82C40 35F15 47D06 35B40 35R06 35R60 35Q49 PDF BibTeX XML Cite \textit{B. Lods} et al., Ann. Inst. Henri Poincaré, Anal. Non Linéaire 37, No. 4, 877--923 (2020; Zbl 1439.82037) Full Text: DOI arXiv OpenURL
Guzik, Grzegorz On supports of evolution systems of measures for converging in law non-homogenous Markov processes. (English) Zbl 1444.37043 Topol. Methods Nonlinear Anal. 55, No. 1, 19-36 (2020). Reviewer: Oleg K. Zakusilo (Kyïv) MSC: 37H30 37H20 37A50 60J28 60H15 47D07 PDF BibTeX XML Cite \textit{G. Guzik}, Topol. Methods Nonlinear Anal. 55, No. 1, 19--36 (2020; Zbl 1444.37043) Full Text: DOI Euclid OpenURL
Murayama, Takuya On the slit motion obeying chordal Komatu-Loewner equation with finite explosion time. (English) Zbl 1434.60232 J. Evol. Equ. 20, No. 1, 233-255 (2020). MSC: 60J67 30C20 60J70 60H10 PDF BibTeX XML Cite \textit{T. Murayama}, J. Evol. Equ. 20, No. 1, 233--255 (2020; Zbl 1434.60232) Full Text: DOI arXiv OpenURL
Tölle, Jonas M. Stochastic evolution equations with singular drift and gradient noise via curvature and commutation conditions. (English) Zbl 1439.35250 Stochastic Processes Appl. 130, No. 5, 3220-3248 (2020). MSC: 35K55 35K92 60H15 49J40 58J65 PDF BibTeX XML Cite \textit{J. M. Tölle}, Stochastic Processes Appl. 130, No. 5, 3220--3248 (2020; Zbl 1439.35250) Full Text: DOI arXiv OpenURL
Kunszenti-Kovács, Dávid On the error of Fokker-Planck approximations of some one-step density dependent processes. (English) Zbl 1474.35604 Differ. Integral Equ. 33, No. 1-2, 67-90 (2020). MSC: 35Q84 47D06 47N40 60J28 PDF BibTeX XML Cite \textit{D. Kunszenti-Kovács}, Differ. Integral Equ. 33, No. 1--2, 67--90 (2020; Zbl 1474.35604) Full Text: arXiv OpenURL
Korennoy, Ya. A.; Man’Ko, V. I. Conditions for quantum and classical tomogram-like functions to describe system states and to retain normalizations during time evolution. (English) Zbl 1433.81014 Int. J. Theor. Phys. 59, No. 2, 574-595 (2020). MSC: 81P18 81Q05 81S30 81S25 PDF BibTeX XML Cite \textit{Ya. A. Korennoy} and \textit{V. I. Man'Ko}, Int. J. Theor. Phys. 59, No. 2, 574--595 (2020; Zbl 1433.81014) Full Text: DOI arXiv OpenURL
Lambert, Amaury; Schertzer, Emmanuel Coagulation-transport equations and the nested coalescents. (English) Zbl 1434.60298 Probab. Theory Relat. Fields 176, No. 1-2, 77-147 (2020). MSC: 60K35 35Q91 35R09 60G09 60B10 60G55 60G57 60J25 60J76 60J80 62G30 92D15 PDF BibTeX XML Cite \textit{A. Lambert} and \textit{E. Schertzer}, Probab. Theory Relat. Fields 176, No. 1--2, 77--147 (2020; Zbl 1434.60298) Full Text: DOI arXiv OpenURL
Hussain, Javed On existence and invariance of sphere, of solutions of constrained evolution equation. (English) Zbl 1429.35110 Int. J. Math. Comput. Sci. 15, No. 1, 325-345 (2020). MSC: 35K15 35R01 35K55 35Q30 35Q60 58J65 PDF BibTeX XML Cite \textit{J. Hussain}, Int. J. Math. Comput. Sci. 15, No. 1, 325--345 (2020; Zbl 1429.35110) Full Text: Link OpenURL
