Rindler, H. Book review of: W. Urbina-Romero, Gaussian harmonic analysis. (English) Zbl 07528124 Monatsh. Math. 198, No. 2, 483-484 (2022). MSC: 00A17 42-02 42A50 42B15 42B20 42B25 42B30 42B35 42C10 42C99 47D06 26C99 42A99 47D07 60H07 PDF BibTeX XML Cite \textit{H. Rindler}, Monatsh. Math. 198, No. 2, 483--484 (2022; Zbl 07528124) OpenURL
Kosmala, Tomasz; Riedle, Markus Stochastic evolution equations driven by cylindrical stable noise. (English) Zbl 07527298 Stochastic Processes Appl. 149, 278-307 (2022). MSC: 60H15 60G52 60G51 47D06 PDF BibTeX XML Cite \textit{T. Kosmala} and \textit{M. Riedle}, Stochastic Processes Appl. 149, 278--307 (2022; Zbl 07527298) Full Text: DOI OpenURL
Bréhier, Charles-Edouard; Cohen, David Strong rates of convergence of a splitting scheme for Schrödinger equations with nonlocal interaction cubic nonlinearity and white noise dispersion. (English) Zbl 07524835 SIAM/ASA J. Uncertain. Quantif. 10, 453-480 (2022). MSC: 65C30 65J08 60H15 60H35 60-08 35Q55 PDF BibTeX XML Cite \textit{C.-E. Bréhier} and \textit{D. Cohen}, SIAM/ASA J. Uncertain. Quantif. 10, 453--480 (2022; Zbl 07524835) Full Text: DOI OpenURL
Platonova, M. V. An analogue of the Feynman-Kac formula for a high-order operator. (English. Russian original) Zbl 07523559 Theory Probab. Appl. 67, No. 1, 62-76 (2022); translation from Teor. Veroyatn. Primen. 67, No. 1, 81-99 (2022). MSC: 81-XX 60-XX PDF BibTeX XML Cite \textit{M. V. Platonova}, Theory Probab. Appl. 67, No. 1, 62--76 (2022; Zbl 07523559); translation from Teor. Veroyatn. Primen. 67, No. 1, 81--99 (2022) Full Text: DOI OpenURL
Bobrowski, Adam; Komorowski, Tomasz Diffusion approximation for a simple kinetic model with asymmetric interface. (English) Zbl 07517851 J. Evol. Equ. 22, No. 2, Paper No. 42, 26 p. (2022). MSC: 47D07 47D09 45K05 45M05 PDF BibTeX XML Cite \textit{A. Bobrowski} and \textit{T. Komorowski}, J. Evol. Equ. 22, No. 2, Paper No. 42, 26 p. (2022; Zbl 07517851) Full Text: DOI OpenURL
Li, Yanjiao; Li, Bowen; Li, Xiaojun Uniform random attractors for a non-autonomous stochastic strongly damped wave equation on \(\mathbb{R}^{\mathbb{N}}\). (English) Zbl 07517430 Z. Angew. Math. Phys. 73, No. 3, Paper No. 106, 30 p. (2022). MSC: 37L55 35B40 60H15 35L05 37L05 PDF BibTeX XML Cite \textit{Y. Li} et al., Z. Angew. Math. Phys. 73, No. 3, Paper No. 106, 30 p. (2022; Zbl 07517430) Full Text: DOI OpenURL
Hong, Jialin; Hou, Baohui; Sun, Liying Energy-preserving fully-discrete schemes for nonlinear stochastic wave equations with multiplicative noise. (English) Zbl 07517148 J. Comput. Phys. 451, Article ID 110829, 20 p. (2022). MSC: 60Hxx 65Mxx 65Cxx PDF BibTeX XML Cite \textit{J. Hong} et al., J. Comput. Phys. 451, Article ID 110829, 20 p. (2022; Zbl 07517148) Full Text: DOI OpenURL
Jager, Lisette Stochastic extensions of symbols in Wiener spaces and heat operator. (Extensions stochastiques de symboles et opérateur de la chaleur.) (English. French summary) Zbl 07510504 Ann. Math. Blaise Pascal 28, No. 2, 157-198 (2022). MSC: 35K08 35S05 47D06 28C20 PDF BibTeX XML Cite \textit{L. Jager}, Ann. Math. Blaise Pascal 28, No. 2, 157--198 (2022; Zbl 07510504) Full Text: DOI OpenURL
Peletier, Mark A.; Schlottke, Mikola C. Gamma-convergence of a gradient-flow structure to a non-gradient-flow structure. (English) Zbl 07510383 Calc. Var. Partial Differ. Equ. 61, No. 3, Paper No. 103, 44 p. (2022). MSC: 35B25 35B27 35K15 35K57 35K67 35R06 37L05 60H10 60F10 70G75 PDF BibTeX XML Cite \textit{M. A. Peletier} and \textit{M. C. Schlottke}, Calc. Var. Partial Differ. Equ. 61, No. 3, Paper No. 103, 44 p. (2022; Zbl 07510383) Full Text: DOI OpenURL
Kim, Ildoo An \(L_p\)-maximal regularity estimate of moments of solutions to second-order stochastic partial differential equations. (English) Zbl 07507363 Stoch. Partial Differ. Equ., Anal. Comput. 10, No. 1, 278-316 (2022). MSC: 60H15 35R60 PDF BibTeX XML Cite \textit{I. Kim}, Stoch. Partial Differ. Equ., Anal. Comput. 10, No. 1, 278--316 (2022; Zbl 07507363) Full Text: DOI OpenURL
Li, Zonghao; Zeng, Caibin Center manifolds for ill-posed stochastic evolution equations. (English) Zbl 07506978 Discrete Contin. Dyn. Syst., Ser. B 27, No. 5, 2483-2499 (2022). MSC: 37H05 37L10 47D62 45D05 47D06 PDF BibTeX XML Cite \textit{Z. Li} and \textit{C. Zeng}, Discrete Contin. Dyn. Syst., Ser. B 27, No. 5, 2483--2499 (2022; Zbl 07506978) Full Text: DOI OpenURL
Bo, Lijun; Liao, Huafu Probabilistic analysis of replicator-mutator equations. (English) Zbl 07500626 Adv. Appl. Probab. 54, No. 1, 167-201 (2022). MSC: 92D15 60H30 60G46 PDF BibTeX XML Cite \textit{L. Bo} and \textit{H. Liao}, Adv. Appl. Probab. 54, No. 1, 167--201 (2022; Zbl 07500626) Full Text: DOI OpenURL
Singh, Vikram; Pandey, Dwijendra N. Multi-term time-fractional stochastic differential equations with non-Lipschitz coefficients. (English) Zbl 07491028 Differ. Equ. Dyn. Syst. 30, No. 1, 197-209 (2022). MSC: 34A08 34F05 34G20 26A33 34A12 47D06 47H10 PDF BibTeX XML Cite \textit{V. Singh} and \textit{D. N. Pandey}, Differ. Equ. Dyn. Syst. 30, No. 1, 197--209 (2022; Zbl 07491028) Full Text: DOI OpenURL
