Dafallah, Abdelmajid Ali; Mosa, Fadlallah Mustafa; Bakhet, Mohamed Y. A.; Ahmed, Eshag Mohamed Dynamics of the stochastic wave equations with degenerate memory effects on bounded domain. (English) Zbl 07529141 Surv. Math. Appl. 17, 181-203 (2022). MSC: 37L55 35R60 35B40 35B41 35B45 PDF BibTeX XML Cite \textit{A. A. Dafallah} et al., Surv. Math. Appl. 17, 181--203 (2022; Zbl 07529141) Full Text: Link OpenURL
Woolley, Thomas E.; Hill, William; Hogan, Catherine Accounting for dimensional differences in stochastic domain invasion with applications to precancerous cell removal. (English) Zbl 07526883 J. Theor. Biol. 541, Article ID 111024, 22 p. (2022). MSC: 92C37 92C32 PDF BibTeX XML Cite \textit{T. E. Woolley} et al., J. Theor. Biol. 541, Article ID 111024, 22 p. (2022; Zbl 07526883) Full Text: DOI OpenURL
Ambrosio, Luigi; Goldman, Michael; Trevisan, Dario On the quadratic random matching problem in two-dimensional domains. (English) Zbl 07524200 Electron. J. Probab. 27, Paper No. 54, 35 p. (2022). MSC: 60D05 90C05 39B62 60F25 35J05 49Q22 PDF BibTeX XML Cite \textit{L. Ambrosio} et al., Electron. J. Probab. 27, Paper No. 54, 35 p. (2022; Zbl 07524200) Full Text: DOI OpenURL
Cerrai, Sandra; Xi, Guangyu A Smoluchowski-Kramers approximation for an infinite dimensional system with state-dependent damping. (English) Zbl 07523049 Ann. Probab. 50, No. 3, 874-904 (2022). MSC: 35B25 35K59 35L20 35L71 35R60 60H15 PDF BibTeX XML Cite \textit{S. Cerrai} and \textit{G. Xi}, Ann. Probab. 50, No. 3, 874--904 (2022; Zbl 07523049) Full Text: DOI OpenURL
Wang, Bixiang Well-posedness and long term behavior of supercritical wave equations driven by nonlinear colored noise on \(\mathbb{R}^n\). (English) Zbl 07517635 J. Funct. Anal. 283, No. 2, Article ID 109498, 55 p. (2022). MSC: 35B41 35R60 35L15 35L71 60H15 PDF BibTeX XML Cite \textit{B. Wang}, J. Funct. Anal. 283, No. 2, Article ID 109498, 55 p. (2022; Zbl 07517635) Full Text: DOI OpenURL
Li, Yanjiao; Li, Bowen; Li, Xiaojun Uniform random attractors for a non-autonomous stochastic strongly damped wave equation on \(\mathbb{R}^{\mathbb{N}}\). (English) Zbl 07517430 Z. Angew. Math. Phys. 73, No. 3, Paper No. 106, 30 p. (2022). MSC: 37L55 35B40 60H15 35L05 37L05 PDF BibTeX XML Cite \textit{Y. Li} et al., Z. Angew. Math. Phys. 73, No. 3, Paper No. 106, 30 p. (2022; Zbl 07517430) Full Text: DOI OpenURL
Hong, Jialin; Hou, Baohui; Sun, Liying Energy-preserving fully-discrete schemes for nonlinear stochastic wave equations with multiplicative noise. (English) Zbl 07517148 J. Comput. Phys. 451, Article ID 110829, 20 p. (2022). MSC: 60Hxx 65Mxx 65Cxx PDF BibTeX XML Cite \textit{J. Hong} et al., J. Comput. Phys. 451, Article ID 110829, 20 p. (2022; Zbl 07517148) Full Text: DOI OpenURL
Suda, Hayate Superballistic and superdiffusive scaling limits of stochastic harmonic chains with long-range interactions. (English) Zbl 07515324 Nonlinearity 35, No. 5, 2288-2333 (2022). MSC: 60K35 74A25 82C22 PDF BibTeX XML Cite \textit{H. Suda}, Nonlinearity 35, No. 5, 2288--2333 (2022; Zbl 07515324) Full Text: DOI OpenURL
Brzeźniak, Zdzisław; Gołdys, Ben; Ondreját, Martin; Rana, Nimit Large deviations for (1 + 1)-dimensional stochastic geometric wave equation. (English) Zbl 07514718 J. Differ. Equations 325, 1-69 (2022). MSC: 60H10 58D20 34G20 46E35 35R15 46E50 PDF BibTeX XML Cite \textit{Z. Brzeźniak} et al., J. Differ. Equations 325, 1--69 (2022; Zbl 07514718) Full Text: DOI OpenURL
Zakradze, M.; Kublashvili, M.; Tabagari, Z.; Koblishvili, N. On numerical solving the Dirichlet generalized harmonic problem for regular \(n\)-sided pyramidal domains by the probabilistic method. (English) Zbl 07498918 Trans. A. Razmadze Math. Inst. 176, No. 1, 123-132 (2022). MSC: 35J05 35J25 65C30 65N75 PDF BibTeX XML Cite \textit{M. Zakradze} et al., Trans. A. Razmadze Math. Inst. 176, No. 1, 123--132 (2022; Zbl 07498918) Full Text: Link OpenURL
Lee, Cheuk Yin Local nondeterminism and local times of the stochastic wave equation driven by fractional-colored noise. (English) Zbl 07497559 J. Fourier Anal. Appl. 28, No. 2, Paper No. 26, 38 p. (2022). MSC: 60G15 60H15 60J55 PDF BibTeX XML Cite \textit{C. Y. Lee}, J. Fourier Anal. Appl. 28, No. 2, Paper No. 26, 38 p. (2022; Zbl 07497559) Full Text: DOI OpenURL
Calatayud, Julia; Cortés, Juan Carlos; Jornet, Marc On the random wave equation within the mean square context. (English) Zbl 07495841 Discrete Contin. Dyn. Syst., Ser. S 15, No. 2, 409-425 (2022). MSC: 35R60 35C10 35L20 PDF BibTeX XML Cite \textit{J. Calatayud} et al., Discrete Contin. Dyn. Syst., Ser. S 15, No. 2, 409--425 (2022; Zbl 07495841) Full Text: DOI OpenURL
Ngoc, Tran Bao; Thach, Tran Ngoc; O’Regan, Donal; Nguyen Huy Tuan On inverse initial value problems for the stochastic strongly damped wave equation. (English) Zbl 07495655 Appl. Anal. 101, No. 2, 527-544 (2022). MSC: 60G15 60H40 60H05 60G22 PDF BibTeX XML Cite \textit{T. B. Ngoc} et al., Appl. Anal. 101, No. 2, 527--544 (2022; Zbl 07495655) Full Text: DOI OpenURL