Gao, Lili; Yan, Litan \(p\)th mean almost periodic solutions to neutral stochastic evolution equations with infinite delay and Poisson jumps. (English) Zbl 07489631 Adv. Difference Equ. 2019, Paper No. 296, 17 p. (2019). MSC: 34K50 60H15 34K40 34K13 34K14 PDF BibTeX XML Cite \textit{L. Gao} and \textit{L. Yan}, Adv. Difference Equ. 2019, Paper No. 296, 17 p. (2019; Zbl 07489631) Full Text: DOI OpenURL
Zhan, Desheng; Chu, Jing Anticipated time-dependent backward stochastic evolution equations. (English) Zbl 1449.60110 J. Univ. Sci. Technol. China 49, No. 3, 203-209 (2019). MSC: 60H15 PDF BibTeX XML Cite \textit{D. Zhan} and \textit{J. Chu}, J. Univ. Sci. Technol. China 49, No. 3, 203--209 (2019; Zbl 1449.60110) Full Text: DOI OpenURL
Sun, Xianbo; Zhang, Yahui; Kennedy, David On stochastic dynamic analysis and assessment of bistable structures. (English) Zbl 1437.70042 Nonlinear Dyn. 95, No. 4, 3205-3218 (2019). MSC: 70L05 70L10 35Q84 PDF BibTeX XML Cite \textit{X. Sun} et al., Nonlinear Dyn. 95, No. 4, 3205--3218 (2019; Zbl 1437.70042) Full Text: DOI Link OpenURL
Moulay, Abdelkader; Ouahab, Abdelghani Random evolution equations with bounded fractional integral-feedback. (English) Zbl 1434.35282 Area, Iván (ed.) et al., Nonlinear analysis and boundary value problems. NABVP 2018, Santiago de Compostela, Spain, September 4–7, 2018. Proceedings of the international conference. Dedicated to Juan J. Nieto on the occasion of his 60th birthday. Cham: Springer. Springer Proc. Math. Stat. 292, 265-288 (2019). MSC: 35R60 93D15 47D06 35R11 PDF BibTeX XML Cite \textit{A. Moulay} and \textit{A. Ouahab}, Springer Proc. Math. Stat. 292, 265--288 (2019; Zbl 1434.35282) Full Text: DOI OpenURL
Orelma, Heikki Continuum approach to high-cycle fatigue. The finite life-time case with stochastic stress history. (English) Zbl 1449.74003 Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki 23, No. 3, 452-463 (2019). MSC: 74A10 74R20 74S60 PDF BibTeX XML Cite \textit{H. Orelma}, Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki 23, No. 3, 452--463 (2019; Zbl 1449.74003) Full Text: DOI MNR OpenURL
Liu, Kai Stability in distribution for stochastic differential equations with memory driven by positive semigroups and Lévy processes. (English) Zbl 1433.60057 Appl. Math. Comput. 362, Article ID 124580, 10 p. (2019). MSC: 60H15 60G15 60H05 34K30 34K50 47D06 PDF BibTeX XML Cite \textit{K. Liu}, Appl. Math. Comput. 362, Article ID 124580, 10 p. (2019; Zbl 1433.60057) Full Text: DOI OpenURL
Zhang, Yu Pontryagin-type stochastic maximum principle of stochastic evolution equation with a random generator. (English) Zbl 1438.60085 J. Sichuan Univ., Nat. Sci. Ed. 56, No. 3, 377-386 (2019). MSC: 60H10 PDF BibTeX XML Cite \textit{Y. Zhang}, J. Sichuan Univ., Nat. Sci. Ed. 56, No. 3, 377--386 (2019; Zbl 1438.60085) Full Text: DOI OpenURL