Kozitsky, Yuri; Tanaś, Agnieszka Evolution of states of an infinite particle system with nonlocal branching. (English) Zbl 07490269 J. Evol. Equ. 22, No. 1, Paper No. 7, 25 p. (2022). MSC: 35Q84 37A50 60J80 93E03 PDF BibTeX XML Cite \textit{Y. Kozitsky} and \textit{A. Tanaś}, J. Evol. Equ. 22, No. 1, Paper No. 7, 25 p. (2022; Zbl 07490269) Full Text: DOI arXiv OpenURL
Addona, Davide; Lorenzi, Luca; Tessitore, Gianmario Regularity results for nonlinear Young equations and applications. (English) Zbl 07490265 J. Evol. Equ. 22, No. 1, Paper No. 3, 34 p. (2022). MSC: 35R60 35C15 35B65 60H05 60H15 47D06 PDF BibTeX XML Cite \textit{D. Addona} et al., J. Evol. Equ. 22, No. 1, Paper No. 3, 34 p. (2022; Zbl 07490265) Full Text: DOI arXiv OpenURL
Benth, Fred Espen; Schroers, Dennis; Veraart, Almut E. D. A weak law of large numbers for realised covariation in a Hilbert space setting. (English) Zbl 1480.60177 Stochastic Processes Appl. 145, 241-268 (2022). MSC: 60H15 60F15 60B11 PDF BibTeX XML Cite \textit{F. E. Benth} et al., Stochastic Processes Appl. 145, 241--268 (2022; Zbl 1480.60177) Full Text: DOI arXiv OpenURL
Mahamat Barka, Ibrahim; Diop, Mamadou Abdoul; Ezzinbi, Khalil; Hassan Mahamat Hamit, Mahamat Controllability for nonlocal stochastic integrodifferential evolution equations with the lack of compactness. (English) Zbl 1482.93079 Stochastic Anal. Appl. 40, No. 1, 1-19 (2022). MSC: 93B05 93C15 45J05 60H10 47D06 PDF BibTeX XML Cite \textit{I. Mahamat Barka} et al., Stochastic Anal. Appl. 40, No. 1, 1--19 (2022; Zbl 1482.93079) Full Text: DOI OpenURL
Bignamini, D. A.; Ferrari, S. On generators of transition semigroups associated to semilinear stochastic partial differential equations. (English) Zbl 07451098 J. Math. Anal. Appl. 508, No. 1, Article ID 125878, 40 p. (2022). MSC: 60J35 46E35 47D06 60H15 PDF BibTeX XML Cite \textit{D. A. Bignamini} and \textit{S. Ferrari}, J. Math. Anal. Appl. 508, No. 1, Article ID 125878, 40 p. (2022; Zbl 07451098) Full Text: DOI arXiv OpenURL
Marinelli, Carlo; Scarpa, Luca; Stefanelli, Ulisse An alternative proof of well-posedness of stochastic evolution equations in the variational setting. (English) Zbl 07523894 Rev. Roum. Math. Pures Appl. 66, No. 1, 209-221 (2021). MSC: 60H15 46N30 35R60 PDF BibTeX XML Cite \textit{C. Marinelli} et al., Rev. Roum. Math. Pures Appl. 66, No. 1, 209--221 (2021; Zbl 07523894) OpenURL
Cheng, Li-Juan; Thalmaier, Aanton; Zhang, Shao-Qin Exponential contraction in Wasserstein distance on static and evolving manifolds. (English) Zbl 07523889 Rev. Roum. Math. Pures Appl. 66, No. 1, 107-129 (2021). MSC: 60J60 58J65 53Exx PDF BibTeX XML Cite \textit{L.-J. Cheng} et al., Rev. Roum. Math. Pures Appl. 66, No. 1, 107--129 (2021; Zbl 07523889) OpenURL
Liu, Jinghuai; Zhang, Litao Square-mean asymptotically almost periodic solutions of second order nonautonomous stochastic evolution equations. (English) Zbl 07516015 AIMS Math. 6, No. 5, 5040-5052 (2021). Reviewer: Feng-Yu Wang (Tianjin) MSC: 60H15 60H25 34C27 PDF BibTeX XML Cite \textit{J. Liu} and \textit{L. Zhang}, AIMS Math. 6, No. 5, 5040--5052 (2021; Zbl 07516015) Full Text: DOI OpenURL
Han, Min; Pei, Bin An averaging principle for stochastic evolution equations with jumps and random time delays. (English) Zbl 07514373 AIMS Math. 6, No. 1, 39-51 (2021). MSC: 60H15 70K70 34C29 60J74 PDF BibTeX XML Cite \textit{M. Han} and \textit{B. Pei}, AIMS Math. 6, No. 1, 39--51 (2021; Zbl 07514373) Full Text: DOI OpenURL
Souza de Cursi, Eduardo Uncertainty quantification in game theory. (English) Zbl 07512457 Chaos Solitons Fractals 143, Article ID 110558, 13 p. (2021). MSC: 65C99 91-08 37H99 PDF BibTeX XML Cite \textit{E. Souza de Cursi}, Chaos Solitons Fractals 143, Article ID 110558, 13 p. (2021; Zbl 07512457) Full Text: DOI OpenURL
Dineshkumar, C.; Udhayakumar, R.; Vijayakumar, V.; Nisar, Kottakkaran Sooppy A discussion on the approximate controllability of Hilfer fractional neutral stochastic integro-differential systems. (English) Zbl 07511355 Chaos Solitons Fractals 142, Article ID 110472, 13 p. (2021). MSC: 26A33 34K30 34A08 47D09 PDF BibTeX XML Cite \textit{C. Dineshkumar} et al., Chaos Solitons Fractals 142, Article ID 110472, 13 p. (2021; Zbl 07511355) Full Text: DOI OpenURL
Youssef, Benkabdi; El Hassan, Lakhel Controllability of impulsive neutral stochastic integro-differential systems driven by fractional Brownian motion with delay and Poisson jumps. (English) Zbl 07493301 Proyecciones 40, No. 6, 1521-1545 (2021). MSC: 35R10 35K90 35R60 47D06 93B05 60G22 60H20 PDF BibTeX XML Cite \textit{B. Youssef} and \textit{L. El Hassan}, Proyecciones 40, No. 6, 1521--1545 (2021; Zbl 07493301) Full Text: DOI OpenURL