Baumgarth, Robert Scattering theory for the Hodge Laplacian. (English) Zbl 07493881 J. Geom. Anal. 32, No. 5, Paper No. 150, 52 p. (2022). MSC: 58J50 58J65 58J45 60J45 53E20 PDF BibTeX XML Cite \textit{R. Baumgarth}, J. Geom. Anal. 32, No. 5, Paper No. 150, 52 p. (2022; Zbl 07493881) Full Text: DOI arXiv OpenURL
Foondun, Mohammud; Nualart, Eulalia Non-existence results for stochastic wave equations in one dimension. (English) Zbl 07487020 J. Differ. Equations 318, 557-578 (2022). MSC: 60H15 35K57 60H10 PDF BibTeX XML Cite \textit{M. Foondun} and \textit{E. Nualart}, J. Differ. Equations 318, 557--578 (2022; Zbl 07487020) Full Text: DOI arXiv OpenURL
Feng, Xiaoli; Zhao, Meixia; Li, Peijun; Wang, Xu An inverse source problem for the stochastic wave equation. (English) Zbl 07481241 Inverse Probl. Imaging 16, No. 2, 397-415 (2022). MSC: 35R30 35R60 65M32 PDF BibTeX XML Cite \textit{X. Feng} et al., Inverse Probl. Imaging 16, No. 2, 397--415 (2022; Zbl 07481241) Full Text: DOI arXiv OpenURL
Chen, Jie; Wang, Baoxiang Almost sure scattering for the nonlinear Klein-Gordon equations with Sobolev critical power. (English) Zbl 1483.35136 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 217, Article ID 112732, 33 p. (2022). MSC: 35L71 35L15 35P25 35R60 PDF BibTeX XML Cite \textit{J. Chen} and \textit{B. Wang}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 217, Article ID 112732, 33 p. (2022; Zbl 1483.35136) Full Text: DOI arXiv OpenURL
Chen, Guanggan; Li, Qin; Wei, Yunyun Approximate dynamics of a class of stochastic wave equations with white noise. (English) Zbl 07452623 Discrete Contin. Dyn. Syst., Ser. B 27, No. 1, 73-101 (2022). MSC: 37L55 60H15 35R60 PDF BibTeX XML Cite \textit{G. Chen} et al., Discrete Contin. Dyn. Syst., Ser. B 27, No. 1, 73--101 (2022; Zbl 07452623) Full Text: DOI OpenURL
Morin, Léo; Mouzard, Antoine 2D random magnetic Laplacian with white noise magnetic field. (English) Zbl 1480.35119 Stochastic Processes Appl. 143, 160-184 (2022). MSC: 35J05 60H25 35P15 PDF BibTeX XML Cite \textit{L. Morin} and \textit{A. Mouzard}, Stochastic Processes Appl. 143, 160--184 (2022; Zbl 1480.35119) Full Text: DOI arXiv OpenURL
Lee, Cheuk Yin; Xiao, Yimin Propagation of singularities for the stochastic wave equation. (English) Zbl 1483.60095 Stochastic Processes Appl. 143, 31-54 (2022). Reviewer: Nasir N. Ganikhodjaev (Tashkent) MSC: 60H15 60G17 60H40 PDF BibTeX XML Cite \textit{C. Y. Lee} and \textit{Y. Xiao}, Stochastic Processes Appl. 143, 31--54 (2022; Zbl 1483.60095) Full Text: DOI arXiv OpenURL
Hao, Yongle; Liu, Siyu; Wang, Lin Numerical solutions for Helmholtz equation with stochastic interface based on PML method. (English) Zbl 1479.78012 J. Comput. Appl. Math. 404, Article ID 113877, 12 p. (2022). MSC: 78A45 78M10 78M31 65N30 65N50 65C05 65N15 35A15 35B25 35J05 35Q60 35R60 PDF BibTeX XML Cite \textit{Y. Hao} et al., J. Comput. Appl. Math. 404, Article ID 113877, 12 p. (2022; Zbl 1479.78012) Full Text: DOI OpenURL
Goldman, Michael; Trevisan, Dario Convergence of asymptotic costs for random Euclidean matching problems. (English) Zbl 07528605 Probab. Math. Phys. 2, No. 2, 121-142 (2021). MSC: 35J05 39B62 60D05 60F25 90C05 PDF BibTeX XML Cite \textit{M. Goldman} and \textit{D. Trevisan}, Probab. Math. Phys. 2, No. 2, 121--142 (2021; Zbl 07528605) Full Text: DOI OpenURL
Ulutas, Esma Travelling wave and optical soliton solutions of the Wick-type stochastic NLSE with conformable derivatives. (English) Zbl 07526952 Chaos Solitons Fractals 148, Article ID 111052, 9 p. (2021). MSC: 35R60 35Q55 35C07 PDF BibTeX XML Cite \textit{E. Ulutas}, Chaos Solitons Fractals 148, Article ID 111052, 9 p. (2021; Zbl 07526952) Full Text: DOI OpenURL
Griffin, Christopher; Mummah, Riley; deForest, Russ A finite population destroys a traveling wave in spatial replicator dynamics. (English) Zbl 07526744 Chaos Solitons Fractals 146, Article ID 110847, 9 p. (2021). MSC: 37-XX 60-XX PDF BibTeX XML Cite \textit{C. Griffin} et al., Chaos Solitons Fractals 146, Article ID 110847, 9 p. (2021; Zbl 07526744) Full Text: DOI OpenURL
Malidareh, Babak Fazli Collocated meshless method for time-fractional diffusion-wave equations. (English) Zbl 07523989 J. Math. Ext. 15, No. 5, Paper No. 24, 25 p. (2021). MSC: 60G22 26A33 65C30 PDF BibTeX XML Cite \textit{B. F. Malidareh}, J. Math. Ext. 15, No. 5, Paper No. 24, 25 p. (2021; Zbl 07523989) Full Text: DOI OpenURL
Khalil, Zeina Mahdi; Tudor, Ciprian A. Vibrations of a finite string under a fractional Gaussian random noise. (English) Zbl 07523893 Rev. Roum. Math. Pures Appl. 66, No. 1, 191-208 (2021). MSC: 60G15 60H05 60H15 PDF BibTeX XML Cite \textit{Z. M. Khalil} and \textit{C. A. Tudor}, Rev. Roum. Math. Pures Appl. 66, No. 1, 191--208 (2021; Zbl 07523893) OpenURL