Sang, Liheng; Lv, Wenhua; Tang, Zheng Stochastic evolution equations driven by Rosenblatt process in a Hilbert space with finite delay. (Chinese. English summary) Zbl 1438.60080 Chin. J. Eng. Math. 36, No. 3, 309-321 (2019). MSC: 60H10 PDF BibTeX XML Cite \textit{L. Sang} et al., Chin. J. Eng. Math. 36, No. 3, 309--321 (2019; Zbl 1438.60080) Full Text: DOI OpenURL
Cao, Junfei; Huang, Zaitang Asymptotic almost periodicity of stochastic evolution equations. (English) Zbl 1427.34080 Bull. Malays. Math. Sci. Soc. (2) 42, No. 5, 2295-2332 (2019). MSC: 34F05 34C27 34G20 PDF BibTeX XML Cite \textit{J. Cao} and \textit{Z. Huang}, Bull. Malays. Math. Sci. Soc. (2) 42, No. 5, 2295--2332 (2019; Zbl 1427.34080) Full Text: DOI OpenURL
Murayama, Takuya Chordal Komatu-Loewner equation for a family of continuously growing hulls. (English) Zbl 1422.60141 Stochastic Processes Appl. 129, No. 8, 2968-2990 (2019). MSC: 60J67 30C20 60J70 60H10 PDF BibTeX XML Cite \textit{T. Murayama}, Stochastic Processes Appl. 129, No. 8, 2968--2990 (2019; Zbl 1422.60141) Full Text: DOI arXiv OpenURL
Li, Pei-Sen A continuous-state polynomial branching process. (English) Zbl 1422.60149 Stochastic Processes Appl. 129, No. 8, 2941-2967 (2019). MSC: 60J80 60H30 92D15 92D25 PDF BibTeX XML Cite \textit{P.-S. Li}, Stochastic Processes Appl. 129, No. 8, 2941--2967 (2019; Zbl 1422.60149) Full Text: DOI arXiv OpenURL
Müller, Marvin S. Approximation of the interface condition for stochastic Stefan-type problems. (English) Zbl 1420.60085 Discrete Contin. Dyn. Syst., Ser. B 24, No. 8, 4317-4339 (2019). MSC: 60H15 58D25 35A35 91G80 PDF BibTeX XML Cite \textit{M. S. Müller}, Discrete Contin. Dyn. Syst., Ser. B 24, No. 8, 4317--4339 (2019; Zbl 1420.60085) Full Text: DOI arXiv OpenURL
Bauzet, Caroline; Lebon, Frédéric; Maitlo, Asghar The Neumann problem for a Barenblatt equation with a multiplicative stochastic force and a nonlinear source term. (English) Zbl 07086120 NoDEA, Nonlinear Differ. Equ. Appl. 26, No. 3, Paper No. 21, 28 p. (2019). MSC: 47J35 60H15 47H10 47H05 PDF BibTeX XML Cite \textit{C. Bauzet} et al., NoDEA, Nonlinear Differ. Equ. Appl. 26, No. 3, Paper No. 21, 28 p. (2019; Zbl 07086120) Full Text: DOI HAL OpenURL
Cui, Jing; Rong, Wenping Existence and stability of \(\mu\)-pseudo almost automorphic solutions for stochastic evolution equations. (English) Zbl 1418.60071 Front. Math. China 14, No. 2, 261-280 (2019). MSC: 60H15 60G51 34C27 35R60 PDF BibTeX XML Cite \textit{J. Cui} and \textit{W. Rong}, Front. Math. China 14, No. 2, 261--280 (2019; Zbl 1418.60071) Full Text: DOI OpenURL
Wang, Yilin The energy of a deterministic Loewner chain: reversibility and interpretation via SLE\(_{0+}\). (English) Zbl 1422.30031 J. Eur. Math. Soc. (JEMS) 21, No. 7, 1915-1941 (2019). MSC: 30C55 60J67 PDF BibTeX XML Cite \textit{Y. Wang}, J. Eur. Math. Soc. (JEMS) 21, No. 7, 1915--1941 (2019; Zbl 1422.30031) Full Text: DOI arXiv OpenURL