Yang, Min Existence uniqueness of mild solutions for \(\psi \)-Caputo fractional stochastic evolution equations driven by fBm. (English) Zbl 07465151 J. Inequal. Appl. 2021, Paper No. 170, 18 p. (2021). MSC: 00-XX PDF BibTeX XML Cite \textit{M. Yang}, J. Inequal. Appl. 2021, Paper No. 170, 18 p. (2021; Zbl 07465151) Full Text: DOI OpenURL
Yang, Min; Gu, Haibo Riemann-Liouville fractional stochastic evolution equations driven by both Wiener process and fractional Brownian motion. (English) Zbl 07464987 J. Inequal. Appl. 2021, Paper No. 8, 19 p. (2021). MSC: 00-XX PDF BibTeX XML Cite \textit{M. Yang} and \textit{H. Gu}, J. Inequal. Appl. 2021, Paper No. 8, 19 p. (2021; Zbl 07464987) Full Text: DOI OpenURL
Bednorz, Witold; Głowienko, Grzegorz; Talarczyk, Anna Time regularity of Lévy-type evolution in Hilbert spaces and of some \(\alpha \)-stable processes. (English) Zbl 1479.60122 Electron. Commun. Probab. 26, Paper No. 42, 13 p. (2021). MSC: 60H15 60G17 60G52 PDF BibTeX XML Cite \textit{W. Bednorz} et al., Electron. Commun. Probab. 26, Paper No. 42, 13 p. (2021; Zbl 1479.60122) Full Text: DOI arXiv OpenURL
Wu, Weina; Zhai, Jianliang Stochastic generalized porous media equations driven by Lévy noise with increasing Lipschitz nonlinearities. (English) Zbl 1481.35420 J. Evol. Equ. 21, No. 4, 4845-4871 (2021). MSC: 35R60 35K65 35K90 47D06 PDF BibTeX XML Cite \textit{W. Wu} and \textit{J. Zhai}, J. Evol. Equ. 21, No. 4, 4845--4871 (2021; Zbl 1481.35420) Full Text: DOI arXiv OpenURL
Kovács, M.; Sikolya, E. Stochastic reaction-diffusion equations on networks. (English) Zbl 1481.35416 J. Evol. Equ. 21, No. 4, 4213-4260 (2021). MSC: 35R60 35K57 35R02 47D06 PDF BibTeX XML Cite \textit{M. Kovács} and \textit{E. Sikolya}, J. Evol. Equ. 21, No. 4, 4213--4260 (2021; Zbl 1481.35416) Full Text: DOI arXiv OpenURL
Bauzet, Caroline; Lebon, Frédéric; Maitlo, Asghar Ali; Zimmermann, Aleksandra Well-posedness for the coupling of a random heat equation with a multiplicative stochastic Barenblatt equation. (English) Zbl 1479.60121 Stochastic Anal. Appl. 39, No. 6, 1095-1129 (2021). MSC: 60H15 47J35 35K05 35R60 PDF BibTeX XML Cite \textit{C. Bauzet} et al., Stochastic Anal. Appl. 39, No. 6, 1095--1129 (2021; Zbl 1479.60121) Full Text: DOI arXiv OpenURL
Kovács, Mihály; Sikolya, Eszter Corrigendum to “On the stochastic Allen-Cahn equation on networks with multiplicative noise” [Electron. J. Qual. Theory Differ. Equ. 2021, No. 7, 24 p.]. (English) Zbl 07444209 Electron. J. Qual. Theory Differ. Equ. 2021, Paper No. 52, 4 p. (2021). MSC: 60H15 35R60 35R02 47D06 PDF BibTeX XML Cite \textit{M. Kovács} and \textit{E. Sikolya}, Electron. J. Qual. Theory Differ. Equ. 2021, Paper No. 52, 4 p. (2021; Zbl 07444209) Full Text: DOI OpenURL
Liu, Xianming Random invariant manifolds of stochastic evolution equations driven by Gaussian and non-Gaussian noises. (English) Zbl 07441719 J. Math. Phys. 62, No. 11, 112702, 20 p. (2021). MSC: 60H30 60G51 60H10 37L25 PDF BibTeX XML Cite \textit{X. Liu}, J. Math. Phys. 62, No. 11, 112702, 20 p. (2021; Zbl 07441719) Full Text: DOI OpenURL
Wang, Jintao; Li, Chunqiu; Yang, Lu; Jia, Mo Upper semi-continuity of random attractors and existence of invariant measures for nonlocal stochastic Swift-Hohenberg equation with multiplicative noise. (English) Zbl 07441711 J. Math. Phys. 62, No. 11, 111507, 31 p. (2021). MSC: 60H15 37L55 47D06 PDF BibTeX XML Cite \textit{J. Wang} et al., J. Math. Phys. 62, No. 11, 111507, 31 p. (2021; Zbl 07441711) Full Text: DOI arXiv OpenURL
Dineshkumar, C.; Udhayakumar, R.; Vijayakumar, V.; Sooppy Nisar, Kottakkaran; Shukla, Anurag A note on the approximate controllability of Sobolev type fractional stochastic integro-differential delay inclusions with order \(1 < r < 2\). (English) Zbl 07431556 Math. Comput. Simul. 190, 1003-1026 (2021). MSC: 93-XX 60-XX PDF BibTeX XML Cite \textit{C. Dineshkumar} et al., Math. Comput. Simul. 190, 1003--1026 (2021; Zbl 07431556) Full Text: DOI OpenURL
Breckner, Brigitte E.; Lisei, Hannelore; Ionuţ Şimon, Gheorghe Optimal control results for a class of stochastic Schrödinger equations. (English) Zbl 07424193 Appl. Math. Comput. 407, Article ID 126310, 17 p. (2021). MSC: 93E20 81Q05 60H15 PDF BibTeX XML Cite \textit{B. E. Breckner} et al., Appl. Math. Comput. 407, Article ID 126310, 17 p. (2021; Zbl 07424193) Full Text: DOI OpenURL
Yan, Zuomao Time optimal control of a Clarke subdifferential type stochastic evolution inclusion in Hilbert spaces. (English) Zbl 1480.49010 Appl. Math. Optim. 84, No. 3, 3083-3110 (2021). Reviewer: Vasile Lupulescu (Târgu Jiu) MSC: 49J27 34K50 60H15 93E20 PDF BibTeX XML Cite \textit{Z. Yan}, Appl. Math. Optim. 84, No. 3, 3083--3110 (2021; Zbl 1480.49010) Full Text: DOI OpenURL
Bonaccorsi, Stefano; Cottini, Francesca; Mugnolo, Delio Random evolution equations: well-posedness, asymptotics, and applications to graphs. (English) Zbl 1475.35428 Appl. Math. Optim. 84, No. 3, 2849-2887 (2021). MSC: 35R60 35K15 35R02 47D06 37A50 60K15 PDF BibTeX XML Cite \textit{S. Bonaccorsi} et al., Appl. Math. Optim. 84, No. 3, 2849--2887 (2021; Zbl 1475.35428) Full Text: DOI arXiv OpenURL