Kharchenko, D. S. The shape of wave-packets in a three-layer hydrodynamic system. (Ukrainian. English summary) Zbl 07498789 Visn. Khark. Univ., Ser. Mat. Prykl. Mat. Mekh. 94, 77-90 (2021). MSC: 76A02 76B15 76M35 PDF BibTeX XML Cite \textit{D. S. Kharchenko}, Visn. Khark. Univ., Ser. Mat. Prykl. Mat. Mekh. 94, 77--90 (2021; Zbl 07498789) Full Text: DOI OpenURL
Jacobe de Naurois, Ladislas; Jentzen, Arnulf; Welti, Timo Weak convergence rates for spatial spectral Galerkin approximations of semilinear stochastic wave equations with multiplicative noise. (English) Zbl 07498404 Appl. Math. Optim. 84, Suppl. 2, 1187-1217 (2021). MSC: 60H15 35L05 35R60 PDF BibTeX XML Cite \textit{L. Jacobe de Naurois} et al., Appl. Math. Optim. 84, 1187--1217 (2021; Zbl 07498404) Full Text: DOI OpenURL
de Hoop, Maarten V.; Lassas, Matti; Wong, Christopher A. Deep learning architectures for nonlinear operator functions and nonlinear inverse problems. (English) Zbl 07488298 Math. Stat. Learn. 4, No. 1-2, 1-86 (2021). MSC: 35R30 62M45 68T05 PDF BibTeX XML Cite \textit{M. V. de Hoop} et al., Math. Stat. Learn. 4, No. 1--2, 1--86 (2021; Zbl 07488298) Full Text: DOI arXiv OpenURL
Bakouch, Hassan S.; Cadena, Meitner; Chesneau, Christophe A new class of skew distributions with climate data analysis. (English) Zbl 07484636 J. Appl. Stat. 48, No. 16, 3002-3024 (2021). MSC: 60E05 62E15 62Pxx PDF BibTeX XML Cite \textit{H. S. Bakouch} et al., J. Appl. Stat. 48, No. 16, 3002--3024 (2021; Zbl 07484636) Full Text: DOI OpenURL
Polnikov, V. G. Histograms, cumulants, and spectra of mechanical and wind waves in a wind-wave channel. (English. Russian original) Zbl 07483365 Fluid Dyn. 56, No. 6, 846-859 (2021); translation from Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza 2021, No. 6, 84-97 (2021). MSC: 76B15 76M35 76-05 PDF BibTeX XML Cite \textit{V. G. Polnikov}, Fluid Dyn. 56, No. 6, 846--859 (2021; Zbl 07483365); translation from Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza 2021, No. 6, 84--97 (2021) Full Text: DOI OpenURL
Chen, Yong; Duan, Jinqiao; Gao, Hongjun Wave-breaking and moderate deviations of the stochastic Camassa-Holm equation with pure jump noise. (English) Zbl 07477877 Physica D 424, Article ID 132944, 12 p. (2021). MSC: 60-XX 37-XX PDF BibTeX XML Cite \textit{Y. Chen} et al., Physica D 424, Article ID 132944, 12 p. (2021; Zbl 07477877) Full Text: DOI OpenURL
Voivodic, Rodrigo; Barreira, Alexandre Responses of halo occupation distributions: a new ingredient in the halo model & the impact on galaxy bias. (English) Zbl 07471329 J. Cosmol. Astropart. Phys. 2021, No. 5, Paper No. 69, 36 p. (2021). MSC: 85A15 83F05 62H30 83C55 76N15 35C07 83E05 60G35 83-10 PDF BibTeX XML Cite \textit{R. Voivodic} and \textit{A. Barreira}, J. Cosmol. Astropart. Phys. 2021, No. 5, Paper No. 69, 36 p. (2021; Zbl 07471329) Full Text: DOI arXiv OpenURL
Poletti, D. Measuring the primordial gravitational wave background in the presence of other stochastic signals. (English) Zbl 07471312 J. Cosmol. Astropart. Phys. 2021, No. 5, Paper No. 52, 23 p. (2021). MSC: 85A25 83C35 60G35 PDF BibTeX XML Cite \textit{D. Poletti}, J. Cosmol. Astropart. Phys. 2021, No. 5, Paper No. 52, 23 p. (2021; Zbl 07471312) Full Text: DOI arXiv OpenURL
Malhotra, Ameek; Dimastrogiovanni, Ema; Fasiello, Matteo; Shiraishi, Maresuke Cross-correlations as a diagnostic tool for primordial gravitational waves. (English) Zbl 07470250 J. Cosmol. Astropart. Phys. 2021, No. 3, Paper No. 88, 33 p. (2021). MSC: 83F05 83C35 83E05 60D05 70E05 60G35 81V60 PDF BibTeX XML Cite \textit{A. Malhotra} et al., J. Cosmol. Astropart. Phys. 2021, No. 3, Paper No. 88, 33 p. (2021; Zbl 07470250) Full Text: DOI arXiv OpenURL
Mentasti, Giorgio; Peloso, Marco ET sensitivity to the anisotropic stochastic gravitational wave background. (English) Zbl 07470242 J. Cosmol. Astropart. Phys. 2021, No. 3, Paper No. 80, 27 p. (2021). MSC: 83F05 83C35 60H30 81V60 33C55 83B05 PDF BibTeX XML Cite \textit{G. Mentasti} and \textit{M. Peloso}, J. Cosmol. Astropart. Phys. 2021, No. 3, Paper No. 80, 27 p. (2021; Zbl 07470242) Full Text: DOI arXiv OpenURL
Orlando, Giorgio; Pieroni, Mauro; Ricciardone, Angelo Measuring parity violation in the stochastic gravitational wave background with the LISA-Taiji network. (English) Zbl 07470232 J. Cosmol. Astropart. Phys. 2021, No. 3, Paper No. 69, 22 p. (2021). MSC: 83C35 62L20 60G35 PDF BibTeX XML Cite \textit{G. Orlando} et al., J. Cosmol. Astropart. Phys. 2021, No. 3, Paper No. 69, 22 p. (2021; Zbl 07470232) Full Text: DOI arXiv OpenURL
Kuipers, Folkert Stochastic quantization of relativistic theories. (English) Zbl 07452074 J. Math. Phys. 62, No. 12, 122301, 9 p. (2021). MSC: 81S20 81Q35 53Z05 81R20 81Q15 PDF BibTeX XML Cite \textit{F. Kuipers}, J. Math. Phys. 62, No. 12, 122301, 9 p. (2021; Zbl 07452074) Full Text: DOI arXiv OpenURL