Blath, Jochen; Buzzoni, Eugenio; González Casanova, Adrián; Wilke-Berenguer, Maite Structural properties of the seed bank and the two island diffusion. (English) Zbl 1478.92127 J. Math. Biol. 79, No. 1, 369-392 (2019). MSC: 92D10 92D15 60J70 PDF BibTeX XML Cite \textit{J. Blath} et al., J. Math. Biol. 79, No. 1, 369--392 (2019; Zbl 1478.92127) Full Text: DOI arXiv OpenURL
Hong, Jialin; Huang, Chuying; Liu, Zhihui Optimal regularity of stochastic evolution equations in M-type 2 Banach spaces. (English) Zbl 1412.60090 J. Differ. Equations 267, No. 3, 1955-1971 (2019). MSC: 60H15 60H30 35R60 PDF BibTeX XML Cite \textit{J. Hong} et al., J. Differ. Equations 267, No. 3, 1955--1971 (2019; Zbl 1412.60090) Full Text: DOI arXiv OpenURL
Lü, Qi Well-posedness of stochastic Riccati equations and closed-loop solvability for stochastic linear quadratic optimal control problems. (English) Zbl 1411.93197 J. Differ. Equations 267, No. 1, 180-227 (2019). MSC: 93E20 49N10 49N35 PDF BibTeX XML Cite \textit{Q. Lü}, J. Differ. Equations 267, No. 1, 180--227 (2019; Zbl 1411.93197) Full Text: DOI arXiv OpenURL
Malik, Muslim; Dhayal, Rajesh; Abbas, Syed Exact controllability of a retarded fractional differential equation with non-instantaneous impulses. (English) Zbl 1411.34110 Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 26, No. 1, 53-69 (2019). MSC: 34K50 93B05 47D06 34K37 34K30 34K45 47N20 PDF BibTeX XML Cite \textit{M. Malik} et al., Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 26, No. 1, 53--69 (2019; Zbl 1411.34110) Full Text: Link OpenURL
Hong, Jialin; Liu, Zhihui Well-posedness and optimal regularity of stochastic evolution equations with multiplicative noises. (English) Zbl 1418.60098 J. Differ. Equations 266, No. 8, 4712-4745 (2019). MSC: 60H35 60H15 PDF BibTeX XML Cite \textit{J. Hong} and \textit{Z. Liu}, J. Differ. Equations 266, No. 8, 4712--4745 (2019; Zbl 1418.60098) Full Text: DOI arXiv OpenURL
Shen, Jun; Zhao, Junyilang; Lu, Kening; Wang, Bixiang The Wong-Zakai approximations of invariant manifolds and foliations for stochastic evolution equations. (English) Zbl 1418.60086 J. Differ. Equations 266, No. 8, 4568-4623 (2019). MSC: 60H15 37H10 37L55 37D10 PDF BibTeX XML Cite \textit{J. Shen} et al., J. Differ. Equations 266, No. 8, 4568--4623 (2019; Zbl 1418.60086) Full Text: DOI OpenURL
Hornung, Luca Quasilinear parabolic stochastic evolution equations via maximal \(L^p\)-regularity. (English) Zbl 1433.60055 Potential Anal. 50, No. 2, 279-326 (2019). Reviewer: Feng-Yu Wang (Swansea) MSC: 60H15 60H30 35K59 65J08 58D25 76A05 35Q35 35K57 PDF BibTeX XML Cite \textit{L. Hornung}, Potential Anal. 50, No. 2, 279--326 (2019; Zbl 1433.60055) Full Text: DOI arXiv OpenURL