Yang, Xiangdong Invariant manifolds for nonautonomous stochastic evolution equation. (English) Zbl 07402997 Osaka J. Math. 58, No. 3, 711-729 (2021). Reviewer: Latifa Debbi (M’Sila) MSC: 60H15 37D10 37L25 37L55 60J65 PDF BibTeX XML Cite \textit{X. Yang}, Osaka J. Math. 58, No. 3, 711--729 (2021; Zbl 07402997) Full Text: Link OpenURL
Chen, Pengyu; Zhang, Xuping Approximate controllability of nonlocal problem for non-autonomous stochastic evolution equations. (English) Zbl 1469.93008 Evol. Equ. Control Theory 10, No. 3, 471-489 (2021). MSC: 93B05 34K35 60H15 PDF BibTeX XML Cite \textit{P. Chen} and \textit{X. Zhang}, Evol. Equ. Control Theory 10, No. 3, 471--489 (2021; Zbl 1469.93008) Full Text: DOI OpenURL
Lü, Qi; Zhang, Haisen; Zhang, Xu Second order necessary conditions for optimal control problems of stochastic evolution equations. (English) Zbl 1478.93738 SIAM J. Control Optim. 59, No. 4, 2924-2954 (2021). Reviewer: Hector Jasso (Ciudad de México) MSC: 93E20 60H07 60H15 PDF BibTeX XML Cite \textit{Q. Lü} et al., SIAM J. Control Optim. 59, No. 4, 2924--2954 (2021; Zbl 1478.93738) Full Text: DOI arXiv OpenURL
Doikou, Anastasia; Malham, Simon J. A.; Wiese, Anke Time evolution in quantum systems and stochastics. (English) Zbl 1471.81029 Paranjape, M. B. (ed.) et al., Quantum theory and symmetries. Proceedings of the 11th international symposium, Montréal, Canada, July 1–5, 2019. Cham: Springer. CRM Ser. Math. Phys., 523-532 (2021). MSC: 81Q12 81S40 81S25 35R60 PDF BibTeX XML Cite \textit{A. Doikou} et al., in: Quantum theory and symmetries. Proceedings of the 11th international symposium, Montréal, Canada, July 1--5, 2019. Cham: Springer. 523--532 (2021; Zbl 1471.81029) Full Text: DOI arXiv OpenURL
Hussain, R. Jahir; Hussain, S. Satham Infinite delay fractional stochastic integro-differential equations with Poisson jumps of neutral type. (English) Zbl 1472.60101 J. Anal. 29, No. 3, 833-859 (2021). Reviewer: Feng-Yu Wang (Swansea) MSC: 60H15 34A12 34K37 34K40 47D06 47H10 PDF BibTeX XML Cite \textit{R. J. Hussain} and \textit{S. S. Hussain}, J. Anal. 29, No. 3, 833--859 (2021; Zbl 1472.60101) Full Text: DOI OpenURL
Sun, Xiao-ke; He, Ping Existence of \(P\)-mean almost periodic mild solution for fractional stochastic neutral functional differential equation. (English) Zbl 1472.34132 Acta Math. Appl. Sin., Engl. Ser. 37, No. 3, 645-656 (2021). MSC: 34K14 34K37 34K40 34K50 47D06 47N20 34K30 PDF BibTeX XML Cite \textit{X.-k. Sun} and \textit{P. He}, Acta Math. Appl. Sin., Engl. Ser. 37, No. 3, 645--656 (2021; Zbl 1472.34132) Full Text: DOI OpenURL
Almi, Stefano; Morandotti, Marco; Solombrino, Francesco A multi-step Lagrangian scheme for spatially inhomogeneous evolutionary games. (English) Zbl 1476.35282 J. Evol. Equ. 21, No. 2, 2691-2733 (2021). MSC: 35Q91 60J76 37C10 47J35 58D25 91A22 91A15 91A16 35R60 PDF BibTeX XML Cite \textit{S. Almi} et al., J. Evol. Equ. 21, No. 2, 2691--2733 (2021; Zbl 1476.35282) Full Text: DOI arXiv OpenURL
Kuehn, Christian; Neamţu, Alexandra; Sonner, Stefanie Random attractors via pathwise mild solutions for stochastic parabolic evolution equations. (English) Zbl 1470.60185 J. Evol. Equ. 21, No. 2, 2631-2663 (2021). MSC: 60H15 37H05 37L55 PDF BibTeX XML Cite \textit{C. Kuehn} et al., J. Evol. Equ. 21, No. 2, 2631--2663 (2021; Zbl 1470.60185) Full Text: DOI arXiv OpenURL
Cass, Thomas; Crisan, Dan; Dobson, Paul; Ottobre, Michela Long-time behaviour of degenerate diffusions: UFG-type SDEs and time-inhomogeneous hypoelliptic processes. (English) Zbl 1469.35031 Electron. J. Probab. 26, Paper No. 22, 72 p. (2021). MSC: 35B40 35B65 35K10 37H10 47D06 49J55 58J65 60H10 93E03 PDF BibTeX XML Cite \textit{T. Cass} et al., Electron. J. Probab. 26, Paper No. 22, 72 p. (2021; Zbl 1469.35031) Full Text: DOI arXiv OpenURL
Biswas, Niloy; Etheridge, Alison; Klimek, Aleksander The spatial Lambda-Fleming-Viot process with fluctuating selection. (English) Zbl 1473.60084 Electron. J. Probab. 26, Paper No. 25, 51 p. (2021). MSC: 60G57 60J25 92D15 60G55 60H15 PDF BibTeX XML Cite \textit{N. Biswas} et al., Electron. J. Probab. 26, Paper No. 25, 51 p. (2021; Zbl 1473.60084) Full Text: DOI arXiv OpenURL
Priola, Enrico An optimal regularity result for Kolmogorov equations and weak uniqueness for some critical SPDEs. (English) Zbl 1467.35367 Ann. Probab. 49, No. 3, 1310-1346 (2021). MSC: 35R60 35B65 60H15 PDF BibTeX XML Cite \textit{E. Priola}, Ann. Probab. 49, No. 3, 1310--1346 (2021; Zbl 1467.35367) Full Text: DOI arXiv OpenURL
Kovács, Mihály; Sikolya, Eszter On the stochastic Allen-Cahn equation on networks with multiplicative noise. (English) Zbl 1474.60163 Electron. J. Qual. Theory Differ. Equ. 2021, Paper No. 7, 24 p. (2021). MSC: 60H15 35R60 35R02 47D06 PDF BibTeX XML Cite \textit{M. Kovács} and \textit{E. Sikolya}, Electron. J. Qual. Theory Differ. Equ. 2021, Paper No. 7, 24 p. (2021; Zbl 1474.60163) Full Text: DOI arXiv OpenURL