Harang, Fabian A. An extension of the sewing lemma to hyper-cubes and hyperbolic equations driven by multi-parameter Young fields. (English) Zbl 1480.35413 Stoch. Partial Differ. Equ., Anal. Comput. 9, No. 3, 746-788 (2021). MSC: 35R60 35L05 60H15 60H05 60H20 PDF BibTeX XML Cite \textit{F. A. Harang}, Stoch. Partial Differ. Equ., Anal. Comput. 9, No. 3, 746--788 (2021; Zbl 1480.35413) Full Text: DOI arXiv OpenURL
Caraballo, Tomás; Guo, Boling; Tuan, Nguyen Huy; Wang, Renhai Asymptotically autonomous robustness of random attractors for a class of weakly dissipative stochastic wave equations on unbounded domains. (English) Zbl 07446628 Proc. R. Soc. Edinb., Sect. A, Math. 151, No. 6, 1700-1730 (2021). MSC: 37L55 37L30 35R60 35B41 35B40 PDF BibTeX XML Cite \textit{T. Caraballo} et al., Proc. R. Soc. Edinb., Sect. A, Math. 151, No. 6, 1700--1730 (2021; Zbl 07446628) Full Text: DOI OpenURL
Zhao, Zheng; Emzir, Muhammad; Särkkä, Simo Deep state-space Gaussian processes. (English) Zbl 1475.62068 Stat. Comput. 31, No. 6, Paper No. 75, 26 p. (2021). MSC: 62-08 62M20 PDF BibTeX XML Cite \textit{Z. Zhao} et al., Stat. Comput. 31, No. 6, Paper No. 75, 26 p. (2021; Zbl 1475.62068) Full Text: DOI arXiv OpenURL
Yan, Lin Global uniqueness of an inverse problem for stochastic degenerate wave equation with three unknowns. (English) Zbl 1479.35960 Math. Methods Appl. Sci. 44, No. 17, 12545-12558 (2021). MSC: 35R30 35A02 35L20 35R60 60H15 PDF BibTeX XML Cite \textit{L. Yan}, Math. Methods Appl. Sci. 44, No. 17, 12545--12558 (2021; Zbl 1479.35960) Full Text: DOI OpenURL
Cildiroglu, H. O.; Yilmazer, A. U. Investigation of the Aharonov-Bohm and Aharonov-Casher topological phases for quantum entangled states. (English) Zbl 1479.81028 Phys. Lett., A 420, Article ID 127753, 5 p. (2021). MSC: 81Q70 81P40 81R20 81R25 60E15 PDF BibTeX XML Cite \textit{H. O. Cildiroglu} and \textit{A. U. Yilmazer}, Phys. Lett., A 420, Article ID 127753, 5 p. (2021; Zbl 1479.81028) Full Text: DOI arXiv OpenURL
Dafallah, Abdelmajid Ali; Ma, Qiaozhen; Mohamed, Ahmed Eshag Existence of random attractors for strongly damped wave equations with multiplicative noise unbounded domain. (English) Zbl 07426797 Hacet. J. Math. Stat. 50, No. 2, 492-510 (2021). MSC: 35R60 35B40 35B41 35B45 37L30 PDF BibTeX XML Cite \textit{A. A. Dafallah} et al., Hacet. J. Math. Stat. 50, No. 2, 492--510 (2021; Zbl 07426797) Full Text: DOI OpenURL
Adelhütte, Dennis; Aßmann, Denis; Grandòn, Tatiana Gonzàlez; Gugat, Martin; Heitsch, Holger; Henrion, René; Liers, Frauke; Nitsche, Sabrina; Schultz, Rüdiger; Stingl, Michael; Wintergerst, David Joint model of probabilistic-robust (probust) constraints applied to gas network optimization. (English) Zbl 1477.90012 Vietnam J. Math. 49, No. 4, 1097-1130 (2021). MSC: 90B15 90C15 90C17 90C26 93D15 93D21 PDF BibTeX XML Cite \textit{D. Adelhütte} et al., Vietnam J. Math. 49, No. 4, 1097--1130 (2021; Zbl 1477.90012) Full Text: DOI OpenURL
Oh, Tadahiro; Robert, Tristan; Wang, Yuzhao On the parabolic and hyperbolic Liouville equations. (English) Zbl 1481.60123 Commun. Math. Phys. 387, No. 3, 1281-1351 (2021). MSC: 60H15 35K08 35L05 60H40 PDF BibTeX XML Cite \textit{T. Oh} et al., Commun. Math. Phys. 387, No. 3, 1281--1351 (2021; Zbl 1481.60123) Full Text: DOI arXiv OpenURL
Bolaños Guerrero, Raul; Nualart, David; Zheng, Guangqu Averaging 2D stochastic wave equation. (English) Zbl 1477.60095 Electron. J. Probab. 26, Paper No. 102, 32 p. (2021). Reviewer: Ivan Podvigin (Novosibirsk) MSC: 60H15 60F05 60G15 60H07 PDF BibTeX XML Cite \textit{R. Bolaños Guerrero} et al., Electron. J. Probab. 26, Paper No. 102, 32 p. (2021; Zbl 1477.60095) Full Text: DOI arXiv OpenURL
Hong, Jialin; Ruan, Jialin; Sun, Liying; Wang, Lijin Structure-preserving numerical methods for stochastic Poisson systems. (English) Zbl 1481.65261 Commun. Comput. Phys. 29, No. 3, 802-830 (2021). MSC: 65N75 65P10 65D30 35R60 60H15 60H35 35J05 PDF BibTeX XML Cite \textit{J. Hong} et al., Commun. Comput. Phys. 29, No. 3, 802--830 (2021; Zbl 1481.65261) Full Text: DOI arXiv OpenURL
Akian, Jean-Luc; Savin, Eric Kinetic modeling of multiple scattering of acoustic waves in randomly heterogeneous flows. (English) Zbl 1481.76187 Multiscale Model. Simul. 19, No. 3, 1394-1424 (2021). MSC: 76Q05 76M35 PDF BibTeX XML Cite \textit{J.-L. Akian} and \textit{E. Savin}, Multiscale Model. Simul. 19, No. 3, 1394--1424 (2021; Zbl 1481.76187) Full Text: DOI arXiv OpenURL
Mukherjee, Shuvajit; Gopalakrishnan, S.; Ganguli, Ranjan Time domain spectral element-based wave finite element method for periodic structures. (English) Zbl 07410839 Acta Mech. 232, No. 6, 2269-2296 (2021). MSC: 74S25 74S05 74K10 74S60 74J99 PDF BibTeX XML Cite \textit{S. Mukherjee} et al., Acta Mech. 232, No. 6, 2269--2296 (2021; Zbl 07410839) Full Text: DOI OpenURL
Borisova, Galina Commuting non-selfadjoint operators. Open systems, and wave equations. (English) Zbl 07406132 C. R. Acad. Bulg. Sci. 74, No. 2, 157-165 (2021). Reviewer: Angela Slavova (Sofia) MSC: 47B28 47B44 47A48 60G12 47F05 PDF BibTeX XML Cite \textit{G. Borisova}, C. R. Acad. Bulg. Sci. 74, No. 2, 157--165 (2021; Zbl 07406132) Full Text: DOI OpenURL