Zhang, Xuping; Chen, Pengyu; Abdelmonem, Ahmed; Li, Yongxiang Mild solution of stochastic partial differential equation with nonlocal conditions and noncompact semigroups. (English) Zbl 07007940 Math. Slovaca 69, No. 1, 111-124 (2019). MSC: 60H15 34F05 35R60 47J35 PDF BibTeX XML Cite \textit{X. Zhang} et al., Math. Slovaca 69, No. 1, 111--124 (2019; Zbl 07007940) Full Text: DOI OpenURL
Li, Yajing; Wang, Yejuan The existence and asymptotic behavior of solutions to fractional stochastic evolution equations with infinite delay. (English) Zbl 1406.35469 J. Differ. Equations 266, No. 6, 3514-3558 (2019). MSC: 35R11 35R60 35A01 PDF BibTeX XML Cite \textit{Y. Li} and \textit{Y. Wang}, J. Differ. Equations 266, No. 6, 3514--3558 (2019; Zbl 1406.35469) Full Text: DOI OpenURL
Toniazzi, Lorenzo Stochastic classical solutions for space-time fractional evolution equations on a bounded domain. (English) Zbl 1401.60126 J. Math. Anal. Appl. 469, No. 2, 594-622 (2019). MSC: 60H15 35R11 35R60 60J60 PDF BibTeX XML Cite \textit{L. Toniazzi}, J. Math. Anal. Appl. 469, No. 2, 594--622 (2019; Zbl 1401.60126) Full Text: DOI arXiv OpenURL
Xu, Liping; Li, Zhi Stochastic fractional evolution equations with fractional Brownian motion and infinite delay. (English) Zbl 1427.35342 Appl. Math. Comput. 336, 36-46 (2018). MSC: 35R11 35R60 60H15 60G15 60H05 PDF BibTeX XML Cite \textit{L. Xu} and \textit{Z. Li}, Appl. Math. Comput. 336, 36--46 (2018; Zbl 1427.35342) Full Text: DOI OpenURL
Cao, Junfei; Wu, Fengong; Zhu, Yingrun Existence of mild solutions for semilinear stochastic evolution equations with nonlocal initial conditions. (English) Zbl 1438.34214 Southeast Asian Bull. Math. 42, No. 3, 341-358 (2018). MSC: 34G20 34F05 34B10 47N20 47D03 PDF BibTeX XML Cite \textit{J. Cao} et al., Southeast Asian Bull. Math. 42, No. 3, 341--358 (2018; Zbl 1438.34214) OpenURL
Tölle, Jonas M. Estimates for nonlinear stochastic partial differential equations with gradient noise via Dirichlet forms. (English) Zbl 1405.35268 Eberle, Andreas (ed.) et al., Stochastic partial differential equations and related fields. In honor of Michael Röckner, SPDERF, Bielefeld, Germany, October 10–14, 2016. Cham: Springer (ISBN 978-3-319-74928-0/hbk; 978-3-319-74929-7/ebook). Springer Proceedings in Mathematics & Statistics 229, 249-262 (2018). MSC: 35R60 35K55 35K92 60H15 PDF BibTeX XML Cite \textit{J. M. Tölle}, Springer Proc. Math. Stat. 229, 249--262 (2018; Zbl 1405.35268) Full Text: DOI OpenURL
Čoupek, Petr; Maslowski, Bohdan; Šnupárková, Jana SPDEs with Volterra noise. (English) Zbl 1405.60085 Eberle, Andreas (ed.) et al., Stochastic partial differential equations and related fields. In honor of Michael Röckner, SPDERF, Bielefeld, Germany, October 10–14, 2016. Cham: Springer (ISBN 978-3-319-74928-0/hbk; 978-3-319-74929-7/ebook). Springer Proceedings in Mathematics & Statistics 229, 147-158 (2018). MSC: 60H15 60G22 PDF BibTeX XML Cite \textit{P. Čoupek} et al., Springer Proc. Math. Stat. 229, 147--158 (2018; Zbl 1405.60085) Full Text: DOI OpenURL