Chen, Pengyu; Zhang, Xuping Non-autonomous stochastic evolution equations of parabolic type with nonlocal initial conditions. (English) Zbl 1471.34119 Discrete Contin. Dyn. Syst., Ser. B 26, No. 9, 4681-4695 (2021). MSC: 34G20 37C60 34B10 34F05 60H15 47N20 PDF BibTeX XML Cite \textit{P. Chen} and \textit{X. Zhang}, Discrete Contin. Dyn. Syst., Ser. B 26, No. 9, 4681--4695 (2021; Zbl 1471.34119) Full Text: DOI OpenURL
Tạ, Tôn Việt Strict solutions to stochastic semilinear evolution equations in M-type 2 Banach spaces. (English) Zbl 1467.60051 Commun. Pure Appl. Anal. 20, No. 5, 1867-1891 (2021). Reviewer: Feng-Yu Wang (Swansea) MSC: 60H15 35R60 47D06 PDF BibTeX XML Cite \textit{T. V. Tạ}, Commun. Pure Appl. Anal. 20, No. 5, 1867--1891 (2021; Zbl 1467.60051) Full Text: DOI OpenURL
Berg, André; Cohen, David; Dujardin, Guillaume Lie-Trotter splitting for the nonlinear stochastic Manakov system. (English) Zbl 07359311 J. Sci. Comput. 88, No. 1, Paper No. 6, 31 p. (2021). MSC: 65C30 65C50 65J08 60H15 60-08 35Q55 PDF BibTeX XML Cite \textit{A. Berg} et al., J. Sci. Comput. 88, No. 1, Paper No. 6, 31 p. (2021; Zbl 07359311) Full Text: DOI arXiv OpenURL
Kozitsky, Yuri; Tanaś, Agnieszka Evolution of an infinite fission-death system in the continuum. (English) Zbl 1467.82057 J. Math. Anal. Appl. 501, No. 2, Article ID 125222, 43 p. (2021). MSC: 82C22 60K35 60J80 60G57 47D06 PDF BibTeX XML Cite \textit{Y. Kozitsky} and \textit{A. Tanaś}, J. Math. Anal. Appl. 501, No. 2, Article ID 125222, 43 p. (2021; Zbl 1467.82057) Full Text: DOI arXiv OpenURL
Deugoué, G.; Jidjou Moghomye, B.; Ndongmo Ngana, A.; Tachim Medjo, T. Existence and linear approximation for the stochastic 3D magnetohydrodynamic-alpha model. (English) Zbl 1470.60179 J. Math. Anal. Appl. 502, No. 1, Article ID 125242, 50 p. (2021). MSC: 60H15 35R60 PDF BibTeX XML Cite \textit{G. Deugoué} et al., J. Math. Anal. Appl. 502, No. 1, Article ID 125242, 50 p. (2021; Zbl 1470.60179) Full Text: DOI OpenURL
Cheng, Lijuan; Ren, Yong Perturbed second-order stochastic evolution equations. (English) Zbl 1478.60173 Qual. Theory Dyn. Syst. 20, No. 2, Paper No. 37, 21 p. (2021). MSC: 60H10 60H20 34K50 PDF BibTeX XML Cite \textit{L. Cheng} and \textit{Y. Ren}, Qual. Theory Dyn. Syst. 20, No. 2, Paper No. 37, 21 p. (2021; Zbl 1478.60173) Full Text: DOI OpenURL
Hotta, Ikkei; Schleißinger, Sebastian Limits of radial multiple SLE and a Burgers-Loewner differential equation. (English) Zbl 1470.37100 J. Theor. Probab. 34, No. 2, 755-783 (2021). MSC: 37L55 37L05 46L54 60J67 PDF BibTeX XML Cite \textit{I. Hotta} and \textit{S. Schleißinger}, J. Theor. Probab. 34, No. 2, 755--783 (2021; Zbl 1470.37100) Full Text: DOI arXiv OpenURL
Chen, Pengyu Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. (English) Zbl 1466.60126 Discrete Contin. Dyn. Syst. 41, No. 6, 2725-3737 (2021). MSC: 60H15 PDF BibTeX XML Cite \textit{P. Chen}, Discrete Contin. Dyn. Syst. 41, No. 6, 2725--3737 (2021; Zbl 1466.60126) Full Text: DOI OpenURL
Chen, Pengyu; Li, Yongxiang; Zhang, Xuping Cauchy problem for stochastic non-autonomous evolution equations governed by noncompact evolution families. (English) Zbl 1469.34082 Discrete Contin. Dyn. Syst., Ser. B 26, No. 3, 1531-1547 (2021). MSC: 34G20 34F05 37C60 34A12 60H15 47N20 PDF BibTeX XML Cite \textit{P. Chen} et al., Discrete Contin. Dyn. Syst., Ser. B 26, No. 3, 1531--1547 (2021; Zbl 1469.34082) Full Text: DOI OpenURL
Čoupek, Petr; Garrido-Atienza, María J. Bilinear equations in Hilbert space driven by paths of low regularity. (English) Zbl 1464.60065 Discrete Contin. Dyn. Syst., Ser. B 26, No. 1, 121-154 (2021). MSC: 60H15 60G22 34F05 47D06 PDF BibTeX XML Cite \textit{P. Čoupek} and \textit{M. J. Garrido-Atienza}, Discrete Contin. Dyn. Syst., Ser. B 26, No. 1, 121--154 (2021; Zbl 1464.60065) Full Text: DOI OpenURL
Diop, M. A.; Guindo, P. D. A.; Fall, M.; Diakhaby, A. Optimal controls for stochastic functional integro-differential equations. (English) Zbl 1474.49015 Electron. J. Math. Anal. Appl. 9, No. 2, 241-260 (2021). MSC: 49J21 37L05 60H15 47H10 45K05 PDF BibTeX XML Cite \textit{M. A. Diop} et al., Electron. J. Math. Anal. Appl. 9, No. 2, 241--260 (2021; Zbl 1474.49015) Full Text: Link OpenURL
Su, Xiaofeng; Fu, Xianlong Approximate controllability of second-order stochastic differential systems driven by a Lévy process. (English) Zbl 1465.34086 Appl. Math. Optim. 83, No. 2, 1053-1079 (2021). MSC: 34K35 34K30 34K50 60G51 93B05 PDF BibTeX XML Cite \textit{X. Su} and \textit{X. Fu}, Appl. Math. Optim. 83, No. 2, 1053--1079 (2021; Zbl 1465.34086) Full Text: DOI OpenURL
Borisov, L. A.; Orlov, Y. N. Generalized evolution equation of Wigner function for an arbitrary linear quantization. (English) Zbl 1459.81065 Lobachevskii J. Math. 42, No. 1, 63-69 (2021). MSC: 81S20 81S30 70H05 PDF BibTeX XML Cite \textit{L. A. Borisov} and \textit{Y. N. Orlov}, Lobachevskii J. Math. 42, No. 1, 63--69 (2021; Zbl 1459.81065) Full Text: DOI OpenURL