Allori, Valia Spontaneous localization theories with a particle ontology. (English) Zbl 1473.81021 Allori, Valia (ed.) et al., Do wave functions jump? Perspectives of the work of GianCarlo Ghirardi. Cham: Springer. Fundam. Theor. Phys. 198, 73-93 (2021). MSC: 81P15 81P05 81S25 81R20 81-03 01A60 PDF BibTeX XML Cite \textit{V. Allori}, Fundam. Theor. Phys. 198, 73--93 (2021; Zbl 1473.81021) Full Text: DOI OpenURL
Lindgren, Georg; Prevosto, Marc The relation between wave asymmetry and particle orbits analysed by Slepian models. (English) Zbl 1473.76008 J. Fluid Mech. 924, Paper No. A12, 27 p. (2021). MSC: 76B15 76M35 86A05 PDF BibTeX XML Cite \textit{G. Lindgren} and \textit{M. Prevosto}, J. Fluid Mech. 924, Paper No. A12, 27 p. (2021; Zbl 1473.76008) Full Text: DOI OpenURL
Millet, Annie; Sanz-Solé, Marta Global solutions to stochastic wave equations with superlinear coefficients. (English) Zbl 1475.60124 Stochastic Processes Appl. 139, 175-211 (2021). Reviewer: Udhayakumar Ramalingam (Vellore) MSC: 60H15 60G60 35R60 60G17 35L05 PDF BibTeX XML Cite \textit{A. Millet} and \textit{M. Sanz-Solé}, Stochastic Processes Appl. 139, 175--211 (2021; Zbl 1475.60124) Full Text: DOI arXiv OpenURL
Steinhurst, Benjamin; Teplyaev, Alexander Spectral analysis on Barlow and Evans’ projective limit fractals. (English) Zbl 1469.81023 J. Spectr. Theory 11, No. 1, 91-123 (2021). MSC: 81Q35 81S25 81P16 28A80 31C25 35J05 46M40 60J35 81Q12 PDF BibTeX XML Cite \textit{B. Steinhurst} and \textit{A. Teplyaev}, J. Spectr. Theory 11, No. 1, 91--123 (2021; Zbl 1469.81023) Full Text: DOI OpenURL
Kuan, Jeffrey; Čanić, Sunčica Deterministic ill-posedness and probabilistic well-posedness of the viscous nonlinear wave equation describing fluid-structure interaction. (English) Zbl 1469.35176 Trans. Am. Math. Soc. 374, No. 8, 5925-5994 (2021). MSC: 35Q35 35Q74 35L70 35M11 35B65 35B38 74F10 74B20 76D05 35R25 35R60 PDF BibTeX XML Cite \textit{J. Kuan} and \textit{S. Čanić}, Trans. Am. Math. Soc. 374, No. 8, 5925--5994 (2021; Zbl 1469.35176) Full Text: DOI arXiv OpenURL
Priyadarshi, Gopal; Kumar, Bayya Venkatesulu Rathish Parameter identification in multidimensional hyperbolic partial differential equations using wavelet collocation method. (English) Zbl 07377136 Math. Methods Appl. Sci. 44, No. 11, 9079-9095 (2021). MSC: 65T60 65C30 31A30 PDF BibTeX XML Cite \textit{G. Priyadarshi} and \textit{B. V. R. Kumar}, Math. Methods Appl. Sci. 44, No. 11, 9079--9095 (2021; Zbl 07377136) Full Text: DOI OpenURL
Oh, Tadahiro; Okamoto, Mamoru Comparing the stochastic nonlinear wave and heat equations: a case study. (English) Zbl 1469.35270 Electron. J. Probab. 26, Paper No. 9, 44 p. (2021). MSC: 35R60 35K15 35K58 35L15 35L71 60H15 PDF BibTeX XML Cite \textit{T. Oh} and \textit{M. Okamoto}, Electron. J. Probab. 26, Paper No. 9, 44 p. (2021; Zbl 1469.35270) Full Text: DOI arXiv OpenURL
Dalang, Robert C.; Lee, Cheuk Yin; Mueller, Carl; Xiao, Yimin Multiple points of Gaussian random fields. (English) Zbl 1480.60089 Electron. J. Probab. 26, Paper No. 17, 25 p. (2021). MSC: 60G15 60G17 60G60 PDF BibTeX XML Cite \textit{R. C. Dalang} et al., Electron. J. Probab. 26, Paper No. 17, 25 p. (2021; Zbl 1480.60089) Full Text: DOI arXiv OpenURL
Banjai, Lehel; Lord, Gabriel; Molla, Jeta Strong convergence of a Verlet integrator for the semilinear stochastic wave equation. (English) Zbl 1471.60094 SIAM J. Numer. Anal. 59, No. 4, 1976-2003 (2021). Reviewer: Feng-Yu Wang (Swansea) MSC: 60H15 60H35 65C30 65C20 65M60 35L05 35L76 35R60 PDF BibTeX XML Cite \textit{L. Banjai} et al., SIAM J. Numer. Anal. 59, No. 4, 1976--2003 (2021; Zbl 1471.60094) Full Text: DOI arXiv OpenURL
Assaad, Obayda; Tudor, Ciprian A. Wavelet analysis for the solution to the wave equation with fractional noise in time and white noise in space. (English) Zbl 1478.60120 ESAIM, Probab. Stat. 25, 220-257 (2021). MSC: 60G22 60H07 60H15 62F12 PDF BibTeX XML Cite \textit{O. Assaad} and \textit{C. A. Tudor}, ESAIM, Probab. Stat. 25, 220--257 (2021; Zbl 1478.60120) Full Text: DOI OpenURL
Li, Johnny Siu-Hang; Liu, Yanxin Recent declines in life expectancy: implication on longevity risk hedging. (English) Zbl 1465.91095 Insur. Math. Econ. 99, 376-394 (2021). MSC: 91G05 60H30 35Q91 PDF BibTeX XML Cite \textit{J. S. H. Li} and \textit{Y. Liu}, Insur. Math. Econ. 99, 376--394 (2021; Zbl 1465.91095) Full Text: DOI OpenURL
Janák, Josef Parameter estimation for stochastic wave equation based on observation window. (English) Zbl 1467.62136 Acta Appl. Math. 172, Paper No. 2, 38 p. (2021). MSC: 62M05 62F10 93E10 60G35 60H15 PDF BibTeX XML Cite \textit{J. Janák}, Acta Appl. Math. 172, Paper No. 2, 38 p. (2021; Zbl 1467.62136) Full Text: DOI arXiv OpenURL