Tochin, Alexey; Vasil’ev, Alexander Coupling of Gaussian free field with general slit SLE. (English) Zbl 1405.30010 Agranovsky, Mark (ed.) et al., Complex analysis and dynamical systems. New trends and open problems. Cham: Birkhäuser (ISBN 978-3-319-70153-0/hbk; 978-3-319-70154-7/ebook). Trends in Mathematics, 301-366 (2018). MSC: 30C35 34M99 60D05 60G57 60J67 PDF BibTeX XML Cite \textit{A. Tochin} and \textit{A. Vasil'ev}, in: Complex analysis and dynamical systems. New trends and open problems. Cham: Birkhäuser. 301--366 (2018; Zbl 1405.30010) Full Text: DOI arXiv OpenURL
Barańska, Joanna; Kozitsky, Yuri The global evolution of states of a continuum Kawasaki model with repulsion. (English) Zbl 1404.82046 IMA J. Appl. Math. 83, No. 3, 412-435 (2018). MSC: 82C31 35D30 PDF BibTeX XML Cite \textit{J. Barańska} and \textit{Y. Kozitsky}, IMA J. Appl. Math. 83, No. 3, 412--435 (2018; Zbl 1404.82046) Full Text: DOI arXiv OpenURL
Liu, Kai Sensitivity to small delays of pathwise stability for stochastic retarded evolution equations. (English) Zbl 1404.60091 J. Theor. Probab. 31, No. 3, 1625-1646 (2018). MSC: 60H15 60G15 60H05 PDF BibTeX XML Cite \textit{K. Liu}, J. Theor. Probab. 31, No. 3, 1625--1646 (2018; Zbl 1404.60091) Full Text: DOI OpenURL
Cai, Zhidan; Liu, Qingqing; Lv, Xianrui Khasminskii-type theorems for stochastic evolution equations with infinite delay. (Chinese. English summary) Zbl 1413.34264 J. Jilin Univ., Sci. 56, No. 2, 215-218 (2018). MSC: 34K50 60H10 PDF BibTeX XML Cite \textit{Z. Cai} et al., J. Jilin Univ., Sci. 56, No. 2, 215--218 (2018; Zbl 1413.34264) Full Text: DOI OpenURL
Ibragimov, I. A.; Smorodina, N. V.; Faddeev, M. M. Probabilistic approximation of the evolution operator. (English. Russian original) Zbl 06951618 Funct. Anal. Appl. 52, No. 2, 101-112 (2018); translation from Funkts. Anal. Prilozh. 52, No. 2, 25-39 (2018). MSC: 47D03 60H30 35Q41 60G60 PDF BibTeX XML Cite \textit{I. A. Ibragimov} et al., Funct. Anal. Appl. 52, No. 2, 101--112 (2018; Zbl 06951618); translation from Funkts. Anal. Prilozh. 52, No. 2, 25--39 (2018) Full Text: DOI OpenURL
Chen, Linghua; Jakobsen, Espen R. \(L^{1}\) semigroup generation for Fokker-Planck operators associated to general Lévy driven sdes. (English) Zbl 06951271 Discrete Contin. Dyn. Syst. 38, No. 11, 5735-5763 (2018). MSC: 47G20 47D06 47D07 60H10 35K10 60G51 PDF BibTeX XML Cite \textit{L. Chen} and \textit{E. R. Jakobsen}, Discrete Contin. Dyn. Syst. 38, No. 11, 5735--5763 (2018; Zbl 06951271) Full Text: DOI arXiv OpenURL