Nguyen, Nhu N.; Yin, George Stochastic Lotka-Volterra competitive reaction-diffusion systems perturbed by space-time white noise: modeling and analysis. (English) Zbl 1459.60140 J. Differ. Equations 282, 184-232 (2021). MSC: 60H15 60H30 60H40 92D15 92D25 92D40 35K57 PDF BibTeX XML Cite \textit{N. N. Nguyen} and \textit{G. Yin}, J. Differ. Equations 282, 184--232 (2021; Zbl 1459.60140) Full Text: DOI arXiv OpenURL
Szczygielski, Krzysztof On the Floquet analysis of commutative periodic Lindbladians in finite dimension. (English) Zbl 1473.81091 Linear Algebra Appl. 609, 176-202 (2021). MSC: 81S22 81S25 46L07 47B65 47D07 60J25 34G10 PDF BibTeX XML Cite \textit{K. Szczygielski}, Linear Algebra Appl. 609, 176--202 (2021; Zbl 1473.81091) Full Text: DOI arXiv OpenURL
Fagnola, F.; Mora, C. M. Supercritical Poincaré-Andronov-Hopf bifurcation in a mean-field quantum laser equation. (English) Zbl 1471.37068 Ann. Henri Poincaré 22, No. 1, 171-217 (2021). Reviewer: Irina V. Konopleva (Ul’yanovsk) MSC: 37L10 37L05 37L15 37A60 37N20 47A55 60H30 81S22 82C10 PDF BibTeX XML Cite \textit{F. Fagnola} and \textit{C. M. Mora}, Ann. Henri Poincaré 22, No. 1, 171--217 (2021; Zbl 1471.37068) Full Text: DOI arXiv OpenURL
Kurasov, Pavel; Mugnolo, Delio; Wolf, Verena Analytic solutions for stochastic hybrid models of gene regulatory networks. (English) Zbl 1459.35362 J. Math. Biol. 82, No. 1-2, Paper No. 9, 30 p. (2021). Reviewer: Eugene Postnikov (Kursk) MSC: 35Q92 92D10 92D20 92C37 35B09 35R60 47D06 93C20 35F46 PDF BibTeX XML Cite \textit{P. Kurasov} et al., J. Math. Biol. 82, No. 1--2, Paper No. 9, 30 p. (2021; Zbl 1459.35362) Full Text: DOI arXiv OpenURL
Beliaev, Dmitry; Margarint, Vlad; Shekhar, Atul Continuity of zero-hitting times of Bessel processes and welding homeomorphisms of \(\operatorname{SLE}_k\). (English) Zbl 1456.30039 ALEA, Lat. Am. J. Probab. Math. Stat. 18, No. 1, 69-79 (2021). MSC: 30C55 60J65 60H10 PDF BibTeX XML Cite \textit{D. Beliaev} et al., ALEA, Lat. Am. J. Probab. Math. Stat. 18, No. 1, 69--79 (2021; Zbl 1456.30039) Full Text: arXiv Link OpenURL
Li, Xiaojun Uniform random attractors for 2D non-autonomous stochastic Navier-Stokes equations. (English) Zbl 1458.35303 J. Differ. Equations 276, 1-42 (2021). MSC: 35Q30 35B40 37B55 35B41 35B65 76D05 60J65 37L30 37L05 35R60 PDF BibTeX XML Cite \textit{X. Li}, J. Differ. Equations 276, 1--42 (2021; Zbl 1458.35303) Full Text: DOI OpenURL
Bishop, Sheila A.; Eke, Kanayo S.; Okagbue, Hilary I. Advances on asymptotic stability of impulsive stochastic evolution equations. (English) Zbl 1453.37053 Int. J. Math. Comput. Sci. 16, No. 1, 99-109 (2021). MSC: 37H30 37L55 47J35 47H10 PDF BibTeX XML Cite \textit{S. A. Bishop} et al., Int. J. Math. Comput. Sci. 16, No. 1, 99--109 (2021; Zbl 1453.37053) Full Text: Link OpenURL
Mahmudov, N. I. Finite-approximate controllability of semilinear fractional stochastic integro-differential equations. (English) Zbl 07505125 Chaos Solitons Fractals 139, Article ID 110277, 7 p. (2020). MSC: 93-XX 35-XX PDF BibTeX XML Cite \textit{N. I. Mahmudov}, Chaos Solitons Fractals 139, Article ID 110277, 7 p. (2020; Zbl 07505125) Full Text: DOI OpenURL
Hyder, Abd-Allah White noise theory and general improved Kudryashov method for stochastic nonlinear evolution equations with conformable derivatives. (English) Zbl 1482.35251 Adv. Difference Equ. 2020, Paper No. 236, 19 p. (2020). MSC: 35R11 35Q53 60H15 26A33 35Q51 37L55 PDF BibTeX XML Cite \textit{A.-A. Hyder}, Adv. Difference Equ. 2020, Paper No. 236, 19 p. (2020; Zbl 1482.35251) Full Text: DOI OpenURL
Ding, Yonghong; Li, Yongxiang Finite-approximate controllability of fractional stochastic evolution equations with nonlocal conditions. (English) Zbl 07460870 J. Inequal. Appl. 2020, Paper No. 95, 24 p. (2020). MSC: 93B05 60H15 47J35 PDF BibTeX XML Cite \textit{Y. Ding} and \textit{Y. Li}, J. Inequal. Appl. 2020, Paper No. 95, 24 p. (2020; Zbl 07460870) Full Text: DOI OpenURL
Ding, Yonghong; Li, Yongxiang Approximate controllability of fractional stochastic evolution equations with nonlocal conditions. (English) Zbl 07446876 Int. J. Nonlinear Sci. Numer. Simul. 21, No. 7-8, 829-841 (2020). MSC: 93B05 60H15 47J35 PDF BibTeX XML Cite \textit{Y. Ding} and \textit{Y. Li}, Int. J. Nonlinear Sci. Numer. Simul. 21, No. 7--8, 829--841 (2020; Zbl 07446876) Full Text: DOI OpenURL
Andriatahina, Jocelyn Hajaniaina; Rakotonirina, Dina Miora; Rabeherimanana, Toussaint Joseph Stroock-Varadhan support theorem for random evolution equation in Besov-Orlicz spaces. (English) Zbl 1477.60083 Adv. Math., Sci. J. 9, No. 1, 187-203 (2020). MSC: 60H10 60J60 46E30 PDF BibTeX XML Cite \textit{J. H. Andriatahina} et al., Adv. Math., Sci. J. 9, No. 1, 187--203 (2020; Zbl 1477.60083) Full Text: Link OpenURL
Liu, Junwei; Ren, Ruihong; Xie, Rui Square-mean piecewise almost automorphic mild solutions to a class of impulsive stochastic evolution equations. (English) Zbl 1482.34195 Adv. Difference Equ. 2020, Paper No. 136, 19 p. (2020). MSC: 34K50 34K45 34C27 60H10 43A60 34G20 PDF BibTeX XML Cite \textit{J. Liu} et al., Adv. Difference Equ. 2020, Paper No. 136, 19 p. (2020; Zbl 1482.34195) Full Text: DOI OpenURL