Wang, Zhenzhen; Zhou, Tianshou Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. (English) Zbl 1466.60132 Discrete Contin. Dyn. Syst., Ser. B 26, No. 9, 5023-5045 (2021). MSC: 60H15 60H30 PDF BibTeX XML Cite \textit{Z. Wang} and \textit{T. Zhou}, Discrete Contin. Dyn. Syst., Ser. B 26, No. 9, 5023--5045 (2021; Zbl 1466.60132) Full Text: DOI OpenURL
Wang, Xiaohu; Li, Dingshi; Shen, Jun Wong-Zakai approximations and attractors for stochastic wave equations driven by additive noise. (English) Zbl 1472.60106 Discrete Contin. Dyn. Syst., Ser. B 26, No. 5, 2829-2855 (2021). Reviewer: Pavel Stoynov (Sofia) MSC: 60H15 35B40 35B41 60H40 35L05 PDF BibTeX XML Cite \textit{X. Wang} et al., Discrete Contin. Dyn. Syst., Ser. B 26, No. 5, 2829--2855 (2021; Zbl 1472.60106) Full Text: DOI OpenURL
Li, Yan; Draycott, Samuel; Zheng, Yaokun; Lin, Zhiliang; Adcock, Thomas A. A.; van den Bremer, Ton S. Why rogue waves occur atop abrupt depth transitions. (English) Zbl 07359193 J. Fluid Mech. 919, Paper No. R5, 11 p. (2021). MSC: 76B15 76M35 86A05 PDF BibTeX XML Cite \textit{Y. Li} et al., J. Fluid Mech. 919, Paper No. R5, 11 p. (2021; Zbl 07359193) Full Text: DOI OpenURL
Mueller, Carl; Mytnik, Leonid; Ryzhik, Lenya The speed of a random front for stochastic reaction-diffusion equations with strong noise. (English) Zbl 1466.35005 Commun. Math. Phys. 384, No. 2, 699-732 (2021). MSC: 35A18 35K57 35K15 35R60 PDF BibTeX XML Cite \textit{C. Mueller} et al., Commun. Math. Phys. 384, No. 2, 699--732 (2021; Zbl 1466.35005) Full Text: DOI arXiv OpenURL
Borisova, Galina S. Solitonic combinations, commuting nonselfadjoint operators, and applications. (English) Zbl 07355807 Complex Anal. Oper. Theory 15, No. 3, Paper No. 45, 57 p. (2021). MSC: 47A48 60G12 47F05 PDF BibTeX XML Cite \textit{G. S. Borisova}, Complex Anal. Oper. Theory 15, No. 3, Paper No. 45, 57 p. (2021; Zbl 07355807) Full Text: DOI arXiv OpenURL
Friesen, Martin; Gottschalk, Hanno; Rüdiger, Barbara; Tordeux, Antoine Spontaneous wave formation in stochastic self-driven particle systems. (English) Zbl 1465.90019 SIAM J. Appl. Math. 81, No. 3, 853-870 (2021). MSC: 90B20 60K30 82C22 60H10 PDF BibTeX XML Cite \textit{M. Friesen} et al., SIAM J. Appl. Math. 81, No. 3, 853--870 (2021; Zbl 1465.90019) Full Text: DOI arXiv OpenURL
Klahn, Mathias; Madsen, Per A.; Fuhrman, David R. On the statistical properties of inertia and drag forces in nonlinear multi-directional irregular water waves. (English) Zbl 07347432 J. Fluid Mech. 916, Paper No. A59, 44 p. (2021). MSC: 76B15 76M35 PDF BibTeX XML Cite \textit{M. Klahn} et al., J. Fluid Mech. 916, Paper No. A59, 44 p. (2021; Zbl 07347432) Full Text: DOI OpenURL
Holm, Darryl D.; Luesink, Erwin Stochastic wave-current interaction in thermal shallow water dynamics. (English) Zbl 1468.76014 J. Nonlinear Sci. 31, No. 2, Paper No. 29, 56 p. (2021). MSC: 76B15 76M35 76M45 80A19 PDF BibTeX XML Cite \textit{D. D. Holm} and \textit{E. Luesink}, J. Nonlinear Sci. 31, No. 2, Paper No. 29, 56 p. (2021; Zbl 1468.76014) Full Text: DOI arXiv OpenURL
Zhou, Yanjiao; Xie, Jianqiang; Zhang, Zhiyue Highly efficient difference methods for stochastic space fractional wave equation driven by additive and multiplicative noise. (English) Zbl 1468.65121 Appl. Math. Lett. 116, Article ID 106988, 8 p. (2021). MSC: 65M06 65N06 60H40 35R60 35R11 PDF BibTeX XML Cite \textit{Y. Zhou} et al., Appl. Math. Lett. 116, Article ID 106988, 8 p. (2021; Zbl 1468.65121) Full Text: DOI OpenURL
Caraballo, Tomás; Carvalho, Alexandre N.; Langa, José A.; Oliveira-Sousa, Alexandre N. The effect of a small bounded noise on the hyperbolicity for autonomous semilinear differential equations. (English) Zbl 1465.37065 J. Math. Anal. Appl. 500, No. 2, Article ID 125134, 27 p. (2021). MSC: 37H30 37L55 37L15 37L45 PDF BibTeX XML Cite \textit{T. Caraballo} et al., J. Math. Anal. Appl. 500, No. 2, Article ID 125134, 27 p. (2021; Zbl 1465.37065) Full Text: DOI arXiv OpenURL
Dymov, Andrey; Kuksin, Sergei Formal expansions in stochastic model for wave turbulence. I: Kinetic limit. (English) Zbl 1482.35211 Commun. Math. Phys. 382, No. 2, 951-1014 (2021). MSC: 35Q55 35Q41 35L05 76B15 76F55 76M35 35R60 PDF BibTeX XML Cite \textit{A. Dymov} and \textit{S. Kuksin}, Commun. Math. Phys. 382, No. 2, 951--1014 (2021; Zbl 1482.35211) Full Text: DOI arXiv OpenURL
Li, Peijun; Wang, Xu Regularity of distributional solutions to stochastic acoustic and elastic scattering problems. (English) Zbl 1461.35254 J. Differ. Equations 285, 640-662 (2021). MSC: 35R60 35J05 35P25 60H15 35B65 PDF BibTeX XML Cite \textit{P. Li} and \textit{X. Wang}, J. Differ. Equations 285, 640--662 (2021; Zbl 1461.35254) Full Text: DOI arXiv OpenURL
Gu, Yu; Komorowski, Tomasz Gaussian fluctuations from random Schrödinger equation. (English) Zbl 1470.60182 Commun. Partial Differ. Equations 46, No. 2, 201-232 (2021). MSC: 60H15 35R60 35Q40 35Q41 PDF BibTeX XML Cite \textit{Y. Gu} and \textit{T. Komorowski}, Commun. Partial Differ. Equations 46, No. 2, 201--232 (2021; Zbl 1470.60182) Full Text: DOI arXiv OpenURL