Li, Songzi; Li, Xiang-Dong \(W\)-entropy formulas on super Ricci flows and Langevin deformation on Wasserstein space over Riemannian manifolds. (English) Zbl 1400.58009 Sci. China, Math. 61, No. 8, 1385-1406 (2018). MSC: 58J35 58J65 60J60 60H30 53C44 PDF BibTeX XML Cite \textit{S. Li} and \textit{X.-D. Li}, Sci. China, Math. 61, No. 8, 1385--1406 (2018; Zbl 1400.58009) Full Text: DOI arXiv OpenURL
Nerlich, Alexander A randomized weighted \(p\)-Laplacian evolution equation with Neumann boundary conditions. (English) Zbl 1401.35360 NoDEA, Nonlinear Differ. Equ. Appl. 25, No. 4, Paper No. 31, 39 p. (2018). MSC: 35R60 35A01 35A02 35B40 47J35 PDF BibTeX XML Cite \textit{A. Nerlich}, NoDEA, Nonlinear Differ. Equ. Appl. 25, No. 4, Paper No. 31, 39 p. (2018; Zbl 1401.35360) Full Text: DOI arXiv OpenURL
Mokhtar-Kharroubi, Mustapha; Seifert, David Rates of convergence to equilibrium for collisionless kinetic equations in slab geometry. (English) Zbl 1401.82030 J. Funct. Anal. 275, No. 9, 2404-2452 (2018). Reviewer: Piotr Garbaczewski (Opole) MSC: 82C40 82C70 35R60 40E05 47D06 35Q20 PDF BibTeX XML Cite \textit{M. Mokhtar-Kharroubi} and \textit{D. Seifert}, J. Funct. Anal. 275, No. 9, 2404--2452 (2018; Zbl 1401.82030) Full Text: DOI arXiv OpenURL
Li, Yangrong; She, Lianbing; Yin, Jinyan Longtime robustness and semi-uniform compactness of a pullback attractor via nonautonomous PDE. (English) Zbl 1403.37087 Discrete Contin. Dyn. Syst., Ser. B 23, No. 4, 1535-1557 (2018). MSC: 37L55 37L30 35B41 PDF BibTeX XML Cite \textit{Y. Li} et al., Discrete Contin. Dyn. Syst., Ser. B 23, No. 4, 1535--1557 (2018; Zbl 1403.37087) Full Text: DOI OpenURL
Rozovsky, Boris L.; Lototsky, Sergey V. Stochastic evolution systems. Linear theory and applications to non-linear filtering. 2nd edition. (English) Zbl 1434.60004 Probability Theory and Stochastic Modelling 89. Cham: Springer (ISBN 978-3-319-94892-8/hbk; 978-3-319-94893-5/ebook). xvi, 330 p. (2018). Reviewer: Anatoliy Swishchuk (Calgary) MSC: 60-02 60H15 46N30 60H07 93E11 60G35 PDF BibTeX XML Cite \textit{B. L. Rozovsky} and \textit{S. V. Lototsky}, Stochastic evolution systems. Linear theory and applications to non-linear filtering. 2nd edition. Cham: Springer (2018; Zbl 1434.60004) Full Text: DOI OpenURL
Li, Xiaojun; Li, Xiliang; Lu, Kening Random attractors for stochastic parabolic equations with additive noise in weighted spaces. (English) Zbl 06923350 Commun. Pure Appl. Anal. 17, No. 3, 729-749 (2018). MSC: 35B40 37B55 35B41 37L30 37L05 PDF BibTeX XML Cite \textit{X. Li} et al., Commun. Pure Appl. Anal. 17, No. 3, 729--749 (2018; Zbl 06923350) Full Text: DOI OpenURL
Leonhard, Claudine; Rößler, Andreas Enhancing the order of the Milstein scheme for stochastic partial differential equations with commutative noise. (English) Zbl 1432.65161 SIAM J. Numer. Anal. 56, No. 4, 2585-2622 (2018). MSC: 65M75 60H35 60H15 35R60 65M12 PDF BibTeX XML Cite \textit{C. Leonhard} and \textit{A. Rößler}, SIAM J. Numer. Anal. 56, No. 4, 2585--2622 (2018; Zbl 1432.65161) Full Text: DOI arXiv OpenURL