Yang, Min; Alsaedi, Ahmed; Ahmad, Bashir; Zhou, Yong Attractivity for Hilfer fractional stochastic evolution equations. (English) Zbl 1482.34039 Adv. Difference Equ. 2020, Paper No. 130, 22 p. (2020). MSC: 34A08 26A33 34G20 34K37 34F05 PDF BibTeX XML Cite \textit{M. Yang} et al., Adv. Difference Equ. 2020, Paper No. 130, 22 p. (2020; Zbl 1482.34039) Full Text: DOI OpenURL
Ding, Yonghong; Li, Yongxiang Controllability of fractional stochastic evolution equations with nonlocal conditions and noncompact semigroups. (English) Zbl 1478.93053 Open Math. 18, 616-631 (2020). MSC: 93B05 60H30 26A33 47J35 PDF BibTeX XML Cite \textit{Y. Ding} and \textit{Y. Li}, Open Math. 18, 616--631 (2020; Zbl 1478.93053) Full Text: DOI OpenURL
Govindan, T. E. Weak convergence of probability measures of Trotter-Kato approximate solutions of stochastic evolution equations. (English) Zbl 1473.60090 Joshua, V. C. (ed.) et al., Applied probability and stochastic processes. Selected papers based on the presentations at the international conference, Kerala, India, January, 7–10 2019. In honour of Prof. Dr. A. Krishnamoorthy. Singapore: Springer. Infosys Sci. Found. Ser., 441-456 (2020). MSC: 60H10 PDF BibTeX XML Cite \textit{T. E. Govindan}, in: Applied probability and stochastic processes. Selected papers based on the presentations at the international conference, Kerala, India, January, 7--10 2019. In honour of Prof. Dr. A. Krishnamoorthy. Singapore: Springer. 441--456 (2020; Zbl 1473.60090) Full Text: DOI OpenURL
Arnaudon, Marc; Del Moral, Pierre A duality formula and a particle Gibbs sampler for continuous time Feynman-Kac measures on path spaces. (English) Zbl 1475.37084 Electron. J. Probab. 25, Paper No. 157, 54 p. (2020). MSC: 37L05 47D08 60H35 60K35 PDF BibTeX XML Cite \textit{M. Arnaudon} and \textit{P. Del Moral}, Electron. J. Probab. 25, Paper No. 157, 54 p. (2020; Zbl 1475.37084) Full Text: DOI arXiv OpenURL
Herman, John; Johnston, Ifan; Toniazzi, Lorenzo Space-time coupled evolution equations and their stochastic solutions. (English) Zbl 1469.35222 Electron. J. Probab. 25, Paper No. 147, 21 p. (2020). MSC: 35R11 35C15 45K05 60H30 PDF BibTeX XML Cite \textit{J. Herman} et al., Electron. J. Probab. 25, Paper No. 147, 21 p. (2020; Zbl 1469.35222) Full Text: DOI arXiv OpenURL
Pichór, Katarzyna; Rudnicki, Ryszard Dynamics of antibody levels: asymptotic properties. (English) Zbl 07364963 Math. Methods Appl. Sci. 43, No. 18, 10490-10499 (2020). MSC: 47D06 35Q92 60J75 92D30 PDF BibTeX XML Cite \textit{K. Pichór} and \textit{R. Rudnicki}, Math. Methods Appl. Sci. 43, No. 18, 10490--10499 (2020; Zbl 07364963) Full Text: DOI arXiv OpenURL
Zhang, Xia; Liu, Ming; Guo, Tiexin The Hille-Yosida generation theorem for almost surely bounded \(C_0\)-semigroups of continuous module homomorphisms. (English) Zbl 07346417 J. Nonlinear Convex Anal. 21, No. 9, 1995-2009 (2020). MSC: 47D06 46A19 46H25 60B11 60G20 PDF BibTeX XML Cite \textit{X. Zhang} et al., J. Nonlinear Convex Anal. 21, No. 9, 1995--2009 (2020; Zbl 07346417) Full Text: arXiv Link OpenURL
Singh, Vikram; Chaudhary, Renu; Pandey, Dwijendra N. Approximate controllability of second-order non-autonomous stochastic impulsive differential systems. (English) Zbl 1466.34058 Stochastic Anal. Appl. 39, No. 2, 339-356 (2020). MSC: 34G20 34F05 34A37 37C60 34H05 93B05 47N20 PDF BibTeX XML Cite \textit{V. Singh} et al., Stochastic Anal. Appl. 39, No. 2, 339--356 (2020; Zbl 1466.34058) Full Text: DOI OpenURL
Ahmed, N. U. Optimal output feedback control law for partially observed stochastic evolution equations on UMD-Banach spaces. (English) Zbl 1457.93081 Pure Appl. Funct. Anal. 5, No. 2, 259-285 (2020). MSC: 93E20 49K45 60H30 34G20 49J27 PDF BibTeX XML Cite \textit{N. U. Ahmed}, Pure Appl. Funct. Anal. 5, No. 2, 259--285 (2020; Zbl 1457.93081) Full Text: Link OpenURL
Lü, Qi Stochastic linear quadratic optimal control problems for mean-field stochastic evolution equations. (English) Zbl 1467.93332 ESAIM, Control Optim. Calc. Var. 26, Paper No. 127, 28 p. (2020). Reviewer: Kurt Marti (München) MSC: 93E20 49N10 93B52 PDF BibTeX XML Cite \textit{Q. Lü}, ESAIM, Control Optim. Calc. Var. 26, Paper No. 127, 28 p. (2020; Zbl 1467.93332) Full Text: DOI OpenURL
Li, Haijiao; Yang, Kuan Asymptotic behaviour of the stochastic Maki-Thompson model with a forgetting mechanism on open populations. (English) Zbl 1454.60080 ANZIAM J. 62, No. 2, 185-208 (2020). MSC: 60H10 60H30 91D10 PDF BibTeX XML Cite \textit{H. Li} and \textit{K. Yang}, ANZIAM J. 62, No. 2, 185--208 (2020; Zbl 1454.60080) Full Text: DOI OpenURL
Huang, Xueping; Keller, Matthias; Schmidt, Marcel On the uniqueness class, stochastic completeness and volume growth for graphs. (English) Zbl 07301843 Trans. Am. Math. Soc. 373, No. 12, 8861-8884 (2020). MSC: 47D06 60J27 58J65 PDF BibTeX XML Cite \textit{X. Huang} et al., Trans. Am. Math. Soc. 373, No. 12, 8861--8884 (2020; Zbl 07301843) Full Text: DOI arXiv OpenURL