Ganesh, M.; Kuo, Frances Y.; Sloan, Ian H. Quasi-Monte Carlo finite element analysis for wave propagation in heterogeneous random media. (English) Zbl 1459.65010 SIAM/ASA J. Uncertain. Quantif. 9, 106-134 (2021). MSC: 65C30 65C05 65N30 35J05 35R60 PDF BibTeX XML Cite \textit{M. Ganesh} et al., SIAM/ASA J. Uncertain. Quantif. 9, 106--134 (2021; Zbl 1459.65010) Full Text: DOI arXiv OpenURL
Rohde, Christian; Tang, Hao On the stochastic Dullin-Gottwald-Holm equation: global existence and wave-breaking phenomena. (English) Zbl 1456.60161 NoDEA, Nonlinear Differ. Equ. Appl. 28, No. 1, Paper No. 5, 34 p. (2021); correction ibid. 28, No. 2, Paper No. 19, 2 p. (2021). MSC: 60H15 35Q51 35A01 35B44 PDF BibTeX XML Cite \textit{C. Rohde} and \textit{H. Tang}, NoDEA, Nonlinear Differ. Equ. Appl. 28, No. 1, Paper No. 5, 34 p. (2021; Zbl 1456.60161) Full Text: DOI arXiv OpenURL
Holden, Helge; Karlsen, Kenneth H.; Pang, Peter H. C. The Hunter-Saxton equation with noise. (English) Zbl 1451.35266 J. Differ. Equations 270, 725-786 (2021). MSC: 35R60 35L60 60H15 PDF BibTeX XML Cite \textit{H. Holden} et al., J. Differ. Equations 270, 725--786 (2021; Zbl 1451.35266) Full Text: DOI arXiv OpenURL
Zhang, Ao; Duan, Jinqiao Effective wave factorization for a stochastic Schrödinger equation. (English) Zbl 07510450 Physica D 411, Article ID 132573, 6 p. (2020). MSC: 35Q55 74-XX PDF BibTeX XML Cite \textit{A. Zhang} and \textit{J. Duan}, Physica D 411, Article ID 132573, 6 p. (2020; Zbl 07510450) Full Text: DOI OpenURL
Yang, Hui; Fang, Shiyue; Liang, Fei; Li, Min A general stability result for second order stochastic quasilinear evolution equations with memory. (English) Zbl 07509697 Bound. Value Probl. 2020, Paper No. 62, 16 p. (2020). MSC: 60H15 35L05 35L70 PDF BibTeX XML Cite \textit{H. Yang} et al., Bound. Value Probl. 2020, Paper No. 62, 16 p. (2020; Zbl 07509697) Full Text: DOI OpenURL
Kim, Hyunsoo; Sakthivel, Rathinasamy; Debbouche, Amar; Torres, Delfim F. M. Traveling wave solutions of some important Wick-type fractional stochastic nonlinear partial differential equations. (English) Zbl 07505847 Chaos Solitons Fractals 131, Article ID 109542, 12 p. (2020). MSC: 60Hxx 35Qxx 35Rxx PDF BibTeX XML Cite \textit{H. Kim} et al., Chaos Solitons Fractals 131, Article ID 109542, 12 p. (2020; Zbl 07505847) Full Text: DOI OpenURL
Li, Weiming; Liu, Chang; Zhu, Yajun; Zhang, Jiwei; Xu, Kun Unified gas-kinetic wave-particle methods. III: Multiscale photon transport. (English) Zbl 07505616 J. Comput. Phys. 408, Article ID 109280, 20 p. (2020). MSC: 76M28 65C05 65C35 65M75 PDF BibTeX XML Cite \textit{W. Li} et al., J. Comput. Phys. 408, Article ID 109280, 20 p. (2020; Zbl 07505616) Full Text: DOI OpenURL
Korpinar, Zeliha; Inc, Mustafa; Alshomrani, Ali S.; Baleanu, Dumitru On exact special solutions for the stochastic regularized long wave-Burgers equation. (English) Zbl 07499671 Adv. Difference Equ. 2020, Paper No. 433, 12 p. (2020). MSC: 35C07 35Q53 PDF BibTeX XML Cite \textit{Z. Korpinar} et al., Adv. Difference Equ. 2020, Paper No. 433, 12 p. (2020; Zbl 07499671) Full Text: DOI OpenURL
Jiang, Yunzhi; Ge, Yongbin An explicit fourth-order compact difference scheme for solving the 2D wave equation. (English) Zbl 07499653 Adv. Difference Equ. 2020, Paper No. 415, 14 p. (2020). MSC: 35Lxx 49Mxx 65Cxx 65Mxx PDF BibTeX XML Cite \textit{Y. Jiang} and \textit{Y. Ge}, Adv. Difference Equ. 2020, Paper No. 415, 14 p. (2020; Zbl 07499653) Full Text: DOI OpenURL
Chaharpashlou, R.; O’Regan, Donal; Park, Choonkil; Saadati, Reza \(C^\ast\)-algebra valued fuzzy normed spaces with application of Hyers-Ulam stability of a random integral equation. (English) Zbl 07490975 Adv. Difference Equ. 2020, Paper No. 326, 9 p. (2020). MSC: 45N05 45M10 45R05 54A40 46S40 PDF BibTeX XML Cite \textit{R. Chaharpashlou} et al., Adv. Difference Equ. 2020, Paper No. 326, 9 p. (2020; Zbl 07490975) Full Text: DOI OpenURL
Trillos, Nicolás García; Murray, Ryan W. A maximum principle argument for the uniform convergence of graph Laplacian regressors. (English) Zbl 07482311 SIAM J. Math. Data Sci. 2, No. 3, 705-739 (2020). MSC: 35J05 49J55 60D05 62G08 68R10 PDF BibTeX XML Cite \textit{N. G. Trillos} and \textit{R. W. Murray}, SIAM J. Math. Data Sci. 2, No. 3, 705--739 (2020; Zbl 07482311) Full Text: DOI arXiv OpenURL
Yao, Huazhen; Zhang, Jianwen Random attractors for non-autonomous stochastic wave equations with nonlinear damping and white noise. (English) Zbl 1482.37080 Adv. Difference Equ. 2020, Paper No. 221, 19 p. (2020). MSC: 37L55 35B41 37L30 35B40 35R60 PDF BibTeX XML Cite \textit{H. Yao} and \textit{J. Zhang}, Adv. Difference Equ. 2020, Paper No. 221, 19 p. (2020; Zbl 1482.37080) Full Text: DOI OpenURL
Nualart, David; Zheng, Guangqu Spatial ergodicity of stochastic wave equations in dimensions 1, 2 and 3. (English) Zbl 07453063 Electron. Commun. Probab. 25, Paper No. 80, 11 p. (2020). Reviewer: Anatoliy Swishchuk (Calgary) MSC: 60H15 60H07 37A25 PDF BibTeX XML Cite \textit{D. Nualart} and \textit{G. Zheng}, Electron. Commun. Probab. 25, Paper No. 80, 11 p. (2020; Zbl 07453063) Full Text: DOI arXiv OpenURL