Cialenco, Igor; Delgado-Vences, Francisco; Kim, Hyun-Jung Drift estimation for discretely sampled SPDEs. (English) Zbl 1455.60081 Stoch. Partial Differ. Equ., Anal. Comput. 8, No. 4, 895-920 (2020). MSC: 60H15 65L09 62M99 PDF BibTeX XML Cite \textit{I. Cialenco} et al., Stoch. Partial Differ. Equ., Anal. Comput. 8, No. 4, 895--920 (2020; Zbl 1455.60081) Full Text: DOI arXiv OpenURL
Kuttler, Kenneth Measurable solutions for elliptic and evolution inclusions. (English) Zbl 1455.35308 Evol. Equ. Control Theory 9, No. 4, 1041-1055 (2020). MSC: 35R60 35Q74 47J22 60H25 PDF BibTeX XML Cite \textit{K. Kuttler}, Evol. Equ. Control Theory 9, No. 4, 1041--1055 (2020; Zbl 1455.35308) Full Text: DOI OpenURL
Pourahmadian, Fatemeh; Haddar, Houssem Differential tomography of micromechanical evolution in elastic materials of unknown micro/macrostructure. (English) Zbl 1455.35310 SIAM J. Imaging Sci. 13, No. 3, 1302-1330 (2020). MSC: 35R60 35R30 35P25 35Q74 65M32 PDF BibTeX XML Cite \textit{F. Pourahmadian} and \textit{H. Haddar}, SIAM J. Imaging Sci. 13, No. 3, 1302--1330 (2020; Zbl 1455.35310) Full Text: DOI arXiv OpenURL
Bohlin, Jon; Rose, Brittany; Brynildsrud, Ola; Freiesleben De Blasio, Birgitte A simple stochastic model describing genomic evolution over time of GC content in microbial symbionts. (English) Zbl 1453.92215 J. Theor. Biol. 503, Article ID 110389, 7 p. (2020). MSC: 92D15 92D10 34K60 PDF BibTeX XML Cite \textit{J. Bohlin} et al., J. Theor. Biol. 503, Article ID 110389, 7 p. (2020; Zbl 1453.92215) Full Text: DOI OpenURL
Katori, Makoto; Koshida, Shinji Conformal welding problem, flow line problem, and multiple Schramm-Loewner evolution. (English) Zbl 1454.81194 J. Math. Phys. 61, No. 8, 083301, 25 p. (2020). MSC: 81T40 60J67 81S25 30C35 81R10 81S40 83C45 60H25 PDF BibTeX XML Cite \textit{M. Katori} and \textit{S. Koshida}, J. Math. Phys. 61, No. 8, 083301, 25 p. (2020; Zbl 1454.81194) Full Text: DOI arXiv OpenURL
Samoilenko, I. V.; Nikitin, A. V.; Dovhai, B. V. Asymptotic dissipativity for merged stochastic evolutionary systems with Markov switchings and impulse perturbations under conditions of Lévy approximation. (English. Russian original) Zbl 1454.93272 Cybern. Syst. Anal. 56, No. 3, 392-400 (2020); translation from Kibern. Sist. Anal. 2020, No. 3, 60-69 (2020). MSC: 93E03 93C73 93C27 93C15 60H10 PDF BibTeX XML Cite \textit{I. V. Samoilenko} et al., Cybern. Syst. Anal. 56, No. 3, 392--400 (2020; Zbl 1454.93272); translation from Kibern. Sist. Anal. 2020, No. 3, 60--69 (2020) Full Text: DOI OpenURL
Friesen, Martin; Kutoviy, Oleksandr Nonlinear perturbations of evolution systems in scales of Banach spaces. (English) Zbl 1452.35220 Nonlinearity 33, No. 11, 6134-6156 (2020). MSC: 35Q92 92D25 82C31 47H14 47H20 35Q84 PDF BibTeX XML Cite \textit{M. Friesen} and \textit{O. Kutoviy}, Nonlinearity 33, No. 11, 6134--6156 (2020; Zbl 1452.35220) Full Text: DOI arXiv OpenURL
Ren, Suling; Wang, Caishi; Tang, Yuling Quantum Bernoulli noises approach to stochastic Schrödinger equation of exclusion type. (English) Zbl 1452.81103 J. Math. Phys. 61, No. 6, 063509, 13 p. (2020). MSC: 81Q05 35R60 60J67 81S22 11R60 PDF BibTeX XML Cite \textit{S. Ren} et al., J. Math. Phys. 61, No. 6, 063509, 13 p. (2020; Zbl 1452.81103) Full Text: DOI OpenURL
Su, Xiaofeng; Fu, Xianlong Approximate controllability for semilinear second-order stochastic evolution systems with infinite delay. (English) Zbl 1456.34076 Int. J. Control 93, No. 7, 1558-1569 (2020). MSC: 34K35 34K30 34K50 93B05 PDF BibTeX XML Cite \textit{X. Su} and \textit{X. Fu}, Int. J. Control 93, No. 7, 1558--1569 (2020; Zbl 1456.34076) Full Text: DOI OpenURL
Marinelli, Carlo; Scarpa, Luca Refined existence and regularity results for a class of semilinear dissipative SPDEs. (English) Zbl 1451.60071 Infin. Dimens. Anal. Quantum Probab. Relat. Top. 23, No. 2, Article ID 2050014, 34 p. (2020). MSC: 60H15 47H06 37A25 46N30 PDF BibTeX XML Cite \textit{C. Marinelli} and \textit{L. Scarpa}, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 23, No. 2, Article ID 2050014, 34 p. (2020; Zbl 1451.60071) Full Text: DOI arXiv OpenURL
Bishop, Sheila A.; Okeke, Godwin A.; Eke, Kanayo Mild solutions of evolution quantum stochastic differential equations with nonlocal conditions. (English) Zbl 07271509 Math. Methods Appl. Sci. 43, No. 10, 6254-6261 (2020). MSC: 47H20 47J25 58D25 60H10 PDF BibTeX XML Cite \textit{S. A. Bishop} et al., Math. Methods Appl. Sci. 43, No. 10, 6254--6261 (2020; Zbl 07271509) Full Text: DOI OpenURL
Rovenski, Vladimir; Stepanov, Sergey; Tsyganok, Irina On evolution equations under the Hamilton’s Ricci flow. (English) Zbl 1467.53105 Result. Math. 75, No. 4, Paper No. 166, 12 p. (2020). Reviewer: Yun Myung Oh (Berrien Springs) MSC: 53E20 53C20 53C25 53C40 PDF BibTeX XML Cite \textit{V. Rovenski} et al., Result. Math. 75, No. 4, Paper No. 166, 12 p. (2020; Zbl 1467.53105) Full Text: DOI OpenURL