Majumder, Abhijit; Bala, Tapas Kumar; Adak, Debadatta; N’Guérékata, Gaston M.; Bairagi, Nandadulal Evaluating the current epidemiological status of Italy: insights from a stochastic epidemic model. (English) Zbl 1482.34126 Nonlinear Stud. 27, No. 4, 1169-1177 (2020). MSC: 34C60 92C60 34F05 34D05 92D30 PDF BibTeX XML Cite \textit{A. Majumder} et al., Nonlinear Stud. 27, No. 4, 1169--1177 (2020; Zbl 1482.34126) Full Text: Link OpenURL
Dymov, A. V.; Kuksin, S. B. On the Zakharov-L’vov stochastic model for wave turbulence. (English. Russian original) Zbl 1479.35783 Dokl. Math. 101, No. 2, 102-109 (2020); translation from Dokl. Ross. Akad. Nauk, Mat. Inform. Protsessy Upr. 491, 29-37 (2020). MSC: 35Q55 35Q41 35B20 82C40 35R60 PDF BibTeX XML Cite \textit{A. V. Dymov} and \textit{S. B. Kuksin}, Dokl. Math. 101, No. 2, 102--109 (2020; Zbl 1479.35783); translation from Dokl. Ross. Akad. Nauk, Mat. Inform. Protsessy Upr. 491, 29--37 (2020) Full Text: DOI arXiv OpenURL
Cormier, Vernon F.; Tian, Yiteng; Zheng, Yingcai Heterogeneity spectrum of Earth’s upper mantle obtained from the coherence of teleseismic P waves. (English) Zbl 1473.86025 Commun. Comput. Phys. 28, No. 1, 74-97 (2020). MSC: 86A22 86A15 74J20 86A60 PDF BibTeX XML Cite \textit{V. F. Cormier} et al., Commun. Comput. Phys. 28, No. 1, 74--97 (2020; Zbl 1473.86025) Full Text: DOI OpenURL
Zhang, Xian; Ostoja-Starzewski, Martin Impact force and moment problems on random mass density fields with fractal and Hurst effects. (English) Zbl 1462.74125 Philos. Trans. R. Soc. Lond., A, Math. Phys. Eng. Sci. 378, No. 2172, Article ID 20190591, 16 p. (2020). MSC: 74M20 26A33 PDF BibTeX XML Cite \textit{X. Zhang} and \textit{M. Ostoja-Starzewski}, Philos. Trans. R. Soc. Lond., A, Math. Phys. Eng. Sci. 378, No. 2172, Article ID 20190591, 16 p. (2020; Zbl 1462.74125) Full Text: DOI OpenURL
Barzegar Kelishami, Hasan; Fariborzi Araghi, Mohammad Ali; Amirfakhrian, Majid The use of CESTAC method to find optimal shape parameter and optimal number of points in RBF-meshless methods to solve differential equations. (English) Zbl 1474.65455 Comput. Methods Differ. Equ. 8, No. 4, 685-707 (2020). MSC: 65N35 35J05 65D12 PDF BibTeX XML Cite \textit{H. Barzegar Kelishami} et al., Comput. Methods Differ. Equ. 8, No. 4, 685--707 (2020; Zbl 1474.65455) Full Text: DOI OpenURL
Kovács, Mihály; Lang, Annika; Petersson, Andreas Weak convergence of fully discrete finite element approximations of semilinear hyperbolic SPDE with additive noise. (English) Zbl 1466.60130 ESAIM, Math. Model. Numer. Anal. 54, No. 6, 2199-2227 (2020). MSC: 60H15 65M12 60H35 65C30 65M60 60H07 PDF BibTeX XML Cite \textit{M. Kovács} et al., ESAIM, Math. Model. Numer. Anal. 54, No. 6, 2199--2227 (2020; Zbl 1466.60130) Full Text: DOI arXiv OpenURL
Tant, K. M. M.; Galetti, E.; Mulholland, A. J.; Curtis, A.; Gachagan, A. Effective grain orientation mapping of complex and locally anisotropic media for improved imaging in ultrasonic non-destructive testing. (English) Zbl 1466.74023 Inverse Probl. Sci. Eng. 28, No. 12, 1694-1718 (2020). MSC: 74J25 74E10 74S60 PDF BibTeX XML Cite \textit{K. M. M. Tant} et al., Inverse Probl. Sci. Eng. 28, No. 12, 1694--1718 (2020; Zbl 1466.74023) Full Text: DOI OpenURL
Delgado-Vences, Francisco; Nualart, David; Zheng, Guangqu A central limit theorem for the stochastic wave equation with fractional noise. (English. French summary) Zbl 1466.60127 Ann. Inst. Henri Poincaré, Probab. Stat. 56, No. 4, 3020-3042 (2020). Reviewer: Feng-Yu Wang (Swansea) MSC: 60H15 60H07 60G15 60F05 60G22 PDF BibTeX XML Cite \textit{F. Delgado-Vences} et al., Ann. Inst. Henri Poincaré, Probab. Stat. 56, No. 4, 3020--3042 (2020; Zbl 1466.60127) Full Text: DOI arXiv Euclid OpenURL
Darwich, Mohamad Invariance of the white noise for the Ostrovsky equation. (English) Zbl 1462.35149 Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 66, No. 2, 301-324 (2020). MSC: 35G31 35R60 PDF BibTeX XML Cite \textit{M. Darwich}, Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 66, No. 2, 301--324 (2020; Zbl 1462.35149) Full Text: DOI arXiv OpenURL
Garnier, Josselin Intensity fluctuations in random waveguides. (English) Zbl 1462.35477 Commun. Math. Sci. 18, No. 4, 947-971 (2020). MSC: 35R60 35J05 35Q60 60F05 PDF BibTeX XML Cite \textit{J. Garnier}, Commun. Math. Sci. 18, No. 4, 947--971 (2020; Zbl 1462.35477) Full Text: DOI arXiv OpenURL
Li, Yumeng; Wang, Xinyu Transportation cost-information inequality for stochastic wave equation. (English) Zbl 1462.60088 Acta Appl. Math. 169, 145-155 (2020). Reviewer: Feng-Yu Wang (Swansea) MSC: 60H15 60H20 49Q22 PDF BibTeX XML Cite \textit{Y. Li} and \textit{X. Wang}, Acta Appl. Math. 169, 145--155 (2020; Zbl 1462.60088) Full Text: DOI arXiv OpenURL